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We study the energy exchange between two bosonic systems that interact via bilinear transformations in the
mode operators. The first mode is considered as the thermodynamic system, while the second is regarded as the
bath. This work finds its roots in a very recent formulation of quantum thermodynamics [Bera et al., Quantum 3,
121 (2019)] which allows one to consider baths that are not described by the usual Boltzmann-Gibbs canonical
form. Baths can possess quantum properties, such as squeezing or coherence, and can be initially correlated
with the system, even through entanglement. We focus mainly on the case of Gaussian states, by quantifying
the relation between their defining parameters, namely the mean values of the quadratures and the covariance
matrix, and relevant thermodynamical quantities such as the heat exchanged and the work performed during the
interaction process. We fully solve the case of initially uncorrelated Gaussian states and provide the most general
form of the first law of thermodynamics in this case. We also discuss the case of initially correlated states by
considering a number of relevant examples, studying how correlations can assist some phenomena, e.g., work
extraction or anomalous heat flows. Finally, we present an information-theoretic approach based on the Renyi
entropy of order two for clarifying more generally the role of correlations on heat exchanges.
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I. INTRODUCTION

In the past years the theory of thermodynamics, that is
the study of energy and its changes, which are distinguished
as heat and work, has emerged as one of the frameworks
where quantum information theory can be fruitfully employed
and, conversely, where new insights on the theory can be
discovered. A new field of research was born, named quantum
thermodynamics [1–4], aiming to extend the classical thermo-
dynamics to systems of sizes well below the thermodynamic
limit. In this realm, an extensive use of quantum information
tools is applied, ranging from the characterization of heat en-
gines at the nanoscale [5–7] to the study of thermodynamical
properties of relativistic and quantum fields [8–11].

Standard formulations of thermodynamics, classical [12]
or quantum [1–3,13,14], consider systems in interaction with
thermal baths that are large, compared to the system dimen-
sion, and usually described by states in the Boltzmann-Gibbs
canonical form, whose temperatures are not altered during
thermodynamic processes. This hypothesis cannot be justified
a priori in the quantum regime, since baths may be small
in principle and can also possess quantum properties, such
as coherence [15,16] or squeezing [17], and share correla-
tions [18–24], e.g., entanglement, with the system. Energy
exchanges between systems and baths will therefore alter
the temperature of both parties and the roles of quantum
properties must be taken into account.

To this aim, a temperature-independent version of ther-
modynamics has been recently formulated in [25]. Standard
thermodynamics can then be recast as a consequence of
information conservation, providing modifications to the laws

of thermodynamics consistent with the possible presence
of (classical or quantum) correlations between systems and
baths, and providing a new definition of the notion of temper-
ature which generalizes the standard one.

According to such a formulation, in this paper we study the
thermodynamics of a composite system made of two bosonic
modes, where one mode represents the thermodynamical
system while the other is treated as the bath, which can be
therefore classically or quantum correlated with the system
and does not have constant and unchangeable temperature. In
particular, we study energy exchanges by considering the first
law of thermodynamics in the case of bilinear interactions of
modes.

The paper is organized as follows. In Sec. II we review
the approach to thermodynamics reported in Ref. [25]. We
focus mainly on the first law; thus the definitions of internal
energy, heat, and work are presented. Then the second law
of thermodynamics is briefly discussed, recalling how the
Clausius statement can be generalized in the presence of initial
correlations between the system and the bath. In Sec. III we
discuss how this formulation can be explicitly expressed for
two-mode bosonic states. In particular, we focus on Gaussian
bipartite states and show how the first law of thermodynamics
can be expressed and how the relevant thermodynamical
quantities depend on the state parameters, i.e., the initial mean
values of the quadratures and the covariance matrix, and on
the transformations considered, which are here at most bilin-
ear in the mode operators. In Sec. IV we discuss the case when
system and bath are initially uncorrelated; several examples of
important classes of two-mode Gaussian states are presented.
In Sec. V we study the case when system and bath present
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initial correlations by means of some illustrative examples, by
considering both separable and entangled states. Moreover,
we derive an information-theoretic approach based on the
2-Renyi entropy in order to clarify the role of correlations
on heat exchanges. This approach allows one to link directly
the heat flows to the variations of the amount of correlations.
Finally, in Sec. VI we consider work extraction schemes,
showing how interactions between system and bath can be
used to increase the free energy of the system, and thus the
amount of extractable work.

II. REVIEW OF QUANTUM THERMODYNAMICS
WITH ARBITRARY BATH

We review here the formulation of thermodynamics in-
troduced in Ref. [25], which allows one to go beyond the
standard notion of temperature and to consider baths that
possess quantum properties in the most general form. This
section represents therefore a concise synthesis of the results
reported in Ref. [25] that we will use in the next sections of
the paper.

A. Intrinsic temperature and complete passivity

In the standard formulation of thermodynamics one usually
considers a large thermal bath, whose temperature is well
defined and whose state is described by the Boltzmann-
Gibbs canonical form. Typically, such a state is not allowed
to change during the thermodynamic processes due to its
ideally infinite thermal capacity. Hence, for example, after
thermalization the temperature of the system coincides with
that of the thermal bath. In the quantum regime baths can be
small in principle and can also possess quantum properties,
such as coherence and squeezing, or share correlations, e.g.,
entanglement, with the system. Therefore, baths cannot be
described a priori in the Boltzmann-Gibbs canonical form and
the concept of temperature must be generalized.

