
PHYSICAL REVIEW A 101, 062327 (2020)

Classification of the MNIST data set with quantum slow feature analysis

Iordanis Kerenidis* and Alessandro Luongo†

CNRS, IRIF, Université Paris Diderot, 75013 Paris, France

(Received 16 November 2019; accepted 7 May 2020; published 22 June 2020)

Quantum machine learning is a research discipline intersecting quantum algorithms and machine learning.
While a number of quantum algorithms with potential speedups have been proposed, it is quite difficult to provide
evidence that quantum computers will be useful in solving real-world problems. Our work makes progress
towards this goal. In this work we design quantum algorithms for dimensionality reduction and for classification
and combine them to provide a quantum classifier that we test on the MNIST data set of handwritten digits.
We simulate the quantum classifier, including errors in the quantum procedures, and show that it can provide
classification accuracy of 98.5%. The running time of the quantum classifier is only polylogarithmic in the
dimension and number of data points. Furthermore, we provide evidence that the other parameters on which the
running time depends scale favorably, ascertaining the efficiency of our algorithm.

DOI: 10.1103/PhysRevA.101.062327

I. INTRODUCTION

Quantum computing has the potential to revolutionize in-
formation and communication technologies and one of the
most promising areas is quantum machine learning. Re-
cently, many quantum algorithms with potential speedups
were proposed [1–7]. Nevertheless, whether quantum pro-
cessing machines can be used in practice to solve efficiently
and accurately real-world problems remains an open ques-
tion. Answering this question consists in finding practical
applications of quantum computing with a real economic
and societal impact. Our work provides evidence that large-
scale quantum computers with quantum access to data will
indeed be useful in machine learning. We design two efficient
quantum algorithms: one for dimensionality reduction and
another for classification. In addition, we simulated their
combined behavior on the commonly used MNIST data set
of handwritten digits, showing that our classifier is able
to provide accurate classification, comparable to classical
algorithms.

Our first contribution consists of a quantum algorithm
called quantum slow feature analysis (QSFA), a quantum
method for dimensionality reduction. Dimensionality reduc-
tion is a technique used in machine learning in order to
reduce the dimension of a data set while maintaining the
most meaningful information contained therein. Dimension-
ality reduction algorithms are often used both to render the
computational problem more feasible and to counterbalance
the curse of dimensionality, i.e., the undesired property of
some machine learning algorithms, whose performance de-
teriorates once the dimension in the feature space becomes
too high. Intuitively, this is because if the data exist in an
excessively-high-dimensional space, the informative power of

*Also at QC Ware, 75013 Paris, France.
†Also at Atos Quantum Lab, 78340 Les Clayes-sous-Bois, France;

aluongo@irif.fr

the data points in the training set decreases, thus leading to a
degradation in classification performance.

The second contribution is an algorithm for classification
called the quantum Frobenius distance (QFD) classifier. It is a
quantum method that classifies a new data point based on the
average squared �2 distance between the test point and each
labeled cluster. Being a very simple algorithm, we believe it
can target quantum hardware in the early noisy intermediate-
scale quantum architectures.

As the last contribution, the simulation results of our quan-
tum classifier, combining QSFA and QFD, allows us to claim
that the accuracy of the MNIST data set is around 98.5%,
which is comparable to classical machine learning algorithms
and better than many of the previous results registered in [8].
We also provide an estimate of the running time of our
algorithm by calculating all the parameters that appear for
the asymptotic running time and depend on the input data.
Our estimate provides evidence that our quantum classifier
can be more efficient than the corresponding classical one
or more importantly that one can use our quantum classifier
with higher input dimension, retaining efficiency and accuracy
together.

The goal of this work is to assess the power of a quantum
computer that can access classical data efficiently, in a similar
manner to classical high-performance computing machines
which by default possess a fast RAM. In other words, we
assume the quantum computer can use an efficient quantum
procedure to create quantum states corresponding to the clas-
sical data, for example, through a QRAM, a data structure that
allows quantum access to classical data. Efficient algorithms
for creating such QRAM circuits using quantum oracle access
have been proposed [1,9,10]. Sometimes in the literature this
data structure goes under the name of KP trees [11]. We can
imagine the QRAM in two ways: as a quantum operator that
allows classical data to be retrieved efficiently in superposition
and as a particular format we impose on the classical data
we store. In fact, the circuit for the QRAM of a data set
X holds all the information needed to retrieve the matrix

2469-9926/2020/101(6)/062327(12) 062327-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.062327&domain=pdf&date_stamp=2020-06-22
https://doi.org/10.1103/PhysRevA.101.062327

IORDANIS KERENIDIS AND ALESSANDRO LUONGO PHYSICAL REVIEW A 101, 062327 (2020)

X and is efficiently built from X . Of course, we do not
have such quantum computers or quantum RAM right now
and there is a possibility that they may never be realized.
Still, there are some proof-of-concept experiments in this
direction [12–15]. We think of our results as motivation for
actually building such quantum processing machines. We will
provide more details about the QRAM model in the following
sections. After a review of previous work and introduction
of the techniques used, we provide a short description of the
classical SFA technique and of the quantum procedures for
performing linear algebra.

A. Previous work

We describe previous work on quantum classification.
Quantum machine learning can be roughly divided in two
different approaches. The first category of algorithms uses
circuits of parametrized gates to perform machine learning
tasks such as classification or regression [16–18]. In the
training phase, the parameters of the circuit are learned using
classical optimization techniques, where the function to opti-
mize is a loss function calculated on the output of the quantum
circuit [19]. Works in this direction are [20,21], with issues
outlined in [22] and addressed in [23]. The second approach
uses quantum computers to speed up the linear algebraic
operations performed in classical machine learning, extending
the famous Harrow-Hassidim-Lloyd algorithm [24]. The work
of Rebentrost et al. [3] consists of an algorithm for a support
vector machines classifier. In this class of algorithms, other
quantum dimensionality reduction algorithms exist, princi-
pal component analysis [6] and linear and nonlinear Fisher
discriminant analysis [25], which are based on Hamiltonian
simulation techniques. Other possible approaches consist in
using quantum annealing (see, e.g., [26–28]).

Recently, many results in classical machine learning have
been obtained by dequantizing quantum machine learning
algorithms [29,30], using techniques from randomized linear
algebra and the Monte Carlo Markov chain [31]. Remarkably,
this class of classical randomized algorithms works under
assumptions similar to the ones in their quantum counterparts
(i.e., they assume the ability to have query and weighted
sample access to the data set). Similarly to what the QRAM
does for quantum algorithms, these techniques store and
precompute all the partial norms for the data set, which are
later used in sampling procedures. As for the quantum case,
the runtime of these classical algorithms is polylogarithmic in
the dimensions of the data set. However, these algorithms are
unfortunately impractical on interesting data sets: The most
recent proposal for solving a linear system of equations has
a runtime of Õ(κ16k6‖A‖6

F /ε6), where k is the rank, ε is
the error in the solutions, κ is the condition number of the
data set, and ‖A‖F is the Frobenius norm of the data set.
These algorithms have been implemented and benchmarked
on real and synthetic data sets in [32]. Therein the authors
conclude that these techniques cannot compare in terms of
runtime to other approaches in classical machine learning,
and therefore these algorithm are not likely to change the
set of problems which is expected to be solved efficiently by
quantum computers.

