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Compressed-sensing tomography for qudits in Hilbert spaces of non-power-of-two dimensions
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The techniques of low-rank matrix recovery were adapted for quantum state tomography (QST) previously
by Gross et al. [Phys. Rev. Lett. 105, 150401 (2010)] where they consider the tomography of n spin-1/2 systems.
For the density matrix of dimension d = 2n and rank r with r � 2n, it was shown that randomly chosen Pauli
measurements of the order O[dr log(d )2] are enough to fully reconstruct the density matrix by running a specific
convex optimization algorithm. The result utilized the low operator norm of the Pauli operator basis, which
makes it “incoherent” to low-rank matrices. For quantum systems of dimension d not a power of two, Pauli
measurements are not available, and one may consider using SU(d ) measurements. Here, we point out that
the SU(d ) operators, owing to their high operator norm, do not provide a significant savings in the number of
measurement settings required for successful recovery of all rank-r states. We propose an alternative strategy in
which the quantum information is swapped into the subspace of a power-two system using only poly[log(d )2]
gates at most with QST being implemented, subsequently, by performing O[dr log(d )2] Pauli measurements.
We show that, despite the increased dimensionality, this method is more efficient than the one using SU(d )
measurements.
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I. INTRODUCTION

Quantum state (process) tomography [1] is the procedure
of experimentally characterizing an unknown quantum state
(process). It is an increasingly important task in quantum
information processing [2]. To characterize an unknown d-
dimensional quantum state, one would need to estimate the
expectation of values of a set of d2 observables, which span
the space of d×d Hermitian matrices. To characterize a quan-
tum process acting on a d-dimensional quantum system, one
would need to input d2 linearly independent quantum states
to the process and do a state tomography on all d2 outputs.
This is due to the fact that the output of a quantum process
for any unknown arbitrary input state can be determined by its
action on a set of linearly independent quantum states whose
density matrices span the space of d×d matrices. The main
problem associated with any quantum tomography task is that
the dimension of the system grows exponentially with its size,
making the whole task resource intensive.

One can hope to reduce the measurement settings by
restricting the classes of states (processes) subject to charac-
terization. For example, if a process matrix [2,3] of an un-
known quantum process acting on a d-dimensional quantum
system is known to be s sparse in a certain known basis,
then it is shown in Ref. [4] that compressed sensing (CS)
techniques [5–7] can be adapted to characterize the process
matrix using O[s log(d )] measurement settings. This method
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was experimentally performed for a two-qubit gate in Ref. [4]
and for superconducting quantum gates in Ref. [8]. Similar
techniques are used in Refs. [9,10] to characterize s-sparse
Hamiltonian (in known basis) of d-dimensional systems using
only O[s log(d )] measurement settings.

The matrix generalization of CS techniques, known as
matrix completion [11–13], are adapted to quantum state
tomography (QST) by Gross et al. [14] where they consider
tomography of n spin-1/2 systems, whose density-matrix ρ

is of dimension d = 2n and rank r. It was shown that |�| =
cdr log(d )2 randomly chosen Pauli measurements are enough
to recover ρ with exponentially low failure probability in c by
running a certain convex optimization algorithm. Numerical
performance and robustness of these methods to noise are
discussed in Ref. [15]. The experimental implementations of
these methods are presented in Refs. [16–18]. Similar results
were obtained in Ref. [19] by making use of the restricted
isometry property. The CS-QST protocol using continuous
measurements on unknown low-rank quantum states, which is
being manipulated by controlled external fields, is presented
in Ref. [20]. In Ref. [21], a nonconvex algorithm is proposed
for CS QST setting to improve the running time. In general,
tomography of unknown quantum states restricted by prior
information is studied in Ref. [22].

The main results of Ref. [14] were generalized to any given
matrix basis in Ref. [23] where it is shown that O[drν log(d )2]
expectation values with respect to the given operator basis
are sufficient to recover an unknown rank-r d dimensional
quantum states. The number ν is the “coherence” of the
density matrix with respect to the given matrix basis. Note
that the coherence ν, which is defined later in the article,
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is different from the quantum coherence [24]. The result of
Ref. [14] follows from Ref. [23] due to the fact that all the
low-rank matrices have coherence ν = 1 with respect to Pauli
operator basis. However, for quantum systems of dimension d
not a power of two, one cannot perform Pauli measurements.