This problem has recently been tackled in [25], where
thermodynamics has been viewed as a consequence of in-
formation conservation, leading to the notion of intrinsic
temperature which can be formulated for any quantum system.
The concept of information conservation leads one to consider
only operations that are globally entropy preserving. Hence,
given the state ρ of an arbitrary system, we consider transfor-
mations � that are entropy preserving (EP), namely if ρ ′ =
�(ρ) is the state after the action of �, we have S(ρ) = S(ρ ′),
where S(X ) = − Tr [X ln X ] is the von Neumann entropy of
X . The central role of entropy can also be seen by the fact
that we establish equivalence classes between states that have
the same entropy, namely we will say that ρ and σ belong
to the same class iff S(ρ) = S(σ ). When H is the Hamiltonian
of the system, then we choose as the representative of each
class the state γ (ρ), which has the minimum energy within
the same class of ρ, namely

γ (ρ) = arg min
σ : S(σ )=S(ρ)

E (σ ), (1)

where E (σ ) = Tr [Hσ ] is the energy of the state σ.

The min-energy principle [23,26,27] that allows one to find
the state that minimizes the energy at a fixed entropy and is
in some sense complementary to the max-entropy principle

[28,29] indicates that γ (ρ) must be thermal. Hence, given an
entropic class, the representative thermal state is given by

γ (ρ) = 1

Z
e−β(ρ)H , (2)

where Z = Tr [e−β(ρ)H ], and β(ρ) represents the intrinsic
inverse temperature of a state ρ, which labels the equivalence
classes. In this way we are able to consider a generalized
notion of temperature T (ρ) for any state ρ, not just for the
thermal ones, via the relation

T (ρ) = β(ρ)−1, (3)

where we fixed the Boltzmann constant as kB = 1. Clearly,
for thermal states one recovers the standard definition of
temperature. The representative state (2) of each class is also a
completely passive (CP) state [26,27], namely no extractable
work can be accessed from it, even when multiple copies are
available. States of this form are also denoted by γ (HS, βS ),
where HS is the Hamiltonian of the system and βS labels
the entropic equivalence classes, or shortly γ (TS ). Moreover,
these states have also the following property: given a non-
interacting Hamiltonian HT = ∑N

X=1 I
⊗X−1 ⊗ HX ⊗ I⊗N−X ,

the global CP state is given by the tensor product of locally
CP states with the same inverse temperature βT , namely

γ (HT , βT ) = ⊗N
X=1γ (HX , βT ). (4)

B. First law of thermodynamics

The first law of thermodynamics deals with energy con-
servation and describes the energy distribution in terms of
variation of heat and work. We consider a bipartite system
described by ρAB, where A and B represent the thermody-
namical system and the bath, respectively, that undergoes
an EP transformation that results in the final state ρ ′

AB. In
standard thermodynamics the bath and the system are con-
sidered initially uncorrelated, with the bath in the Boltzmann-
Gibbs canonical form. Heat is then defined as �Q = E (ρ ′

B) −
E (ρB), corresponding to the variation of the internal energy of
the bath. However, this definition of heat suffers several issues
in the quantum domain. For example, if the temperature of
the bath can change and correlations between system and bath
are taken into account, it may lead to seeming violations of
the second law of thermodynamics [18,30–33]. Moreover, if
we allow the bath to be nonthermal then its internal energy
includes also the share of energy that can be extracted and
converted into work, since only the thermal states are passive.

In the framework of [25] two relevant forms of energy
are distinguished for any given state: the bound and the free
energy. The first represents the amount of internal energy that
cannot be accessed in the form of work. Conversely, the latter
is the part of internal energy that can be transformed into work
by an EP operation.

The bound energy B(ρ) is defined as

B(ρ) = min
σ :S(σ )=S(ρ)

E (σ ) = E (γ (ρ)), (5)

and it represents the energy that cannot be extracted further.
The min-energy principle identifies the energy of the CP state
γ (ρ) as the bound energy. Hence, given a state ρ and its
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determined entropic equivalence class, then the energy of the
representative of this class represents the bound energy.

The free energy F (ρ) is given by the difference

F (ρ) = E (ρ) − B(ρ). (6)

This can also be written as F (ρ) = T (ρ)D(ρ||γ (ρ)), where
D(σ1||σ2) = Tr [σ1(ln σ1 − ln σ2)] denotes the quantum rel-
ative entropy, which measures the distinguishability of two
states σ1 and σ2. No privileged a priori temperature is re-
quired in the above definition of the free energy. The standard
Helmholtz free energy FT (ρ) = E (ρ) − T S(ρ), where T is
fixed a priori by choosing a thermal bath in contact with
the system, is recovered in the case of an ideal bath, as was
shown in [25], but Eq. (6) fits in a more general framework.
In standard thermodynamics the Helmholtz free energy allows
one to quantify the amount of work W that can be extracted
from a system in contact with an ideal large bath at inverse
temperature β. Indeed, W = Fβ (ρ) − Fβ (γ (ρ)), where γ (ρ)
is the thermal equilibrium state of the system after the work
extraction. The free energy (6) represents the amount of work
that can be extracted by using a bath at the worst possible
temperature, namely [25]

F (ρ) = min
β

[Fβ (ρ) − Fβ (γ (ρ))]. (7)

It follows that the inverse temperature that achieves the mini-
mum in Eq. (7) is the intrinsic one β(ρ).

More specifically, given an arbitrary system described by
ρ, the extractable work from an EP transformation ρ ′ =
�(ρ), which is W = E (ρ) − E (ρ ′), is upper bounded by the
free energy, that is

W � F (ρ), (8)

where the inequality is saturated iff ρ ′ = γ (ρ). Moreover, if
the global system is in the state ρ = ρA ⊗ γB(TB) then the
right-hand side becomes the standard Helmholtz free energy,
namely in this case W � FTB (ρA) − FTB (γA(TB)).