B. Classical slow feature analysis

Slow feature analysis was originally proposed as an on-
line, nonlinear, and unsupervised algorithm [33,33,34]. It was
motivated by the temporal slowness principle, a hypothe-
sis for the functional organization of the visual cortex and
possibly other sensory areas of the brain [35] and it was
introduced as a way to model some transformation invari-
ances in natural image sequences [36]. Slow feature analysis
formalizes the slowness principle as a nonlinear optimization
problem [37,38]. A prominent advantage of SFA compared
to other algorithms is that it is almost hyperparameter-free.
Another advantage is that it is guaranteed to find the optimal
solution within the considered function space [39,40]. It has
been shown that solving the optimization problem upon which
SFA is based is equivalent to other dimensionality reduction
algorithms, such as Laplacian eigenmaps [41] and the Fisher
linear discriminant [42]; thus a quantum algorithm for SFA
also provides algorithms for Laplacian eigenmaps and the
Fisher linear discriminant. Our quantum algorithm runs in
time polylogarithmically in the dimension and number of
points in the data set, thus with a potential considerable
speedup with respect to classical algorithms. With appropriate
preprocessing, SFA can be used as a dimensionality reduction
algorithm to improve the speed and classification accuracy
in supervised machine learning [34,36,43,44]. The problem
is formalized as follows. The input of the algorithm consists
of vectors x(i) ∈ Rd , i ∈ [n]. Each x(i) belongs to one of K
different classes. By definition, SFA algorithm computes the
K − 1 functions g j (x(i)) : Rd → R, j ∈ [K − 1], such that
the output y(i) = [g1(x(i)), . . . , gK−1(x(i))] is very similar
for the training samples that belong to the same class and
largely different for samples of different classes. Once these
functions are learned, they are used to map the training set in
a low-dimensional vector space of dimension K − 1. When
a new data point arrives, it is mapped to the same vector
space, where classification can be done with higher accuracy.
We introduce the minimization problem as it is stated for
classification [34]. For Tk the set of training elements of class
k, let a = ∑K

k=1

(|Tk |
2

)
. For all j ∈ [K − 1] minimize

�(y j) = 1

a

K∑
k=1

∑
s,t∈Tk

s<t

[g j (x(s)) − g j (x(t))]2, (1)

with the following constraints for all v < j:
1
n

∑K
k=1

∑
i∈Tk

g j (x(i)) = 0, 1
n

∑K
k=1

∑
i∈Tk

g j (x(i))2 = 1,

and 1
n

∑K
k=1

∑
i∈Tk

g j (x(i))gv (x(i)) = 0. In order for the
minimization problem to be feasible in practice, the gj’s are
restricted to be linear functions w j such that the output signal
becomes y(i) = [wT

1 x(i), . . . ,wT
K−1x(i)]T or else Y = XW ,

where X ∈ Rn×d is the matrix with rows of the input samples
and W ∈ Rd×(K−1) the matrix that maps the input matrix
X into a lower-dimensional output Y ∈ Rn×(K−1). In case it
is needed to capture nonlinear relations in the data set, one
commonly performs a nonlinear polynomial expansion on the
input data during the preprocessing. Usually, a polynomial
expansion of degree 2 or 3 is sufficient, since polynomials of
higher order might overfit. The constraint on the average and
variance of the signal’s component can be satisfied efficiently

062327-2

CLASSIFICATION OF THE MNIST DATA SET WITH QUANTUM … PHYSICAL REVIEW A 101, 062327 (2020)

by normalizing and scaling the input matrix X before solving
the optimization problem. This assumption is simple to
satisfy, as normalizing the input matrices of the data set is
linear in the dimension of the problem. Taking all this into
account, we can restate the definition of the Delta function as

�(y j) = wT
j Aw j

wT
j Bw j

, (2)

where the matrix B is called the covariance matrix of the data
set and is defined as

B := 1

n

∑
i∈[n]

x(i)x(i)T = X T X (3)

and the matrix A is called the derivative covariance matrix and
is defined as

A := 1

a

K∑
k=1

∑
i,i′∈Tk

i<i′

[x(i) − x(i′)][x(i) − x(i′)]T . (4)

We rewrite A as 1
a

∑K
k=1 Ẋ T

k Ẋk := Ẋ T Ẋ . Here Ẋ ∈ Rg×d is the
matrix that has as row the difference between two vectors in
X that belongs to the same class. We can approximate the
matrix A by subsampling from all possible pairs [x(i), x(i′)]
from each class. In our experiment we build Ẋ with a con-
stant sample size of g = 104 derivatives from all the possible
derivatives for a given class. It is not hard to see that the weight
vectors w j that correspond to the minima of Eq. (2) are the
eigenvectors associated with the smallest eigenvalues of the
generalized eigenvalue problem AW = �BW [45,46], where
� = diag[λ1, . . . , λn] is the diagonal matrix of eigenvalues
and W is the matrix of generalized eigenvectors. Picking
the K − 1 smallest eigenvectors will allow us to create the
d × (K − 1) matrix W that will project our data to the slow
feature space. In other words, SFA reduces to a generalized
eigenvalue problem.

Computationally, the training part of the SFA algorithm
has two steps. First, the matrix X is mapped to the matrix
Z = XB−1/2 of the whitened data. The whitening data matrix
X consist in diagonalizing the covariance matrix X T X of
the data set and transforming the data such that the co-
variance matrix becomes the identity. Because of whitening,
we reduce the generalized eigenvalue problem to a normal
eigenvalue problem. Then Z is projected onto the space
spanned by the eigenvectors associated with the K − 1 small-
est eigenvalues of the matrix ŻT Ż . Here Ż is defined similarly
to Ẋ , by sampling the pointwise differences of the whitened
data. Because of this, we can redefine the derivative covari-
ance matrix as A := ŻT Ż = (B−1/2)T Ẋ T Ẋ B−1/2.

We remark that the best classical algorithms for operating
on matrices and performing all the necessary linear algebraic
procedures are currently polynomial in the matrix dimensions.
In fact, when the dimension of the input vectors becomes
too large, procedures like full principal component analysis
(PCA) or SFA become infeasible since their complexity is
Õ(min(n2d, d2n)) [47].

C. Quantum algorithms for linear algebra

In what follows we adopt the convention that the matrices
stored in QRAM are prescaled, i.e., ‖M‖2 = 1, where ‖M‖2 is
the spectral norm (see [10] for an efficient procedure for this
normalization). In recent work [48,49], QRAM-based proce-
dures for matrix multiplication and inversion were discovered
with running time Õ(κ (M)μ(M) log(1/ε)), where κ is the
condition number of the matrix M (i.e., the ratio between
the biggest and smallest singular value), ε is the error, and
the parameter μ(M) is defined as

μ(M) = min
p∈P

[‖M‖F ,

√
s2p(M)s2(1−p)(MT)]

for sp(M) := maxi∈[n] ‖mi‖p
p, where ‖mi‖p is the �p-norm of

the ith row of M and P is a finite set of size O(1) ∈ [0, 1].
Note that μ(M) � ‖M‖F �

√
d , as we have assumed that

‖M‖2 � 1. We see that it will be convenient to choose μ

to be the maximum �1-norm of the rows of the matrix, i.e.,
μ(M) = ‖M‖∞. In these works, the notion of block encoding
is used, which is shown to be equivalent to our notion of
having an efficient data structure such as the one described in
Appendix C. In order to get the polylogarithmic dependence
on the precision parameter ε, Gilyén and co-workers showed
how to perform the linear algebra procedures directly through
the technique of qubitization and without explicitly estimating
coherently the singular values. Another important advantage
of the method is that it provides easy ways to manipulate sums
or products of matrices. We start by stating more precisely
the results in [48,49] about the quantum algorithms for linear
algebraic procedures that we will use for proving the runtime
and correctness of the QSFA algorithm.

Theorem 1 (matrix algebra [48,49]). Let M := ∑
i σiuiv

T
i ∈

Rd×d such that ‖M‖2 = 1 and a vector x ∈ Rd stored
in QRAM. There exist quantum algorithms that with a
probability of at least 1 − 1/poly(d) return (i) a state |z〉
such that ||z〉 − |Mx〉| � ε in time Õ(κ (M)μ(M)log(1/ε))
and (ii) a state |z〉 such that ||z〉 − |M−1x〉| � ε in time
Õ(κ (M)μ(M)log(1/ε)). One can also get estimates of the
norms with multiplicative error η by increasing the running
time by a factor 1/η.