A natural option would be to measure SU(d ) generators
[25], which, from here on, will be referred to as SU(d )
measurements. The set of SU(d ) generators are the natural
extension of Pauli matrices to Cd×d . This set consists of
d2 − 1 traceless orthonormal Hermitian operators, and the
identity operator.

We find that SU(d ) measurements do not guarantee “uni-
versal recovery” due to its high coherence [23]. We propose
an alternative strategy in which the quantum information is
transferred from the system to a power-two ancilla using a
unitary operation W , which can be efficiently implemented
using poly[log(d ), 1/ε] gates with accuracy ε. CS-QST is
then performed using |�| = c′dr log(d )2 randomly chosen
Pauli measurements on the ancilla to reconstruct the density
matrix of the unknown quantum state. We further compare the
performance of this method with the one where SU(d ) mea-
surements are used. Certain quantum communication tasks
have increased security against the attacks when qutrits and
higher-dimensional states are used [26–28], and reconstruct-
ing such states can be of particular interest which validates the
necessity for considering systems of dimensions not a power
of two.

The outline of the paper is as follows. The required def-
initions and notations are introduced in Sec. II. In Sec. III,
we discuss the problems arising from the usage of SU(d )
measurements for reconstruction. An alternate method is dis-
cussed in Sec. IV. In Sec. V, we discuss the gate complexity
for a unitary operation introduced in our methods. Finally, we
conclude in Sec. VI.

II. PRELIMINARIES

We use three matrix norms in this article, namely, the
nuclear norm, the Frobenius norm, and the operator norm.
Consider a d×d matrix X .

Definition 1 (Nuclear norm). The nuclear norm of X is
given as ‖X‖1 = ∑d

i σi(X ), where {σi(X )} are the singular
values of X .

Definition 2 (Frobenius norm). The Frobenius norm of X

is defined as ‖X‖2 = Tr(X †X ) =
√∑d

i σi(X )2.
Definition 3 (Operator norm). The operator norm is eval-

uated as ‖X‖ = maxi[σi(X )].
Following Ref. [23], we refer to an orthonormal basis

{wa}d2

a=1 with respect to the inner product 〈X,Y 〉 = Tr(X †Y )
in the space of d×d matrices where each element is Hermi-
tian (wa = w†

a) as the operator basis. Any ρ (d×d ) can be
expanded as

ρ =
d2∑

a=1

〈wa, ρ〉wa. (1)

Each expansion coefficient 〈wa, ρ〉 can be interpreted as the
expected value of the observable wa on ρ.

Definition 4 (Coherence). The coherence ν of a d×d ma-
trix ρ with respect to an operator basis {wa}d2

a=1 is given by
min(ν1, ν2) if

max
a

‖wa‖2 � ν1

(
1

d

)
, (2)

and

max
a

‖PU wa + waPU − PU waPU ‖2
2 � 2ν2

(
r

d

)
(3)

hold. PU is the projection operator onto the column (or row)
space of ρ.

Note that ν1 is independent of the density-matrix ρ

unlike ν2.
Theorem 1. See Reference [14]. Let ρ (d×d) be an arbi-

trary state of rank r. Let � ⊂ {wa}d2

a=1 be a randomly chosen
set. Each operator wa is a k-fold tensor product of the Pauli
basis operators {σi}3

i=0 for matrices on (C2)⊗k , where d2 =
2k . If the number of Pauli expectation values m = |�| =
cdr log(d )2, then the solution σ ∗ to the following optimization
program:

min ‖σ‖1

subject to Tr(waσ ) = Tr(waρ) ∀ wa ∈ � (4)

is unique and equal to ρ with failure probability exponentially
small in c.

Theorem 2. See Reference [23]. Let ρ (d×d ) be a rank-r
matrix with coherence ν with respect to the operator basis
{wa}d2

a=1. Let � ⊂ {wa}d2

a=1 be a randomly chosen set. The
solution σ ∗ to the following optimization program:

min ‖σ‖1

subject to Tr(waσ ) = Tr(waρ) ∀ wa ∈ � (5)

is unique and equal to ρ with probability of failure smaller
than e−β provided that

|�| � O[drν(β + 1) log(d )2].