We can now define heat and work which allow one to
formulate the first law of thermodynamics. Heat represents the
most degraded form of energy that a system exchanges with
the bath during thermodynamical processes. It is therefore
natural to define heat as the variation of the bound energy of
the bath, namely [25]

�Q = B(ρ ′
B) − B(ρB). (9)

We stress that the bath can present initial correlations with
the thermodynamical system and its intrinsic temperature can
change during the process. If �Q is positive the system
dissipates energy during the process; thus part of its internal
energy is transformed into bound energy of the bath, which
contributes to increasing its intrinsic temperature: roughly
speaking, we can say that the bath is heated up during the
transformation. Conversely, if �Q is negative the thermody-
namical system acquires energy from the bath, whose intrinsic
temperature decreases. If the bath is initially in a thermal state
γ (TB), heat is bounded as follows:

TB�SB � �Q � �EB, (10)

and the above three quantities coincide in the limit of ideal
large thermal baths. Since the process is entropy preserving,

note that the variation of the von Neumann entropy of the bath
�SB is related to that of the system �SA by the identity

�SA + �SB = �I (A : B), (11)

where �I (A : B) denotes the variation of the mutual informa-
tion I (A : B) = SA + SB − SAB between A and B, which mea-
sures the amount of both classical and quantum correlations
shared by the two parties.

The work performed on the thermodynamical system in
the EP transformation is �WA = W − �FB, where W is the
cost needed to implement the EP transformation, namely W =
�EA + �EB, and �FB represents the variation of the free
energy of the bath. The first law of thermodynamics is then
given by

�EA = �WA − �Q. (12)

C. Second law of thermodynamics

The second law of thermodynamics puts constraints upon
the possibility of some thermodynamical processes provid-
ing, for instance, limitations to the direction of heat ex-
change or the impossibility of converting heat into work
completely. For standard thermodynamics it has been formu-
lated in several equivalent ways, such as the Carnot principle,
the Clausius statement, the Kelvin-Planck statement, or the
Caratheodory principle, just to mention the most known ones.
These concepts have been extended to the more general sce-
nario of entropy-preserving operations with arbitrary baths in
Ref. [25], where the authors provided generalized statements,
which reduce to the usual ones in the regime of large ideal
baths. Here we recall the generalized Clausius statement [25].

Clausius statement. Any isoentropic process involving two
systems A and B in an arbitrary state, with intrinsic tempera-
tures TA and TB, respectively, satisfies the following inequality:

(TB − TA)�SA � �FA + �FB + TB�I (A : B) − W, (13)

where �FX is the change in the free energy of system X ,
�I (A : B) is the change of mutual information, and W =
�EA + �EB is the amount of external work performed on the
total system.

In the absence of initial correlations between the two
systems, the states being initially thermal and no external
work being performed, this implies

(TB − TA)�SA � 0, (14)

so that no isoentropic equilibration process is possible whose
sole result is the transfer of heat from a cooler to a hotter
system.

Equation (14) may be then overcome for three reasons:
(i) external work is provided to the global system, i.e., W �=
0 , as in a standard refrigeration cycle; (ii) the initial states
possess free energy that is consumed; (iii) the two systems are
initially correlated. Violations of the standard formulation due
to correlations have recently gained great attention [18,30–
33], and several physical systems have been proposed to test
these violations. We will show that the present framework en-
ables us to study such phenomena for two interacting bosonic
systems.
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III. QUANTUM THERMODYNAMICS OF
TWO BOSONIC SYSTEMS

A. General description

We address the study of the first law of thermodynamics
(12) for two bosonic systems under bilinear interaction (for
reviews on the properties of bosonic systems, see [34–36]).
Each system is described by the mode operators a, a† and
b, b†, respectively, with the usual commutation relation, and
the total free Hamiltonian is given by H0 = HA + HB =
ωA(a†a + 1

2 ) + ωB(b†b + 1
2 ). The first mode represents the

thermodynamical system, while the second is considered as
the bath. We note that two bosonic systems are also at the basis
of analysis of quantum Otto engines [37] and thermodynamics
of quantum fields [8]. We will study the following two global
transformations for mode operators:

a′ = cos θa + eiϕ sin θb, (15)

b′ = cos θb − e−iϕ sin θa, (16)

with θ ∈ [0, π
2 ] and ϕ ∈ [0, 2π ], and

a′ = cosh ra + eiψ sinh rb†, (17)

b′ = cosh rb + eiψ sinh ra†, (18)

with r � 0 and ψ ∈ [0, 2π ].
The Heisenberg transformation in Eqs. (15) and (16) cor-

responds to a linear mixing of the modes that can describe
a frequency converter for ωA �= ωB or a beam splitter for
ωA = ωB, and is equivalent to the unitary transformation in
the Schrödinger picture [38]

UFC (ζ ) = exp{ζa†b − ζ ∗ab†}, (19)

with ζ = θeiϕ .
The transformation in Eqs. (17) and (18) can describe non-

degenerate parametric amplification (i.e., two-mode squeez-
ing), and is equivalent to the unitary transformation [38]

UPA(ξ ) = exp{ξa†b† − ξ ∗ab}, (20)

with ξ = r eiψ .
The bipartite system undergoes the following process: the

initial state ρAB is transformed into ρ ′
AB = UρABU †, where

U = UFC (ζ ) or U = UPA(ξ ), with S(ρ ′
AB) = S(ρAB) being the

process unitary. Without loss of generality, the initial state can
be written as follows:

ρAB = D(α) ⊗ D(δ)ξABD†(α) ⊗ D†(δ), (21)

where D(λ) = exp (λa† − λ∗a) denotes the displacement
operator and ξAB has zero-mean-field values, namely
Tr [(a ⊗ IB)ξAB] = Tr [(IA ⊗ b)ξAB] = 0. Notice that the von
Neumann entropy of the bath does not depend on the dis-
placement terms, namely S(ξB) = S(ρB). For the considered
transformations, the final state ρ ′