Theorem 2 (matrix algebra on products of matrices [48,49]).
Let M1, M2 ∈ Rd×d such that ‖M1‖2 = ‖M2‖2 = 1, M =
M1M2, and a vector x ∈ Rd stored in QRAM. There ex-
ist quantum algorithms that with a probability of at least
1 − 1/poly(d) return (i) a state |z〉 such that ||z〉 − |Mx〉| �
ε in time Õ(κ (M)[μ(M1) + μ(M2)]log(1/ε)), (ii) a state
|z〉 such that ||z〉 − |M−1x〉| � ε in time Õ(κ (M)[μ(M1) +
μ(M2)]log(1/ε)), and (iii) a state |M+

�θ,δM�θ,δx〉 in time

Õ([μ(M1)+μ(M2)]‖x‖
δθ‖M+

�θ,δM�θ,δx‖). One can also get estimates of the norms

with multiplicative error η by increasing the running time by
a factor 1/η.

II. QUANTUM SLOW FEATURE ANALYSIS

Our goal is to devise a quantum algorithm that maps a
quantum state corresponding to the data X to a quantum
state Y that represents the data in the slow feature space of
the SFA algorithm. Formally, UQSFA maps the state |X 〉 :=

1
‖X‖F

∑n
i=1 ‖x(i)‖|i〉|x(i)〉 to |Y 〉 := 1

‖Y ‖F

∑n
i=0 ‖y(i)‖|i〉|y(i)〉.

062327-3

IORDANIS KERENIDIS AND ALESSANDRO LUONGO PHYSICAL REVIEW A 101, 062327 (2020)

As the classical algorithm, QSFA is divided in two parts.
In the first step we whiten the data, i.e., we map the state
|X 〉 to the state |Z〉, and in the second step we project |Z〉
onto the subspace spanned by the smallest eigenvectors of the
whitened derivative covariance matrix A = ŻT Ż . As we know
classically, the data are whitened by multiplying X by the
matrix B−1/2 = (X T X)−1/2; in other words, we build |Z〉 :=
|B−1/2X 〉. The results in [48] state that the time to multiply
by B−1/2 is the same as the time to multiply by X and hence
we can perform this multiplication using Theorem 1. Now we
want to project this state onto the subspace spanned by the
eigenvectors associated with the K − 1 “slowest” eigenvectors
(i.e., associated with the smallest singular values) of the
whitened derivative covariance matrix A := ŻT Ż , where Ż is
the whitened derivative matrix Ż = Ẋ B−1/2. The procedure
follows the projection procedure that was used in [1] for
recommendation systems, although the projection is now in
the lowest eigenspectrum instead of the highest one. Let θ be
a threshold value and δ a precision parameter. By A�θ,δ we
denote a projection of the matrix A onto the vector subspace
spanned by the union of the singular vectors associated with
singular values that are smaller than θ and some subset of
singular vectors whose corresponding singular values are in
the interval [θ, (1 + δ)θ]. Again, we note that the eigenvalues
of A are the squares of the singular values of Ż , and the
two matrices share the same row space: Ż = U�V T and A =
V �2V T . Note also that whitening the derivatives is equal to
taking the derivatives of the whitened data. We can therefore
use the quantum algorithms for linear algebra and state the
following.

Theorem 3 (QSFA). Let X = ∑
i σiuiv

T
i ∈ Rn×d and its

derivative matrix Ẋ ∈ Rn log n×d stored in QRAM as described
in Appendix C. Let ε, θ, δ, η > 0. There exists a quantum
algorithm that produces as output a state |Y 〉 with ‖|Y 〉 −
|A+

�θ,δA�θ,δZ〉‖ � ε in time

Õ

((
κ (X)μ(X) log(1/ε) + μ(X) + μ(Ẋ)

δθ

)

× ‖Z‖
‖A+

�θ,δA�θ,δZ‖

)
(5)

and an estimator ‖Y ‖ with |‖Y ‖ − ‖Y ‖| � η‖Y ‖ with an
additional 1/η factor in the running time.

A priori, one does not know the appropriate threshold value
θ , but this can be found efficiently using a binary search.
Note also that the output of the algorithm is not a classical
description of the projected inputs but a quantum state that
corresponds to these projected inputs, but this is sufficient
for using the classification procedure described afterward. If
necessary, we can recover classically the K − 1 slow feature
vectors using process tomography. We present the proof of
Theorem 3 in Appendix A.

III. QUANTUM FROBENIUS DISTANCE CLASSIFIER

To perform the classification of the MNIST data set we
propose the quantum Frobenius distance classifier, a quantum
classification algorithm designed with the ease of implemen-
tation in mind. The QFD classifier assigns a test point x(0) to

the cluster k whose points have minimum normalized average
squared �2 distance to x(0). Let Xk be defined as the matrix
whose rows are the vectors corresponding to the kth cluster
and |Tk| is the number of elements in that cluster. For the
test point x(0) and a class k, define the matrix X (0) ∈ R|Tk |×d ,
which just repeats the row x(0) |Tk| times. Then we define

Fk (x(0)) = ‖Xk − X (0)‖2
F

2
[‖Xk‖2

F + ‖X (0)‖2
F

] (6)

as the average normalized squared distance between x(0) and
the cluster k. Let h : X → [K] be our classification function.
Then the hypothesis of the class made by the QFD classifier
on x(0) is

h(x(0)) := arg min
k∈[K]

Fk (x(0)). (7)

Our algorithm, which is described in detail in Appendix D,
estimates Fk (x(0)) efficiently, assuming the vectors and their
norms are loaded into the quantum computer either from
the QRAM or directly from some quantum process. For its
implementation we use little more than the ability to query
the QRAM and a Hadamard gate. In fact, we first create the
following state by using one control qubit and the ability to
efficiently create the quantum states corresponding to the data
points:

1√
Nk

(
|0〉

∑
i∈Tk

‖x(0)‖|i〉|x(0)〉 + |1〉
∑
i∈Tk

‖x(i)‖|i〉|x(i)〉
)

.

(8)

Then we apply a Hadamard on the leftmost qubit and note that
the probability of measuring 1 is exactly equal to Fk (x(0)).
We can estimate the probability of 1 by measuring in the
computational basis in time Õ(1

η2), or in Õ(1
η

) using amplitude
amplification. We will see that in fact η does not have to be
very small in order to classify correctly the MNIST data set
after the dimensionality reduction (we can take η = 1/10),
since the clusters are pretty well separated. The running time
of this procedure is Õ(K

η
), when we assume that the data are

stored in QRAM or it can be efficiently created by a quantum
procedure.

IV. QUANTUM CLASSIFIER

For each cluster k, we first use the QSFA procedure to
project the input onto the slow feature space, where we use
the QFD classifier. More precisely, for each class we use the
QSFA procedure that maps |Xk〉 to a state |Yk〉, which is ε

close to the state |Yk〉 = 1
‖Yk‖F

∑
i∈Tk

‖y(i)‖|i〉|y(i)〉. We can
also use the same procedure to construct the vector |y(0)〉 and
hence construct a state equivalent to the state in Eq. (8) but
in the slow feature space. Then the QFD algorithm assigns a
class to y(0) by finding the closest cluster with respect to the
Frobenius distance in Eq. (6).

A. Analysis of the accuracy of the MNIST data set

Since currently available quantum hardware cannot run our
algorithm or any significant part of it, we simulated QSFA
and QFD on an Atos QLM with 6 TB of RAM. We simulated

062327-4

CLASSIFICATION OF THE MNIST DATA SET WITH QUANTUM … PHYSICAL REVIEW A 101, 062327 (2020)

our combined quantum classifier on the MNIST data set of
handwritten digits, a standard data set used to benchmark
machine learning algorithms. Details on the simulations can
be found in Appendix B. Our software heavily relied on
PYTHON packages for numerical computation and machine
learning: SCIKIT-LEARN [50] and the SCIPY ecosystem [51]. To
gauge the accuracy of our classification procedure, we first
need to take into account the inherent errors in the quantum
procedures (for example, in estimating the singular values)
and second we need to test our classification algorithm, since
our notion of distance is not among the ones used classically.
Then we provide some estimation of the running time of
the quantum algorithm, by computing the parameters that
appear in the asymptotic complexity of the algorithm. Our
estimation does not include terms that depend on the hardware
implementations of the quantum algorithm, which are for the
moment not clear, for example, the fact that a quantum step
may be slower than a classical step or the possible overhead
due to the error correcting codes. Our goal here is to see if,
a priori, the quantum algorithm itself is more efficient than
the classical one. If there is no speedup in our analysis, then
one cannot hope to see a speedup in practice. If there is a
significant speedup, then there is hope that part of this speedup
(and which part depends on how good the whole technological
stack will be, like hardware and error correcting codes) can be
seen in practice.