III. SU(d ) OPERATOR BASIS

Consider the tomography of n spin-1/2 systems, whose
density matrix is of dimension d = 2n and rank r. Gross
et al. [14] show that cdr log(d )2 randomly chosen Pauli
measurements are sufficient to reconstruct the density matrix
from program (5) with exponentially low failure probability
in c. The operator norm of any normalized Pauli operator is√

1/d , and hence, ν1 = 1. For any given density matrix, the
number ν2 is also equal to one with respect Pauli operator
basis due to

max
a

‖PU wa + waPU − PU waPU ‖2
2 � sup

σ∈T , ‖σ‖2=1
〈wa, σ 〉

� ‖wa‖2‖σ‖2
2

� ‖wa‖22r‖σ‖2
2

� 2r

d
, (6)

where PU is the projector onto the column space of the density
matrix and T is the set of matrices (Y ) which satisfy the
condition (1 − PU )Y (1 − PU ) = 0 [23]. With respect to the
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Pauli operator basis, the coherence of any density matrix
is ν = ν1 = ν2 = 1. Hence, the result in Ref. [14] follows
straightforwardly from Theorem 2.

Let us now consider the task of reconstructing rank-r
quantum states of dimension (d) not a power of two using
the techniques given in Refs. [14,23].

Since the Pauli operator can only be defined in C2k×2k
as a

k-fold tensor product of SU(2) operators, a natural candidate
would be to use the SU(d ) operator basis [25]. The operator
norm of SU(d ) basis elements is greater than or equal to 1/2
and, hence, ν1 > d/2. In this case, one can obtain nontrivial
bounds on the number of SU(d ) measurement settings from
Theorem 2 only if ν2 is small. From the definition of ν2,

max
a

‖PU wa + waPU − PU waPU ‖2
2

= max
a

2 〈PU wa, PU wa〉 − 〈PU waPU , PU waPU 〉
� max

a
2 〈PU wa, PU wa〉

= max
a

2 Tr(PU w2
a ). (7)

Observe that w2
a is a diagonal matrix for all wa ∈ SU(d ). If we

restrict our attention to pure quantum states [i.e., rank (ρ)=1]
then the inequality (7) can be reduced to maxi, j,i = j ρii + ρ j j .
So the bounds obtained from Theorem 2 are nontrivial when
maxi, j,i = j ρii + ρ j j is small, much like the coherence condi-
tion in Ref. [11]. For example, consider the task of performing
CS-QST using SU(7) operator basis on following quantum
states:

ρ1 = |0〉〈0|,

ρ2 = 1

7

6∑
i, j=0

|i〉〈 j|, (8)

where {|i〉}6
i=0 for the standard basis for C7. With respect to the

SU(d ) basis, state ρ1 has the maximum coherence, whereas
ρ2 has the minimum coherence. A numerical simulation re-
veals that one can exactly reconstruct ρ1 only 95% times
from 46 SU(7) measurements chosen uniformly at random,
whereas ρ2 can be exactly reconstructed the same number
of times using only 28 SU(7) measurement settings chosen
uniformly at random. This shows that one can gain advan-
tage by performing CS-QST using SU(d ) measurements only
when the number maxa Tr(PU w2

a ) is small, which may not be
possible to know beforehand. This issue of operator norm with
respect to the SU(d ) generators, therefore, indicates that they
are not the best candidates as measurement operators. We,
therefore, propose an alternate method in the next section to
overcome this problem.

IV. ALTERNATE APPROACH

From Theorem 2, it is clear that if there exists an operator
basis {wa}d2

a=1 with small ν1 in the space of d×d Hermitian
matrices where d is not a power of two, one can recover any
quantum state from only O[dr log(d )2] measurement settings.
Instead of searching for such an operator basis, we propose a
method where we transfer the quantum information from the
system to the ancilla efficiently. We then perform CS-QST on

the ancilla using Pauli measurements. This strategy also gives
us the advantage of employing Pauli measurements which are
more easily implementable than SU(d ) measurements.