AB = UρABU † can also be
expressed as

ρ ′
AB = D(α′) ⊗ D(δ′)ξ ′

ABD†(α′) ⊗ D†(δ′), (22)

where ξ ′
AB = UξABU † satisfies Tr [(a ⊗ IB)ξ ′

AB] =
Tr [(IA ⊗ b)ξ ′

AB] = 0, and either

α′ = α cos θ + δ eiϕ sin θ, (23)

δ′ = δ cos θ − α e−iϕ sin θ, (24)

or

α′ = α cosh r + δ∗eiψ sinh r, (25)

δ′ = δ cosh r + α∗eiψ sinh r, (26)

for transformations UFC (ζ ) and UPA(ξ ), respectively. As a
consequence the von Neumann entropy of the bath in the final
state is S(ρ ′

B) = S(ξ ′
B) = S(TrA [UρABU †]).

Our primary aim is now to quantify and discuss the first
law �WA = �EA + �Q, with particular focus on heat flows.
In the present scheme the first law dictates the distribution
of energy between work and heat due to the EP (indeed
unitary) interaction. Let us first focus on the heat �Q =
B(ρ ′

B) − B(ρB). For a thermal state γ (ρB), the von Neumann
entropy is given by S(γ (ρB)) = g(NB), where NB = 〈b†b〉γ (ρB )
and

g(x) = (x + 1) ln (x + 1) − x ln x. (27)

Hence, with g(x) being an increasing invertible function,
one has NB = g−1[S(γ (ρB))] and E (γ (ρB)) = ωB(NB + 1

2 ),
which represents the bound energy B(ρB) for all ρB such that
S(ρB) = S(γ (ρB)). It follows that �Q can be expressed as

�Q = ωB{g−1[S
(
ρ ′

B

)
] − g−1[S(ρB)]}. (28)

Let us notice that for infinitesimal transformations Eq. (28)
provides the customary Clausius relation δQ = TBdSB, where
TB is the intrinsic temperature of the bath. Explicitly, one has

δQ = ωB
∂

∂SB
[g−1(SB)]dSB = ωB

1

g′[g−1(SB)]
dSB

= ωB

ln NB+1
NB

dSB = TBdSB, (29)

where we used g′(x) = ln x+1
x and the identity for the bosonic

Gibbs state NB
NB+1 = e−ω/TB . Moreover, in the present sce-

nario where total EP transformations are considered, through
Eqs. (11) and (29), the usual separation of the infinitesi-
mal system entropy variation dSA = dSrev + dSirr [39–41] in
terms of exchange (or reversible) entropy dSrev = − δQB

TB
and

irreversible production of entropy dSirr allows us to identify
the last term as the variation of mutual information, namely

dSirr = dSA + δQB

TB
= dSA + dSB = dI (A : B). (30)

Hence the formulation of the second principle of classical
thermodynamics in terms of the statement dSirr � 0 can be
violated when dI (A : B) < 0.

The variation of the internal energy in Eq. (12) is given by

�EA = TrAB[(HA ⊗ IB)(ρ ′
AB − ρAB)]

= ωA(〈a†a〉ρ ′
A
− 〈a†a〉ρA

). (31)

The above relation can be refined by using a phase-space
description of bosonic states. Let us introduce the vector
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of quadrature operators R = (RA, RB)T = (qA, pA, qB, pB)T ,

where qA = 1√
2
(a + a†), pA = 1

i
√

2
(a − a†), qB= 1√

2
(b+b†),

and pB = 1
i
√

2
(b − b†). The components of R satisfy

[Rk, Rl ] = i�kl , (32)

where �kl denotes the element of the symplectic matrix

� = ⊕ABω , (33)

with

ω =
(

0 1
−1 0

)
. (34)

For a two-mode bipartite state, the covariance matrix σAB,
whose elements are σkl = 1

2 〈{Rk, Rl}〉 − 〈Rk〉 〈Rl〉, can be
written as

σAB =
(

σA ε

εT σB

)
, (35)

where σA and σB are the covariance matrices of the two
subsystems and ε describes their correlations. The expectation
〈R〉ρAB

and σAB cannot fully characterize any two-mode state,
since higher-order moments are generally needed, but they
allow one to express Eq. (31) as

�EA = ωA

2
(Tr[σ ′

A] − Tr[σA] + ‖ 〈R′
A〉 ‖2 − ‖ 〈RA〉 ‖2), (36)

where σ ′
A and R′

A denote the covariance matrix and the vector
of quadrature operators for the thermodynamical system at the
end of the EP transformation, respectively.

B. Two-mode Gaussian states

States that are fully characterized just by 〈R〉ρAB
and σAB

are called Gaussian. These states, named for the Gaussian
character of their Wigner function, can be prepared by ap-
plying unitary operators that are at most bilinear in the mode
operators to thermal states. This feature makes them suitable
to be easily prepared and manipulated in laboratories. Nowa-
days, several applications are indeed designed exclusively
for Gaussian states in different areas [34–36,42–44]. The
Gaussian character of a state is preserved under linear and
bilinear interaction of the modes. If a two-mode Gaussian
state ρAB is changed in ρ ′

AB = UρABU † by a unitary U as our
UFC (ζ ) or UPA(ξ ) in Eqs. (19) and (20), then there exists a
symplectic matrix �U that transforms R and σAB in R′ = �U R
and σ ′

AB = �U σAB�T
U , respectively. In this case the symplectic

matrix is a 4 × 4 invertible real matrix satisfying

���T = �, (37)

where � is defined in (33). The symplectic matrix � can be
decomposed into a block form as

� =
(

A D
C B

)
, (38)

where A, B, C, and D are 2 × 2 matrices such that AT B −
CT D = I2, AT C = CT A, and BT D = DT B.