The MNIST data set [8], first studied in [8,52], is composed
of n = 60 000 grayscale images of handwritten digits, 28 ×
28 pixels. We will follow closely the methodology used to
apply classical SFA to the MNIST data set, detailed in [34].
The methodology is as follows. First, the dimension of the
data set is reduced with a PCA to something like 35 (or
around 90, depending on the polynomial expansion degree we
use in the following step). Second, a polynomial expansion
of degree 2 or 3 is applied, hence making the dimension
up to 104. For example, with polynomial expansion of de-
gree 2 we mean that a vector (x1, x2, . . . , xd) is mapped to
(x1, . . . , xd , x2

1, x1x2, . . . , x2
d). Third, the data are scaled to

zero mean and unit variance. We tested our algorithm while
increasing the dimension of the initial PCA on the training set,
hoping the accuracy will get even better when we increase the
dimension of the input.

In Fig. 1 we plot the accuracy (percentage of correctly
classified digits from the test set) of the quantum classifier
(QSFA plus QFD) using polynomial expansion of degrees 2
and 3, showing that we achieve very good accuracy. On the
x axis we changed the initial resolution of the image using
PCA. The highest performance accuracy was 98.5% with
polynomial expansion of degree 3 and PCA dimension of 36,
which took about an hour of simulation. Given the favorable
dependence on the dimension, we expect a quantum computer
to achieve even higher accuracy given a polynomial expansion
of a higher degree and more data.

We also tested the accuracy of our classifier when instead
of the condition number κ we use a condition threshold κt

(i.e., we discard singular values of the matrices below a certain
threshold, which we vary between 30 and 200). This usually
improves the running time by a factor of 2 while keeping the
accuracy unchanged. The threshold of the condition number
of X is chosen to retain 99.5% of the singular values. In this

FIG. 1. Accuracy of our quantum classifier (QSFA with QFDC)
versus the classical classifier (SFA with KNN) for polynomial ex-
pansions 2 and 3, using different numbers of pixels via PCA. For
polynomial expansion 2, our quantum classifier (bottom dotted line)
reaches the accuracy of the classical one (dashed line) for large
enough dimensions. For polynomial expansion 3 (upper solid line),
the two are almost indistinguishable. In this experiment, the error for
the quantum classifier on the quantum linear algebra subroutines is
ε = 10−5 and κt is less than 200.

case, the accuracy for polynomial expansion 2 remains prac-
tically unchanged, while for polynomial expansion 3 there
is a small decline, with the maximum becoming 98.2% for
PCA dimension 30. We can boost again the accuracy in the
following way: Instead of running the classifier once, we run it
a few times (around 10) and do a majority vote before labeling
the new data point. This increases the accuracy of polynomial
expansion 3 a bit; for example, for PCA 36, the accuracy goes
from 97.7% to 97.9%. Note that while we tried to optimize the
parameters in order to achieve the best possible accuracy, it is
very probable there are even better parameters that in practice
can be found by a hyperparameter tuning algorithm. This
could further increase the accuracy of the quantum classifier.

B. Running time estimation

The asymptotic running time of the quantum classifier is
given by the running time of the QSFA times a factor K/η2

(or K/η with amplitude amplification) that comes from the
QFD. For the MNIST data set, we estimated the value of the
parameters that affects the runtime of the quantum classifier
(training and testing part together). For instance, we measured
the condition number of the matrices used in the quantum
linear algebra operations. We also estimated the tolerable
error in ε, δ, θ , and η such that the generalization error is
comparable to that of classical algorithms. This was made
possible by perturbing the model with some kind of noise,
as described in Appendix B. Overall, putting the orders of all
parameters together, the estimated asymptotic running time is

062327-5

IORDANIS KERENIDIS AND ALESSANDRO LUONGO PHYSICAL REVIEW A 101, 062327 (2020)

of the order of 107. Again, this is just an estimate of the steps
of the quantum algorithm. More importantly, the behavior
of the parameters as the dimension increases gives further
evidence that the quantum classifier can be more efficient that
a classical classifier, whose running time is of the order of
1013 for the same input dimension. Moreover, the fact that
all parameters that appear in the running time of the quantum
classifier seem to increase very slowly (or not at all) as we
increase the number and dimension of the data points leads
us to believe that one could still have an efficient quantum
classifier with much a higher number and dimension of points,
thus eventually providing much higher classification accuracy.

V. DISCUSSION

We have provided evidence that quantum computers with
quantum access to data can be useful in solving real-world
problems by designing an efficient classifier. We achieved
accuracy comparable to the best classical algorithms, with
improved running time. It would be interesting to see if the
same performance is achievable also on different data sets;
we do not see any reason why it would not be.

In one of the experiments our quantum classifier performs
the training and testing part together, i.e., one composes the
QSFA and QFD procedures, in contrast to the classical case
where one first uses the training to obtain the model classically
and then uses the model for the testing. On one hand, this
allows us to quickly classify new data without having to
wait for an extensive training period. In fact, according to
our rough estimates, one can classify 106 images before the
classical algorithm finishes its training part. On the other hand,
if the testing part contains a very large number of data points
(many orders of magnitude more than the training part), then
one might want to use the quantum procedure to extract the
classical SFA model, in other words, find the matrix W , such
that Y = XW . For this, it suffices to use the QSFA algorithm
with the initial state the totally mixed state, in which case the
quantum output of the QSFA procedure is in fact the state that
corresponds to the matrix W . Performing efficient tomography
for this state, using the procedure in [53], we can accurately
find the matrix W and store it in QRAM. Then the testing can
be done classically in time O(Kd).

We envision the utility of our classifier in conjunction with
other quantum machine learning algorithms. For instance,
projective simulation [54] is a reinforcement learning algo-
rithm based on a random walk over a graph. The graph repre-
sents the memory of an agent that acts on a certain environ-
ment. The random walk starts from a node (or superposition
of nodes) decided by an input-coupling function. Quantum
SFA could be used to treat and preprocess high-dimensional
input signals in agents that use projective simulation as the
input-coupling function of external stimuli in the memory
model of the agent. This would resemble even further what we
currently believe to be the architecture of the brain, where SFA
is used to model complex cells in the primary visual cortex
(the first cortical area dedicated to visual processing [55]) and
projective simulation is used to model high-level cognitive
functions which emerge from a model of an episodic and
compositional memory for the agent (so as to model creativity,
curiosity, etc.) [56]. Note also that the quantum algorithm

for SFA can also be used for classification via Fisher linear
discriminant [42] and Laplacian eigenmaps [41].

Note also that it might be more important to see our
quantum classifier not as a faster algorithm but as a way to
increase the accuracy. As we said, the training stage is limited
by the dimension of the input and the fact that our quantum
classifier depends only polylogarithmically on the dimension
and all other parameters remain stable when the dimension
increases will enable us to use much higher dimension in the
training stage, thus hopefully improving the accuracy of the
classifier. Despite being an algorithm based on linear algebra,
techniques like polynomial expansions can help in capturing
nonlinearities hidden in the data, thus improving further the
accuracy of the classifier. Alas, this comes at the cost of
increasing the dimension of the data set and thus an increase
of the runtime of classical algorithms. With quantum algo-
rithms with polylogarithmic dependence on the dimension of
the data set, we believe these techniques can be even more
beneficial.

ACKNOWLEDGMENTS

We thank Anupam Prakash and András Gilyén for help-
ful discussions. This research was supported by QuantAlgo,
Quantex, QuData, and ANR. The experiments were per-
formed on an Atos QLM.

I.K. and A.L. contributed equally to the theoretical part
of the work. A.L. made the simulations of the quantum
algorithms.

The authors declare that there are no competing interests.