Let the system ρS be a rank-r density matrix acting on Cd1 ,
where d1 is not a power of two, and the ancilla ρA is acting on
Cd2 . The dimension of the ancilla d2 is set to a power of two
greater than d1. This is because we would like to perform Pauli
measurements on the ancilla ρA at a later stage. The system is
first coupled unitarily to the ancilla by a swap operator W ,

ρSA = W ρS ⊗ ρAW †. (9)

For our purposes, we define W as the following:

W =
d1∑
i, j

|iS〉〈 jS| ⊗ | jA〉〈iA| +
d2−d1∑

i

1 ⊗ |iA〉〈iA|, (10)

where {iS} and {iA} form the orthonormal basis in Cd1 and
Cd2 , respectively. It swaps the d1-dimensional space of the
system with d1-dimensional subspace of the ancilla which is
spanned by {|iA〉}d1

i=0. Let the initial state of the system ρS be∑d1
i, j ρi j |iS〉〈 jS|. One can choose the initial state of the ancilla

from the d1-dimensional subspace spanned by {|iA〉}d1
i=0. For

brevity of analysis, we set the initial state to

ρA = |0A〉〈0A| =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠

d2×d2

. (11)

The combined state of system + ancilla after the action of
unitary W is

ρSA = W ρS ⊗ ρAW †

=
⎛
⎝ d1∑

i′, j′
|i′S〉〈 j′S| ⊗ | j′A〉〈 j′A| +

d2−d1∑
i′

1 ⊗ |i′A〉〈i′A|
⎞
⎠

×
⎛
⎝ d1∑

i, j

ρi j |iS〉〈 jS| ⊗ |0A〉〈0A|
⎞
⎠W †

=
⎛
⎝ d1∑

j′,i, j

ρi j |0S〉 〈 j′S|iS〉 〈 jS| ⊗ | j′A〉〈0A|
⎞
⎠W †

=
⎛
⎝ d1∑

i, j

ρi j |0S〉 〈 jS| ⊗ |iA〉〈0A|
⎞
⎠

×
⎛
⎝ d1∑

i′, j′
| j′S〉〈i′S| ⊗ |i′A〉〈 j′A| +

d2−d1∑
i′

1 ⊗ |i′A〉〈i′A|
⎞
⎠

=
d1∑

j′,i, j

ρi j |0S〉 〈 jS| j′S〉 〈0S| ⊗ |iA〉〈 j′A|

= |0S〉〈0S| ⊗
⎛
⎝ d1∑

i, j

ρi j |iA〉〈 jA|
⎞
⎠. (12)
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FIG. 1. The fidelity F (ρ, σ ∗) between the estimated (σ ∗) and the
true states (ρ) against the number of measurement settings (m) for
SU(15) basis measurements (orange) and Pauli measurements on the
ancilla (blue) is shown. Fidelity is calculated over 2000 randomly
generated 15×15 rank-1 density matrices.

One can see that the new state of the ancilla ρ ′
A =∑d1

i, j ρi j |iA〉〈 jA| has ρS on the top left d1×d1 block and zeros
elsewhere. This implies that the rank(ρ ′

A) = rank(ρS ), and one
can recover ρ ′

A using CS-QST to get ρS . We use the following
program to reconstruct ρ ′

A:

min ‖σ‖1

subject to Tr(waσ ) = Tr(waρ
′
A) ∀ wa ∈ �, (13)

where � is the set of randomly chosen Pauli operators. From
Theorem 1, it directly follows that |�| = cd2r log(d )2 Pauli
measurements are enough for the output of the program (13)
to be unique and equal to ρ ′

A with failure probability exponen-
tially low in c. To reduce the number of measurement settings,
we set d2 as the smallest power of two greater than or equal
to d1. The number of measurement settings cd2r log(d )2 can
then be upper bounded by c′d1r log(d )2 as the d2 is always
less than 2d1.