Equations (28) and (36) can be further specified when ξAB

in Eq. (21) is a Gaussian state and by exploiting the de-
composition (38). In fact, any covariance matrix for n modes

can be diagonalized through a symplectic transformation [45],
namely σ can be written as

σ = STWS, (39)

where S is a 2n × 2n symplectic matrix, W = ⊕n
k=1dkI2,

and the elements dk are the symplectic eigenvalues of σ .
Heisenberg-Robertson’s uncertainty relation imposes physical
constraints on the admissible covariance matrices, which can
be simply expressed in terms of the symplectic eigenvalues as

dk � 1
2 (40)

that must hold for any k. The symplectic diagonalization (39)
implies that any Gaussian state ρ can be obtained from a
thermal state ν by applying a Gaussian unitary transformation
US , associated to S, namely

ρ = USνU †
S , (41)

where ν = ⊗νk is a product of thermal states νk .
Let us now determine the intrinsic temperature of a single-

mode Gaussian state. Any such state ρ can be written as

ρ = USνNthU
†
S = D(α)S(ζ )νNth S(ζ )†D(α)†, (42)

where S(ζ ) = exp [ 1
2ζa†2 − 1

2ζ ∗a2] denotes the single-mode
squeezing operator and νNth is a thermal state with 〈a†a〉νNth

=
Nth = (eβωA − 1)−1. The unitary operator US does not affect
the purity μρ = Tr [ρ2] and the von Neumann entropy of ρ,
which therefore depend only on the thermal seed νNth and are
given by

μρ = 1

2Nth + 1
(43)

and

S(ρ) = g(Nth), (44)

respectively. Moreover, the purity is related to the determinant
of the covariance matrix of ρ by the relation

μρ = 1

2
√

det(σρ )
(45)

and hence

Nth = √
det(σρ ) − 1

2 . (46)

As a consequence, the von Neumann entropy depends only on
the determinant of its covariance matrix σρ , and one has

S(ρ) = g
(√

det(σρ ) − 1
2

)
. (47)

Clearly, the thermal state that represents the entropic equiva-
lence class of ρ is the one that appears in the decomposition
(42), which thus identifies the intrinsic temperature of ρ as the
following increasing function of Nth:

T (ρ) = T
(
νNth

) = ωA

[
ln

(
1 + Nth

Nth

)]−1

. (48)

Notice that for Nth � 1 one has T  ωANth. Equation (46)
can be used to evaluate the bound energy of the bath which
is in the state ρB = TrA[ρAB]. The thermal state γ (ρB) repre-
senting the entropic class of ρB has energy ωB(NB,th + 1

2 ), and
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hence

B(ρB) = ωB

(
NB,th + 1

2

)
= ωB

2
coth

(
βωB

2

)
= ωB

√
det (σB) . (49)

Notice that for βωB � 1 one has B(ρB)  β−1, as in the
classical equipartition theorem. The heat absorbed by the bath
is then given by

�Q = B(ρ ′
B) − B(ρB) = ωB(

√
det(σ ′

B) −
√

det(σ B)), (50)

where σ ′
B is the covariance matrix at the end of the transfor-

mation, which from Eq. (38) can be expressed as

σ ′
B = BσBBT + CσACT + CεBT + BεT CT . (51)

The direction of the heat flow is determined just by the
sign of �B = det (σ ′

B) − det (σ B). We also recall that σB and
σ ′

B can be equivalently referred to as (ρB, ξB) and (ρ ′
B, ξ ′

B),
respectively, since for the property of Eqs. (21) and (22) they
do not depend on the displacement terms.

Let us now consider the variation of the internal energy of
the system �EA. By using Eqs. (36) and (38) one has

�EA = ωA

2
(Tr[AσAAT + DσBDT + AεDT + DεT AT ])

+ωA

2
(‖〈ARA + DRB〉‖2 − ‖〈RA〉‖2 − Tr [σA]). (52)

We will show in the following how Eqs. (50) and (52) can be
explicitly evaluated for the transformations in Eqs. (19) and
(20).

1. Frequency converter and beam splitter

The symplectic matrix �ζ corresponding to the transforma-
tion UFC (ζ ) in Eq. (19) is given by

�ζ =
(

cos θI2 sin θRϕ

− sin θRT
ϕ cos θI2

)
, (53)

where Rϕ is the rotation operator

Rϕ =
(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)
. (54)

The block-matrix decomposition of �ζ is then provided by
A = B = cos θI2, D = sin θRϕ , and C = − sin θRT

ϕ . Hence
the variation of the internal energy (52) for the initial state
ρAB in Eq. (21) reads

�EA = ωA sin2 θ
[

1
2 (Tr [σB] − Tr [σA]) + |δ|2 − |α|2]

+ωA sin 2θ
[

1
2 Tr

[
RT

ϕ ε
] + Re(αδ∗e−iϕ )

]
. (55)

Correspondingly, from Eq. (51), the covariance matrix of the
bath evolves as

σ ′
B = cos2 θσB + sin2 θRT

ϕ σARϕ − 1
2 sin 2θ

(
εT Rϕ + RT

ϕ ε
)
.

(56)

Thus �Q can be computed according to Eq. (50).