APPENDIX A: QUANTUM SLOW FEATURE ANALYSIS

In this Appendix we provide the details of the QSFA
algorithm introduced in Theorem 3.

Quantum SFA consists of two steps. The first step
is the whitening, which can be performed in time
Õ(κ (X)μ(X)log(1/ε)) and provide the state |Z〉. It is simple
to verify that creating a state |Z〉 of whitened data such
that ZT Z = I can be done using quantum access just to the
matrix X , as Z = XB−1/2. The second step is the projection
of whitened data in the slow feature space, which is spanned
by the eigenvectors of A = ŻT Ż . This matrix shares the same
right eigenvectors of ẊB−1/2, which is simple to check that
we can efficiently access using the QRAM constructions of
X and Ẋ . Using the algorithm for quantum linear algebra, we
know that the projection (without the amplitude amplification)
takes time equal to the ratio μ(X) + μ(Ẋ) over the threshold
parameter; in other words, it takes time Õ((μ(X)+μ(Ẋ)

δθ
). Finally,

the amplitude amplification and estimation depend on the size
of the projection of |Z〉 onto the slow eigenspace of A; more
precisely, it corresponds to the factor Õ(‖Z‖

‖A+
�θ,κ A�θ,κ Z‖). This

term is roughly the same if we look at Z instead of Z . Note also
that Z is the whitened data, which means that each whitened
vector should look roughly the same in each direction. This
implies that the ratio should be proportional to the ratio of
the dimension of the whitened data over the dimension of the
output signal. Note that in the case of the MNIST data set this
ratio is small enough.

062327-6

CLASSIFICATION OF THE MNIST DATA SET WITH QUANTUM … PHYSICAL REVIEW A 101, 062327 (2020)

Algorithm 1 Quantum slow feature analysis.

Require:

Matrices X ∈ Rn×d and Ẋ ∈ Rn×d in QRAM, parameters ε, θ, δ, η > 0.

Ensure:

A state |Y 〉 such that ||Y 〉 − |Y 〉| � ε, with Y = A+
�θ,δA�θ,δZ

1: Create the state

|X 〉 := 1
‖X‖F

∑n
i=1 ‖x(i)‖|i〉|x(i)〉 .

2: (Whitening algorithm) Map |X 〉 to |Z〉 with ||Z〉 − |Z〉| � ε and Z = XB−1/2.

3: (Projection in slow feature space) Project |Z〉 onto the slow eigenspace of A using threshold θ and precision δ, i.e., A+
�θ,δA�θ,δZ .

4: Perform amplitude amplification and estimation on the register |0〉 with the unitary U implementing steps 1–3 to obtain |Y 〉
with ||Y 〉 − |Y 〉| � ε and an estimate ‖Y ‖ with multiplicative error η.

APPENDIX B: SIMULATION

The MNIST data set is a commonly used benchmark to
test the validity of newly proposed classifiers. Classical clas-
sification techniques can achieve around 98%–99% accuracy,
with neural network solutions exceeding 99% (the MNIST
data set is quite simple and this is why it is often used as a
first benchmark). As previously introduced in the main text,
classical SFA has also been applied on the same data set with
an accuracy of 98.5%, with initial PCA of dimension 35 and
polynomial expansion of degree 3, and we will closely follow
that classification procedure. Our goal is to study a quantum
classifier with two properties: very good accuracy and effi-
ciency. We detail our quantum classifier by going through the
three parts in any classical classifier: preprocessing, training,
and testing. The error in the whitening procedure has been
simulated by adding noise from a truncated Gaussian distribu-
tion centered on each singular value with unit variance. For the
error in the projection part, this comes only from potentially
projecting on a different space than the one wanted. By taking
the right θ (around 0.3 or 0.05 depending on the polynomial
expansion) and a small enough δ (around 1/20) for the error,
we guarantee in practice that the projection is indeed on the
smallest K − 1 eigenvectors.

1. Data preprocessing

The MNIST data set is composed of n = 60 000 images
in the training set and 10 000 images in the test set, where
each sample is a black and white image of a handwritten digit
of 28 × 28 pixels. The methodology is as follows. First, the
dimension of the images is reduced with a PCA to something
like 35 (or around 90, depending on the polynomial expansion
degree we use in the following step). Fortunately, efficient
incremental algorithms for PCA exist, which do not require
one to fully diagonalize a covariance matrix, and the running
time depends on the number of dimensions required as output.
Second, a polynomial expansion of degree 2 or 3 is applied,
hence making the dimension up to 104. Third, the data are
normalized so as to satisfy the SFA requirements of zero mean
and unit variance. Overall, the preprocessing stage creates
around n = 105 vectors x(i), i ∈ [n], of size roughly d = 104

and the running time of the preprocessing is Õ(nd), with
nd ≈ 109. With a real quantum computer we would add a

further step, which is to load the preprocessed data in the
QRAM. This take only one pass over the data and creates a
data structure (i.e., a circuit) which is linear in the size of the
data. Hence, the overall preprocessing takes time of Õ(nd).

2. Training

The classical SFA procedure outputs a small number (K −
1) of “slow” eigenvectors of the derivative covariance matrix,
where K is the number of different classes and here K = 10.
This is in fact the bottleneck for classical algorithms and
this is why the dimension was kept below d = 104 with
polynomial expansion, which still requires intensive high-
performance computing calculations. Generically, the running
time is between quadratic and cubic and hence of the order
1013. Once these eigenvectors are found, each data point is
projected onto this subspace to provide n vectors of K − 1
dimensions which are stored in memory. As the points are
labeled, we can find the centroid of each cluster. Note that
at the end, the quantum procedure does not output a classical
description of the eigenvectors, nor does it compute all vectors
y(i), as the classical counterpart could do. Nevertheless, given
a quantum state |x(i)〉, it can produce the quantum state |y(i)〉
with high probability and accuracy.

3. Testing

For the testing stage, the classifier trained with the errors is
used to classify the 10 000 images in the test set. Classically,
the testing works as follows. One projects the test data point
x(0) onto the slow feature space to get a (K − 1)-dimensional
vector y(0). Then a classification algorithm is performed, for
example, the k-nearest neighbor (KNN) i.e., one finds the k-
closest neighbors of y(0) and assigns the label that appears the
majority of times. The complexity of this step is O(Kd) for the
projection of the test vector, plus the time of the classification
in the slow feature space. The KNN algorithm, for example, is
linear in the number of data points times the dimension of the
points Õ(nd). In the nearest centroid algorithm (a supervised
classification algorithm where the label of a new point is
assigned to the cluster with the closest barycenter), if in the
training stage we find the centroids, then classification can
be done in time Õ(Kd). In our final algorithm we perform

062327-7

IORDANIS KERENIDIS AND ALESSANDRO LUONGO PHYSICAL REVIEW A 101, 062327 (2020)

FIG. 2. Sensitivity analysis of the parameter μ of the data set
while increasing n. The graph shows the value of the Frobenius
norm and the �∞-norm as two options for μ. The two upper dotted
lines represent the Frobenius norm of X and Ẋ (lower and upper
line, respectively) for polynomial expansion of degree 2. The solid
horizontal lines above 10 shows the trend of the Frobenius norm
for the polynomial expansion of degree 3 of X and Ẋ (lower and
upper line, respectively). The two lines at the bottom represent the
�∞-norm for Ẋ for the polynomial expansion of degrees 2 (dashed)
and 3 (solid), respectively. The central slanting lines are the �∞-norm
of X , for polynomial expansion of degrees 2 (dashed) and 3 (solid).
For the MNIST data set, we see that both the Frobenius norm and
the �∞-norm are practically constant when we increase the number
of data points in the training set.

the training and testing together, i.e., using QSFA and QFD
together.