We performed numerical simulations to compare the per-
formance of the alternate approach with the one using SU(d )
measurements. The simulations were performed in MATLAB
using a freely available package [29]. The simulations, al-
though noiseless, are sufficient to bring out the main ideas that
we present. In Fig. 1, we compare the fidelity, which is defined
as F (ρ, σ ∗) = Tr(

√√
ρσ ∗√ρ )2 between the estimated (σ ∗)

and true states (ρ) against the number of measurement set-
tings for SU(15) basis measurements (blue) and ancilla-aided
approach (orange). Fidelity is calculated over 2000 randomly
and uniformly generated 15×15 rank-1 density matrices. One
can see that the performance using the ancilla-aided approach
is better for all the considered measurement settings. In Fig. 2,
we compare the fidelity between the estimated and the true
states against the number of measurement settings for the
SU(31) basis measurements (blue) and the alternate approach
(orange). Fidelity is calculated over 1000 randomly and uni-
formly generated 31×31 rank-1 density matrices. As we
increase the dimension of the density matrices, we see that the
difference in the performance becomes more apparent because

120 130 140 150 160 170 180 190

0.6

0.7

0.8

0.9

1.0

1.1

FIG. 2. The fidelity F (ρ, σ ∗) between the estimated (σ ∗) and the
true states (ρ) against the number of measurement settings (m) for
SU(31) basis measurements (orange) and Pauli measurements on the
ancilla (blue) is shown. Fidelity is calculated over 1000 randomly
generated 31×31 rank-1 density matrices.

the number of measurement settings for the alternate approach
scale better than the one using SU(d ) measurements. Note
that in Figs. 1 and 2, the shaded regions cover the region
between the sum and the difference of the mean and standard
deviation (mean ± standard deviation) of F (ρ, σ ∗) for a given
measurement setting.

V. GATE COMPLEXITY OF W

The sparsity of the unitary operator W makes it efficiently
implementable using only single qubit gates. It is shown, in
Refs. [30,31], that one can implement any unitary U by evolv-
ing the system under the Hamiltonian ( 0 U

U † 0 ). Furthermore,
according to Ref. [32], if a N×N Hamiltonian H has at most
d nonzero entries in every row, one can implement it with an
error ε using poly[log(d1), 1/ε] gates.

Following Refs. [30,31], let

H =
(

0 W
W † 0

)
. (14)

One can see that H is one row sparse as W . Using Taylor series
expansion, one can write e−iHt as

e−ıHt = cos(t )1 − ı sin(t )H. (15)

By choosing t appropriately, one can get

e−ıHt = −ıH = −ı

(
0 W

W † 0

)
= −ıσx ⊗ W. (16)

The Hamiltonian H generates the following evolution:

e−ıHt (ρ f ⊗ ρS ⊗ ρA)e+ıHt = −ıσxρ f σx ⊗ W ρS ⊗ ρAW †,

(17)

where ρ f is a qubit in the first register which can be ig-
nored after the computation. To implement the d1d2×d1d2

unitary matrix W with an error less than ε, one would need
poly[log(d1d2), 1/ε] gates. One can upper bound the number
of gates required by poly[log(d1), 1/ε] using d2 � 2d1.
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VI. DISCUSSION AND CONCLUSIONS

In this article, we consider the problem of performing
CS-QST on quantum systems of dimension not a power of
two. For power-two systems, it is shown in Ref. [14] that
one needs O[dr log(d )2] Pauli expectation values where r
and d are rank and dimension of the system’s density ma-
trix, respectively. The result makes use of the low operator
norm of the Pauli basis, which is applicable only on Hilbert
spaces whose dimension is a power of two. To achieve the
same asymptotic bounds for the considered problem, we pro-
posed an alternate approach, which uses Pauli measurements
and requires relatively less additional cost when compared
to the cost of performing CS-QST. In this approach, we
transfer the quantum information in the system to an an-
cilla of power-two dimension using a general unitary oper-
ation W , which can be implemented with accuracy ε using
at most poly[log(N ), d, ‖Ht‖, 1/ε] gates. We showed that
c′d1r log(d1)2 random Pauli measurements on the ancilla are
enough to exactly recover the density matrix of quantum states
using the convex optimization algorithm (5). The performance

of the proposed method is shown to be better than the one
where SU(d ) measurements are used. How this performance
can be improved by applying efficiently implementable pseu-
dounitary on the ancilla ahead of Pauli measurements is a part
of future research. The methods introduced in the article can
be extended to quantum process tomography by performing
CS-QST on the Jamiołkowski [33] and Choi [34] state ρE
where E is the process subject to characterization.
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