2. Parametric amplifier

The symplectic matrix �ξ corresponding to the transforma-
tion UPA(ξ ) in Eq. (20) is given by

�ξ =
(

cosh rI2 sinh rR̃ψ

sinh rR̃ψ cosh rI2

)
, (57)

with

R̃ψ =
(

cos ψ sin ψ

sin ψ − cos ψ

)
. (58)

The block form of �ξ is expressed by A = B = cosh rI2 and
C = D = sinh rR̃ψ . Hence the variation of the internal energy
(52) for the initial state (21) is

�EA = ωA sinh2 r
[

1
2 (Tr [σB] + Tr [σA]) + |δ|2 + |α|2]

+ωA sinh 2r
[

1
2 Tr[R̃ψε] + Re(αδ e−iψ )

]
. (59)

From Eq. (51), the covariance matrix of the bath after the
transformation is

σ ′
B =cosh2 rσB+sinh2 rR̃ψσAR̃ψ + 1

2 sinh 2r(εT R̃ψ + R̃ψε).
(60)

IV. UNCORRELATED SYSTEM AND BATH

We consider first the case where the thermodynamical
system and the bath are initially uncorrelated, namely the
initial state is ρAB = ρA ⊗ ρB, with ρA and ρB being single-
mode Gaussian states of the general form

ρA = D(α)S(ζA)νNA S(ζA)†D(α)†, (61)

ρB = D(δ)S(ζB)νNB S(ζB)†D(δ)†, (62)

where α, δ ∈ C and ζA = rAeiθA , ζB = rBeiθB , with rA, rB � 0
and θA, θB ∈ [0, 2π ]. The respective covariance matrices can
be represented in terms of their elements as follows [34]:

σX,11 = 2NX + 1

2
(cosh 2rX + cos θX sinh 2rX ),

σX,22 = 2NX + 1

2
(cosh 2rX − cos θX sinh 2rX ),

σX,12 = σX,21 = −2NX + 1

2
sin θX sinh 2rX , (63)

where X = A, B labels the mode. The intrinsic temperatures
depend only on NX and are obtained by Eq. (48).

Clearly, excluding initial correlations between the modes
simplifies the problem and precludes possible interesting
features. On the other hand, it allows one to analyze and
emphasize some quantum properties of the bath, such as the
presence of squeezing that cannot be found in the standard
treatments. For both the considered bilinear transformations,
we will discuss the first law in general. Particular emphasis
will be given to the sign of the heat, i.e., the direction of heat
flow.

A. Frequency converter and beam splitter

For the transformation in Eq. (19) the variation of the
internal energy (55) for a factorized state ρAB = ρA ⊗ ρB, with
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ρA and ρB given by Eqs. (61) and (62), can be expressed as

�EA = ωA sin2 θ

(
2NB + 1

2
cosh 2rB

− 2NA + 1

2
cosh 2rA + |δ|2 − |α|2

)
+ωA sin 2θ Re(αδ∗e−iϕ ), (64)

since the traces of the initial covariance matrices are Tr [σA] =
(2NA + 1) cosh 2rA and Tr [σB] = (2NB + 1) cosh 2rB. The in-
ternal energy of the system increases the more the bath is
squeezed while, conversely, squeezing in the initial state of the
system decreases the internal energy. The same consideration
holds for the thermal part: the hotter the bath, namely the
higher its intrinsic temperature, the more the internal energy
increases, while the opposite holds for the system. The second
term in Eq. (64) is a phase-sensitive contribution due to the
coherence interference.

From Eq. (56) one has

σ ′
B = cos2 θσB + sin2 θσ

ϕ
A , (65)

with σ
ϕ
A = RT

ϕ σARϕ . The determinant of σ ′
B can be expressed

as [46]

det(σ ′
B) = cos4 θ det σB + sin4 θ det σϕ

A + sin2 θ cos2 θ

×(
σ

ϕ
A,11σB,22 + σ

ϕ
A,22σB,11 − 2σ

ϕ
A,12σB,12

)
. (66)

Explicitly, one obtains

det(σ ′
B) = sin4 θ

(
NA + 1

2

)2

+ cos4 θ

(
NB + 1

2

)2

+2 sin2 θ cos2 θ

(
NA + 1

2

)(
NB + 1

2

)
FS, (67)

where

FS = cosh 2rA cosh 2rB − sinh 2rA sinh 2rB cos (θAB − 2ϕ),
(68)

with θAB = (θA − θB), describes how the final temperature of
the bath depends on the squeezing terms. When no squeezing
is present FS = 1, which is also its lower bound. Conversely,
there is no upper bound. Notice also that the relative direction
of squeezing for the modes deeply contributes to the final
temperature, and then to the heat exchanged.

The heat exchanged �Q can be obtained using Eqs. (50),
(67), and (68), along with the relation

√
det (σ B) =

NB + 1
2 . Since FS � 1, then

√
det (σ ′

B) � sin2 θ (NA + 1
2 ) +

cos2 θ (NB + 1
2 ), and hence

�Q � ωB sin2 θ (NA − NB). (69)

In particular, for ωA = ωB then W = 0 and no anomalous heat
flows can occur if system and bath are initially uncorrelated,
namely �Q > 0 iff TA > TB.

For simplicity, let us consider ϕ = 0 and analyze how FS

depends on θAB, namely on the relative squeezing direction
of the input states. If the modes are squeezed in the same
direction, i.e., θA = θB, then FS = cosh (2rA − 2rB) depends
just on the difference between the squeezing strengths, and
it may give a small contribution if rA  rB, even if rA, rB �
1. If the modes are squeezed in orthogonal directions, i.e.,

θAB = π , then FS = cosh (2rA + 2rB), namely the squeezing
strongly increases the final temperature of the bath, since the
two effects add up. For fixed values of rA and rB, the strongest
contribution can be achieved when the modes are squeezed in
orthogonal directions. For arbitrary phase squeezing θA and θB

one can always tune the phase ϕ of the transformation in order
to achieve one of the two above opposite effects.

By combining �EA given in Eq. (64) and �Q =
ωB(

√
det (σ ′

B) − √
det (σ B)), we can express the work per-

formed on the system as

�WA = �EA + �Q. (70)

Equation (70) provides the most general formulation of the
first law of thermodynamics between two uncorrelated Gaus-
sian modes which undergo a frequency converter and beam
splitter transformation.