4. Parameters of the experiment

We now estimate a number of parameters appearing in the
running time of the quantum classifier.

a. Number and dimension of data points

For the MNIST we have that nd is of the order of 109

(including data points and derivative points).

b. The parameter μ for the matrices X and Ẋ

We analyze the parameters μ(X) and μ(Ẋ) as the number
of data points in the training set and the dimension of the input
vectors increase (PCA dimension plus polynomial expansion).
We know that μ is bounded by the Frobenius norm of the
matrix. We also look at the case where μ is defined as the
maximum l1-norm of the rows of the matrices, plotted in
Fig. 2 (see also Fig. 3). Matrices are normalized to have
spectral norm 1. The good choice of μ is practically constant
as we increase the number of points in the data set. All the
l1-norms in the experiment are less than 11. We also plot the

FIG. 3. Sensitivity analysis of the parameter μ for the matrices
X and Ẋ while increasing d , the number of pixels for an image,
by changing the PCA dimension, which is performed before the
polynomial expansion. The plot shows the value of the Frobenius
norm and the �∞-norm (i.e., max �1-norm of the rows) as two options
for μ. The dashed lines are for the polynomial expansion of degree
2: The two upper lines are (from top to bottom) ‖Ẋ‖F and ‖X‖F

and the two lower dashed lines are (from top to bottom) ‖X‖∞ and
‖Ẋ‖∞. The two dotted central lines track the Frobenius norm of
the polynomial expansion of degree 3: ‖Ẋ‖F and ‖X‖F (from top
to bottom). The bottom solid lines represent the �∞-norm for the
polynomial expansion of degree 3 of ‖Ẋ‖ and ‖X‖ (from bottom to
top). In general, the �∞-norm is always smaller than the Frobenius
norm.

Frobenius norm and the maximum l1-norm as the dimension
of the vectors in the data set increases. While the Frobenius
norm somewhat increases with the dimension, the maximum
l1-norm remains stable. This could be expected since in the
preprocessing a PCA is done, making the input matrices in
fact quite low rank. Indeed, after the polynomial expansion
the Frobenius norm does not increase much since we only add
higher-order terms; note that all entries of the matrices are
smaller than 1, since ‖X‖max � ‖X‖2 � 1. On the other hand,
the scaling and normalization of X help keep the l1-norm even
lower. It is important to state here that one gains a factor 103

just by taking the correct quantum algorithm for performing
linear algebra and not an off-the-shelf one. Such decisions will
be crucial in reaching the real potential of quantum computing
for machine learning applications.

c. Condition number for the matrix X

Figures 4 and 5 show us that condition number is rather
stable, in fact decreasing. As explained, we do not need to
have the real condition number in the running time but a
threshold under which we ignore the smaller eigenvalues.
In fact, retaining just 99.5% of the singular values does not

062327-8

CLASSIFICATION OF THE MNIST DATA SET WITH QUANTUM … PHYSICAL REVIEW A 101, 062327 (2020)

FIG. 4. Sensitivity analysis of the condition number of X and
Ẋ while increasing d , the number of pixels, and discarding the
0 singular values. We plot the condition number of a polynomial
expansion of degree 2: The upper dashed line is κ (Ẋ) and the lower
dashed line is κ (X). The upper solid lines are for a polynomial
expansion of degree 3. In both cases, the condition number of Ẋ
dominates the condition number of X . For the case of a polynomial
expansion of degree 3, this happens after approximately 3500 pixels.

considerably penalize the accuracy and achieves a behavior
of growing much more slowly as we increase the dimension,
with a value around 102.

d. Error parameters

There are four error parameters: ε for the matrix multipli-
cation procedure, δ and θ for the projection procedure, and
η for the estimate of the norms in the classification. For ε, it
appears only within a logarithm in the running time, so we can
take it to be rather small. For the projection, we take δ ≈ 1/20
and from the simulations we have that θ ≈ 0.3 for polynomial
expansion of degree 2 and θ ≈ 0.05 for polynomial expansion
of degree 3. Finally, it is enough to take η = 1/10. Note also
that these parameters are pretty stable when increasing the

FIG. 5. Sensitivity analysis of the condition numbers (after dis-
carding the 0 singular values) while increasing the size of the training
set (by adding the test set). The first two lines from the top represent
the polynomial expansion of degree 3, with κ (Ẋ) bigger than κ (X).
The two central lines are the condition numbers for the polynomial
expansion of degree 3, while discarding 0.5% of the smallest singular
values [again κ (Ẋ) is bigger than κ (X)]. The two bottom lines
represent the condition numbers for polynomial expansion of degree
2. In all three cases, the condition number of Ẋ is bigger than the
condition number of X .

dimension, as they only depend on whether we perform a
polynomial expansion of 2 or 3.

e. Projection ratio

The ratio between the norm of the vectors in the whitened
space over the projected vector in the slow feature space is
well bounded. For an initial PCA dimension of 40 and poly-
nomial expansion of degree 2, this ratio is 10 with variance
0.0022, while for a polynomial expansion of degree 3 and a
PCA dimension of 30 it is 20 with 0.0007 variance.

Table I provides the exact values of all parameters in the
experiment.

TABLE I. Accuracy of relevant experiments for various combination of classifiers and polynomial expansion. Here we have chosen
ε/κ (X) = 10−7, δ = 0.054, η = 1/10, and 10.000 derivatives per class.

d (PCA) ‖X‖ ‖Ẋ‖ ‖x(i)‖1 ‖ẋ(i)‖1 κ (X) κ (Ẋ) κt (X) κt (Ẋ) θ %t %

QSFA2

860 (40) 22 102 0.9 1.4 41 22 32 15 0.38 96.4 96.4
3220 (80) 41 197 2.7 3.8 119 61 65 30 0.32 97.3 97.4
4185 (90) 46 215 3.1 4.4 143 74 72 35 0.31 97.4 97.4

QSFA3

5455 (30) 73 81 5.9 4.3 276 278 149 149 0.06 98.2 98.3
8435 (35) 96 102 7.8 5.7 369 389 146 156 0.05 97.5 98.4
9138 (36) 101 108 8.0 5.3 388 412 149 159 0.04 97.7 98.5

062327-9

IORDANIS KERENIDIS AND ALESSANDRO LUONGO PHYSICAL REVIEW A 101, 062327 (2020)

‖X‖

· · ·

‖X1‖

· · ·

‖x(1)‖ ‖x(2)‖

· · ·

‖x(3)‖ ‖x(|T1|)‖

· · ·

x1(|T1|) x2(|T1|)

· · ·

xd−1(|T1|) xd(|T1|)

‖X2‖

· · ·

‖XK−1‖

· · · · · ·

‖XK‖

· · · · · ·

FIG. 6. The QRAM tree for matrices Xk and for the Frobenius
norms of the submatrices of each class.

APPENDIX C: CONSTRUCTION OF THE QRAM

In this appendix we show how to construct the QRAM
oracles needed in QSFA. A QRAM has been used in quantum
algorithmics literature as a generic way of retrieving classical
data and building a corresponding quantum state. The name
QRAM is meant to evoke the way classical RAM addresses
the data in memory using a tree structure. A quantum query is
defined as |i〉|0〉 → |i〉|bi〉 for bi ∈ R and i ∈ [N].

One can of course write down the real bi with some
precision δ using log 1/δ bits. We extend this data structure
to allow us to efficiently create superpositions corresponding
to the rows of the matrices, states with amplitudes equal
to the norms of the rows of the matrices, and also states
corresponding to the inputs that belong to a specific class k.
We show what our QRAM data structure looks like for the
input matrix X (and similarly for the matrix Ẋ) if the choice
of μ is the Frobenius norm of the matrix. Each row of the
matrix of the data set is encoded as a tree, where the leaves
correspond to the matrix elements, while the intermediate
nodes store the square amplitudes that correspond to their
subtree.

We assume that the preprocessing (the optional PCA step,
polynomial expansion, and removing the mean from the vec-
tors and scaling the components to have unit variance) is
performed classically, before storing the data in the QRAM.
This takes O(nd) time, which is upper bounded by Õ(nd),
the time needed to create this QRAM. Using the notation
of the present paper, we have X ∈ Rn×d , X = ∪K

i=1Xi, and
Xk ∈ R|Tk |×d . As we see in Fig. 6, all rows of the matrix X
are saved as a tree with leaves the entries and the roots the
corresponding norm ‖x(i)‖. We arrange the rows per class
and we join all trees corresponding to rows of a class k into a
tree built on top of the individual trees, with leaves the norms
of each row in the class (i.e., the roots of the previous trees)
and the roots the norm of the class ‖Xk‖. On top of these K
trees, we build one last tree with the leaves the norms of each
class (i.e., the roots of the previous trees) and the roots the
norms of the entire matrix ‖X‖. We also store the number of
elements per class Tk ∈ [K]. This is said more concisely in the
following corollary.