We now discuss some illustrative examples to show how
Eq. (70) can be used to study heat flows and the balance
between the different forms of energy.

1. Coherent thermal states

We consider local thermal states with coherent signal α

and δ. The variation of the internal energy of the system is
given by

�EA = ωA sin2 θ [(NB − NA) + |δ|2 − |α|2]

+ωA sin 2θ Re(αδ∗e−iϕ ), (71)

whereas the heat �Q reads

�Q = ωB sin2 θ (NA − NB). (72)

The process is then dissipative, i.e., �Q > 0, iff NA > NB. The
work performed on the system is

�WA = (ωA − ωB) sin2 θ (NB − NA) + ωA sin2 θ (|δ|2 − |α|2)

+ωA sin 2θ Re(αδ∗e−iϕ ).

Note that for a beam splitter, i.e., ω = ωA = ωB, the work
performed on the system does not depend on the temperature,
and one has

�WA = ω sin2 θ (|δ|2 − |α|2) + ω sin 2θ Re(αδ∗e−iϕ ). (73)

Moreover, no anomalous heat flows can occur, i.e., �Q > 0 iff
TA > TB. Note also that even if |α| = |δ| we may have �WA �=
0 for the interference contribution of the last term in Eq. (73).

2. Squeezed states under a balanced frequency converter

We consider here initial states with rA = rB, α = δ = 0,
and NA �= 0, NB �= 0, transformed by balanced frequency con-
version with no phase shift, i.e., θ = π

4 and ϕ = 0. From
Eq. (55) the variation of the internal energy of the system
reads

�EA =ωA

2
[(NB − NA) cosh 2rA]. (74)

At the end of the transformation, from Eq. (67), one has

det σ ′
B = 1

4

(
NA + 1

2

)2

+ 1

4

(
NB + 1

2

)2

+1

2

(
NA + 1

2

)(
NB + 1

2

)
FS, (75)
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where FS = cosh2 2rA − cos θAB sinh2 2rA. The heat flows
from the bath to the system iff det σ ′

B − det σB < 0. Since

det σB = ( 2NB+1
2 )

2
, a negative heat can be achieved iff

NB > 1
6 (FS + 2NAFS − 3) + 1

6

√(
3 + F 2

S

)
(1 + 2NA)2. (76)

Since FS � 1, notice that Eq. (76) implies NB � NA, and
hence heat flow from the bath to the system is not possible if
NA > NB.

3. Squeezed states with phase compensation

Let us consider the case NA �= 0, NB �= 0, θAB = 2ϕ, and
rA = rB, namely squeezed thermal initial states with the rel-
ative direction of equal squeezing that matches the phase of
the transformation. The variation of the internal energy of the
system reads as

�EA = ωA sin2 θ [(NB − NA) cosh 2rA + |δ|2 − |α|2]

+ωA sin 2θ Re(αδ∗e−iϕ ). (77)

The heat exchanged in the process [see Eq. (67) to compute
the determinant in the final state] is

�Q = ωB sin2 θ (NA − NB), (78)

and the inequality (69) is saturated since FS = 1. Then, the
direction of the heat flow is governed just by the condition
NA ≶ NB, as the states were just thermal. This fact can also be
understood from the identity

[UFC (θeiϕ ), S(reiϕA ) ⊗ S(r eiϕB )] = 0 (79)

for 2ϕ = θA − θB.
The work performed on the system is given by

�WA = (ωA cosh 2rA − ωB) sin2 θ (NB − NA)

+ωA sin2 θ (|δ|2 − |α|2)

+ωA sin 2θ Re(αδ∗e−iϕ ). (80)

Let us analyze the role of the coherent signal α of the system
in the sign of (80). For the sake of simplicity let us put δ = 0.
Then Eq. (80) is rewritten as

�WA = (ωA cosh 2rA − ωB) sin2 θ (NB−NA) − ωA sin2 θ |α|2.
(81)

The more the system is displaced, the less work is needed to
perform the process. No work is performed on the system for

|α|2 = (ωA cosh 2rA − ωB)(NB − NA)

ωA
, (82)

which holds for any θ . Clearly, when δ �= 0 a trade-off relation
between α and δ emerges, along with interference effects.

4. Equal initial purity

We consider initial states with NA = NB (i.e., TA/TB =
ωA/ωB). The variation of the internal energy reads

�EA =ωA sin2 θ

[(
NA+1

2

)
(cosh 2rB− cosh 2rA)+|δ|2−|α|2

]
+ωA sin 2θ Re(αδ∗e−iϕ ), (83)

whereas the determinant of the final covariance matrix of the
bath is given by

det(σ ′
B) =

(
NA + 1

2

)2

[1 + 2 sin2 θ cos2 θ (FS − 1)]. (84)

Since FS � 1, the process always heats up the bath or at most
�Q = 0, when rA = rB and θAB = 2ϕ. Note that in this last
case the work �WA will depend only on the coherent signals.
As we will show in Sec. V, the presence of initial correlations
changes drastically the results of this example. For rA = rB

and 2ϕ = θAB + π , when θ = π/4 all the free energy due to
the squeezing of both the signal and the bath is consumed to
generate entanglement. This fact can also be understood by
means of the following algebraic identity [47]:

UFC

(π

4
eiϕ

)
[S(r eiθA ) ⊗ S(r eiθB )]U †

FC

(π

4
eiϕ

)
= UPA(ir e

i
2 (θA+θB ) ), (85)

for 2ϕ = θA − θB + π .