Corollary (QRAM for Xk). Let X ∈ Rn×d and Xk ∈ R|Tk |×d

for k ∈ [K]. There exists a data structure to store the rows of
X such that (a) the size of the data structure is O(nd log2(nd)),
(b) the time to store a row x(i) is O(d log2(nd)) and the
time to store the whole matrix X is thus O(nd log2(nd)), and
(c) a quantum algorithm that can ask superposition queries
of the data structure can perform in time polylog(nd) the
unitaries (i) U : |i〉|0〉 → |i〉|x(i)〉 for i ∈ [n], (ii) V : |0〉 →∑

i∈[n] ‖x(i)‖|i〉, (iii) Uk : |i〉|0〉 → |i〉|x(i)〉 for i ∈ Tk and all
k ∈ [K], and (iv) Vk : |0〉 → ∑

i∈Tk
‖x(i)‖|i〉 for all k ∈ [K].

The procedure to create and store the matrix Ẋ is exactly
the same as the procedure needed for X . Note that the classical
matrix Ẋk is created in the following way. For each sample
class Tk in the training set, we create m = Tk log(Tk) new
derivative vectors ẋ(i) := x(i) − x(j) with i, j ∈ Tk by sam-
pling from the uniform distribution m pairs of vectors with
the same label.

APPENDIX D: QUANTUM FROBENIUS DISTANCE
CLASSIFIER

We assume we can create a superposition of all vectors in
the cluster as quantum states and have access to their norms,
which can be achieved either using our QRAM or in the
case in which the quantum states are efficiently constructible
by quantum circuits. We define Nk = ‖Xk‖2

F + ‖X (0)‖2
F =

‖Xk‖2
F + |Tk|‖x(0)‖2. We give the steps to build an efficient

procedure to estimate distances as Algorithm 2 and later
describe how to use it to build a classifier. For the analysis

Algorithm 2 Quantum Frobenius distance estimator.

Require:

QRAM access to the matrix Xk of cluster k and to a test.
vector x(0). The error parameter η > 0.

Ensure:

Fk (x(0)) such that |Fk (x(0)) − Fk (x(0))| < η.

1: s := 0

2: for r = O(1/η2) do

3: Create the state
1√
Nk

[
√|Tk |‖x(0)‖|0〉 + ‖Xk‖F |1〉] |0〉|0〉

4: Apply the unitary that maps

|0〉|0〉 �→ |0〉 1√|Tk |
∑

i∈Tk
|i〉

and

|1〉|0〉 �→ |1〉 1
‖Xk‖F

∑
i∈Tk

‖x(i)‖|i〉
to the first two registers to get

1√
Nk

(|0〉 ∑
i∈Tk

‖x(0)‖|i〉 + |1〉 ∑
i∈Tk

‖x(i)‖|i〉) |0〉 .

5: Apply the unitary that maps

|0〉|i〉|0〉 �→ |0〉|i〉|x(0)〉 and |1〉|i〉|0〉 �→ |1〉|i〉|x(i)〉 .

6: Apply a Hadamard to the first register and measure it. If the

outcome is |1〉 then s := s + 1.

7: end for

8: Output s
r .

062327-10

CLASSIFICATION OF THE MNIST DATA SET WITH QUANTUM … PHYSICAL REVIEW A 101, 062327 (2020)

of Algorithm 2, just note that the probability of measuring |1〉
in the final state is

1

2Nk

(
|Tk|‖x(0)‖2 +

∑
i∈Tk

‖x(i)‖2 − 2
∑
i∈Tk

〈x(0), x(i)〉
)

= Fk (x(0)). (D1)

By Hoeffding bounds, to estimate Fk (x(0)) with error η we
would need O(1

η2) samples. For the running time, we assume
all unitaries are efficient either because the quantum states
can be prepared directly by some quantum procedure or given

that the classical vectors are stored in the QRAM. Hence
the algorithm runs in time Õ(1

η2). We can of course use
amplitude estimation and save a factor of 1/η. Depending on
the application or the hardware, one may prefer to keep the
quantum part of the classifier as simple as possible or optimize
the running time by performing amplitude estimation. Given
this estimator, we can now define the QFD classifier. For a
test point, the classifier simply runs the distance estimation
procedure for each cluster of vectors with the same label. Then
the test point is assigned to the closest cluster. It is simple
to see that the running time of this algorithm is Õ(K/η2) [or
Õ(K/η) using amplification techniques].

[1] I. Kerenidis and A. Prakash, Quantum recommendation sys-
tems, arXiv:1603.08675.

[2] S. Lloyd, S. Garnerone, and P. Zanardi, Quantum algorithms
for topological and geometric analysis of data, Nat. Commun.
7, 10138 (2016).

[3] P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum Support
Vector Machine for Big Data Classification, Phys. Rev. Lett.
113, 130503 (2014).

[4] N. Liu and P. Rebentrost, Quantum machine learning for quan-
tum anomaly detection, Phys. Rev. A 97, 042315 (2018).

[5] N. Wiebe, D. Braun, and S. Lloyd, Quantum Algorithm for Data
Fitting, Phys. Rev. Lett. 109, 050505 (2012).

[6] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum principal
component analysis, Nat. Phys. 10, 631 (2013).

[7] A. M. Childs and N. Wiebe, Hamiltonian simulation using lin-
ear combinations of unitary operations, Quantum Inf. Comput.
12, 901 (2012).

[8] Y. LeCun, C. Cortes, and C. J. C. Burges, The MNIST database
of handwritten digits, 2010, http://yann.lecun.com/exdb/mnist/

[9] A. Prakash, Quantum algorithms for linear algebra and ma-
chine learning, Ph.D. thesis, University of California, Berkeley,
2014.

[10] I. Kerenidis and A. Prakash, Quantum gradient descent for
linear systems and least squares, Phys. Rev. A 101, 022316
(2020).

[11] P. Rebentrost and S. Lloyd, Quantum computational
finance: Quantum algorithm for portfolio optimization,
arXiv:1811.03975.

[12] N. Jiang, Y.-F. Pu, W. Chang, C. Li, S. Zhang, and L.-M. Duan,
Experimental realization of 105-qubit random access quantum
memory, npj Quantum Inf. 5, 28 (2019).

[13] C. T. Hann, C.-L. Zou, Y. Zhang, Y. Chu, R. J. Schoelkopf, S.
M. Girvin, and L. Jiang, Hardware-Efficient Quantum Random
Access Memory with Hybrid Quantum Acoustic Systems, Phys.
Rev. Lett. 123, 250501 (2019).

[14] D. K. Park, F. Petruccione, and J.-K. K. Rhee, Circuit-based
quantum random access memory for classical data, Sci. Rep. 9,
3949 (2019).

[15] J. Bang, A. Dutta, S.-W. Lee, and J. Kim, Optimal usage of
quantum random access memory in quantum machine learning,
Phys. Rev. A 99, 012326 (2019).

[16] G. Verdon, M. Broughton, and J. Biamonte, A quantum al-
gorithm to train neural networks using low-depth circuits,
arXiv:1712.05304.

[17] M. Schuld, A. Bocharov, K. Svore, and N. Wiebe, Circuit-
centric quantum classifiers, Phys. Rev. A 101, 032308 (2020).

[18] M. Benedetti, E. Lloyd, and S. Sack, Parameterized quantum
circuits as machine learning models, Quantum Sci. Technol. 4,
043001 (2019).

[19] M. Schuld, M. Fingerhuth, and F. Petruccione, Implementing
a distance-based classifier with a quantum interference circuit,
Europhys. Lett. 119, 60002 (2017).

[20] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M.
Block, B. Bloom, S. Caldwell, N. Didier, E. S. Fried, S. Hong,
et al., Unsupervised machine learning on a hybrid quantum
computer, arXiv:1712.05771.

[21] E. Farhi and H. Neven, Classification with quantum neural
networks on near term processors, arXiv:1802.06002.

[22] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[23] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti,
An initialization strategy for addressing barren plateaus in
parametrized quantum circuits, Quantum 3, 214 (2019).

[24] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm
for Linear Systems of Equations, Phys. Rev. Lett. 103, 150502
(2009).

[25] I. Cong and L. Duan, Quantum discriminant analysis for dimen-
sionality reduction and classification, New J. Phys. 18, 073011
(2016).

[26] M. Benedetti, J. Realpe-Gómez, R. Biswas, and A. Perdomo-
Ortiz, Quantum-Assisted Learning of Hardware-Embedded
Probabilistic Graphical Models, Phys. Rev. X 7, 041052 (2017).

[27] C. Kaynak, Methods of combining multiple classifiers and
their applications to handwritten digit recognition, Ph.D. thesis,
Bogazici University, 1995.

[28] D. J. C. MacKay, Information Theory, Inference, and Learning
Algorithms (Cambridge University Press, Cambridge, 2003).

[29] E. Tang, Quantum-inspired classical algorithms for
principal component analysis and supervised clustering,
arXiv:1811.00414.

[30] E. Tang, A quantum-inspired classical algorithm for recom-
mendation systems, in Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, Association for
Computing Machinery (STOC, New York, 2019), pp. 217–228.

[31] A. Frieze, R. Kannan, and S. Vempala, Fast monte-carlo algo-
rithms for finding low-rank approximations, J. ACM 51, 1025
(2004).

062327-11

http://arxiv.org/abs/arXiv:1603.08675
https://doi.org/10.1038/ncomms10138
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevA.97.042315
https://doi.org/10.1103/PhysRevLett.109.050505
https://doi.org/10.1038/nphys3029
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1103/PhysRevA.101.022316
http://arxiv.org/abs/arXiv:1811.03975
https://doi.org/10.1038/s41534-019-0144-0
https://doi.org/10.1103/PhysRevLett.123.250501
https://doi.org/10.1038/s41598-019-40439-3
https://doi.org/10.1103/PhysRevA.99.012326
http://arxiv.org/abs/arXiv:1712.05304
https://doi.org/10.1103/PhysRevA.101.032308
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1209/0295-5075/119/60002
http://arxiv.org/abs/arXiv:1712.05771
http://arxiv.org/abs/arXiv:1802.06002
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.22331/q-2019-12-09-214
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1088/1367-2630/18/7/073011
https://doi.org/10.1103/PhysRevX.7.041052
http://arxiv.org/abs/arXiv:1811.00414
https://doi.org/10.1145/1039488.1039494

IORDANIS KERENIDIS AND ALESSANDRO LUONGO PHYSICAL REVIEW A 101, 062327 (2020)

[32] J. M. Arrazola, A. Delgado, B. R. Bardhan, and S. Lloyd,
Quantum-inspired algorithms in practice, arXiv:1905.10415.

[33] L. Wiskott, Learning invariance manifolds, Neurocomputing
26–27, 925 (1999).

[34] P. Berkes, Pattern recognition with slow feature analysis, Cog-
nitive Sciences EPrint Archive (CogPrints) 4104, 2005 (unpub-
lished), available at http://cogprints.org/4104.

[35] L. Wiskott, P. Berkes, M. Franzius, H. Sprekeler, and N.
Wilbert, Slow feature analysis, Scholarpedia 6, 5282 (2011), re-
vision 137965, available at http://www.scholarpedia.org/article/
Slow_feature_analysis

[36] Z. Zhang and D. Tao, Slow feature analysis for human action
recognition, IEEE Trans. Pattern Anal. Mach. Intell. 34, 436
(2012).

[37] T. Blaschke and L. Wiskott, in International Conference on
Independent Component Analysis and Signal Separation, edited
by C. G. Puntonet and A. Prieto, Lecture Notes in Computer
Science Vol. 3195 (Springer, Berlin, 2004), pp. 742–749.

[38] H. Sprekeler, T. Zito, and L. Wiskott, An extension of slow
feature analysis for nonlinear blind source separation, J. Mach.
Learn. Res. 15, 921 (2014).

[39] A. N. Escalante-B and L. Wiskott, Slow feature anal-
ysis: Perspectives for technical applications of a versa-
tile learning algorithm, KI-Künstliche Intelligenz 26, 341
(2012).

[40] H. Sprekeler and L. Wiskott, Understanding slow feature anal-
ysis: A mathematical framework, Cognitive Sciences EPrint
Archive (CogPrints) 6223, 2008 (unpublished), available at
http://cogprints.org/6223.

[41] H. Sprekeler, On the relation of slow feature analy-
sis and Laplacian eigenmaps, Neural Comput. 23, 3287
(2011).

[42] S. Klampfl and W. Maass, in Advances in Neural Information
Processing Systems 22, edited by Y. Bengio, D. Schuurmans,
J. D. Lafferty, C. K. I. Williams, and A. Culotta (MIT Press,
Cambridge, 2009), pp. 988–996.

[43] X. Gu, C. Liu, and S. Wang, in Biometric Recognition, edited
by Z. Sun, S. Shan, G. Yang, J. Zhou, Y. Wang, and Y. Yin
(Springer, Berlin, 2013), p. 178.

[44] L. Sun, K. Jia, T.-H. Chan, Y. Fang, G. Wang, and S.
Yan, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (IEEE, Piscataway, 2014),
pp. 2625–2632.

[45] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Sta-
tistical Learning, Springer Series in Statistics Vol. 1 (Springer,
New York, 2009), pp. 337–387.

[46] A. H. Sameh and J. A. Wisniewski, A trace minimization
algorithm for the generalized eigenvalue problem, SIAM J.
Numer. Anal. 19, 1243 (1982).

[47] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, Incremental
learning for robust visual tracking, Int. J. Comput. Vision 77,
125 (2008).

[48] S. Chakraborty, A. Gilyén, and S. Jeffery, in Proceedings
of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP), The power
of block-Encoded matrix powers: Improved regression
techniques via faster Hamiltonian simulation, (Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, 2019),
pp. 33:1–33:14.

[49] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, Quantum singular
value transformation and beyond: exponential improvements
for quantum matrix arithmetics, in Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing
(STOC) (Association for Computing Machinery, New York,
2019), pp. 193–204.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, Scikit-learn: Machine Learning in
Python, J. Mach. Learn. Res. 12, 2825 (2011).

[51] E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open source
scientific tools for Python (2001–2018) (accessed online 19
May 2018).

[52] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based
learning applied to document recognition, Proc. IEEE 86, 2278
(1998).

[53] I. Kerenidis and A. Prakash, A quantum interior point method
for LPs and SDPs, arXiv:1808.09266.

[54] A. A. Melnikov, A. Makmal, V. Dunjko, and H. J. Briegel,
Projective simulation with generalization, Sci. Rep. 7, 14430
(2017).

[55] P. Berkes and L. Wiskott, Slow feature analysis yields a rich
repertoire of complex cell properties, J. Vision 5, 9 (2005).

[56] V. Dunjko and H. J. Briegel, Machine learning & artificial in-
telligence in the quantum domain: A review of recent progress,
Rep. Prog. Phys. 81, 074001 (2018).

062327-12

http://arxiv.org/abs/arXiv:1905.10415
https://doi.org/10.1016/S0925-2312(99)00011-9
http://cogprints.org/4104
https://doi.org/10.4249/scholarpedia.5282
http://www.scholarpedia.org/article/Slow_feature_analysis
https://doi.org/10.1109/TPAMI.2011.157
https://doi.org/10.1007/s13218-012-0190-7
http://cogprints.org/6223
https://doi.org/10.1162/NECO_a_00214
https://doi.org/10.1137/0719089
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1109/5.726791
http://arxiv.org/abs/arXiv:1808.09266
https://doi.org/10.1038/s41598-017-14740-y
https://doi.org/10.1167/5.6.9
https://doi.org/10.1088/1361-6633/aab406