B. Parametric amplifier

We now consider the parametric amplifier transformation
of Eq. (20) for initial product state ρAB = ρA ⊗ ρB, with ρA

and ρB given by Eqs. (61) and (62), respectively. The variation
of the internal energy of the system can be written as

�EA = ωA sinh2 r

[(
2NB + 1

2

)
cosh 2rB

+
(

2NA + 1

2

)
cosh 2rA + |δ|2 + |α|2

]
+ωA sinh 2r Re(αδ e−iψ ). (86)

By increasing the initial squeezing �EA increases, and the
same occurs by raising the temperature of both the system and
the bath.

From Eq. (60), the final covariance matrix of the bath is
given by

σ ′
B = cosh2 rσB + sinh2 rR̃ψσAR̃ψ, (87)

and its determinant can be expressed as

det(σ ′
B) = sinh4 r

(
2NA + 1

2

)2

+ cosh4 r

(
2NB + 1

2

)2

+2 sinh2 r cosh2 r

(
2NA + 1

2

)(
2NB + 1

2

)
GS,

(88)

where, similar to Eq. (68) for FS , one has

GS = cosh 2rA cosh 2rB − sinh 2rA sinh 2rB cos (θAB − 2ψ ).
(89)

Since GS�1, then
√

det σ ′
B� sinh2 r(NA+ 1

2 )+ cosh2 r(NB+ 1
2 ),

and hence

�Q � ωB sinh2 r(NA + NB + 1). (90)

Then, for system and bath initially uncorrelated, parametric
amplification always increases the intrinsic temperature of the
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bath (and for symmetry also of the system). This fact high-
lights the deep difference between parametric amplification
and frequency conversion.

Let us consider explicitly the following example.

Squeezed states with phase compensation

We consider here initial thermal states that are squeezed
with equal strength rA = rB and relative direction matched
with the phase of the transformation as θAB = 2ψ . The heat
is then given by

�Q = ωB sinh2 r(NA + NB + 1), (91)

and inequality (90) is saturated. Similar to the case of fre-
quency conversion, when the transformation achieves phase
compensation the heat is the same as the modes were in
thermal states. This fact can also be understood from the
identity

[UPA(r eiψ ), S(r′eiθA ) ⊗ S(r′eiθB )] = 0 (92)

for 2ψ = θA − θB, which can be compared with Eq. (79).
The variation of the internal energy reads

�EA = ωA sinh2 r(NA + NB + 1) cosh 2rA

+ωA sinh2 r(|δ|2 + |α|2)

+ωA sinh 2r Re(αδ e−iψ ), (93)

and hence the work performed on the system is given by

�WA = sinh2 r(NA + NB + 1)(ωA cosh 2rA + ωB)

+ωA sinh2 r(|δ|2 + |α|2)

+ωA sinh 2r Re(αδ e−iψ ). (94)

We notice that for increasing values of the initial squeezing an
increasing work is performed on the system.

V. CORRELATED SYSTEM AND BATH

We now examine the case when system and bath are
initially correlated. First, we review the main properties of
the correlation matrices for bipartite Gaussian states. As we
will see a complete description of the correlation matrices is
far from simple and a full treatment of the thermodynamics
in the most general case is beyond the scope of this paper.
Therefore, we will consider only some relevant classes of
correlated Gaussian states in order to show how the presence
of correlations affects the results we derived in the previous
section. In particular, we will see how Eqs. (69) and (90)
can be violated. Finally, the problem of heat exchanges in
the presence of correlations is discussed from an information-
theoretic perspective by using the Renyi entropy of order 2.

A. Correlations for bipartite Gaussian states

The covariance matrix of two bosonic modes is generally
given as in Eq. (35). The constraints in Eq. (40) can be
written as

d± � 1
2 , (95)

where d± are the symplectic eigenvalues that can be
computed by

d2
± = �(σAB) ±

√
�(σAB)2 − 4 det σAB

2
, (96)

with �(σAB) = det σA + det σB + 2 det ε. Here det σAB and
�(σAB) are global symplectic invariants, while det σA, det σB,
and det ε are local symplectic invariants.

The matrix ε encodes the information about the correla-
tions, which can also reveal the presence of entanglement. In
the case of a two-mode Gaussian state, the positive partial
transpose (PPT) criterion [48], named in this case Simon’s
criterion, provides a necessary and sufficient condition for
entanglement [49,50]. Indeed, given a two-mode Gaussian
state ρAB with covariance matrix σAB, the state is entangled
iff σAB is positive definite, d− � 1

2 and d̃− < 1
2 , where d̃− is

the symplectic eigenvalue of the partial transposed covariance
matrix σ̃AB, which is given by

d̃− =
√

�̃ −
√

�̃2 − 4 det σAB

2
, (97)

with �̃ = det σA + det σB − 2 det ε. Furthermore, a neces-
sary, but not sufficient, condition for entanglement is
det ε < 0.

Generally, when one is only interested in the correlation
properties of a bipartite system, a different way of writing
the covariance matrix σAB is helpful. In fact, any two-mode
covariance matrix can be brought into a normal form via
local symplectic transformations, namely for any σAB there
exists a symplectic matrix SN = SA ⊕ SB, with SA and SB
acting on the first and second mode, respectively, such that
the transformed matrix σ N

AB = ST
NσABSN can be expressed as

σ N
AB =

⎛⎜⎝ a 0 c+ 0
0 a 0 c−

c+ 0 b 0
0 c− 0 b

⎞⎟⎠, (98)

where det σA = a2, det σB = b2, det ε = c+c−, and det σAB =
(ab − c2

+)(ab − c2
−). Such four real parameters, which are

uniquely determined, up to a common sign flip between c−
and c+, allow one to study the correlations between the parties
in an easy and correct way, since local transformations do not
change the amount of correlations. From a thermodynamical
study, however, this approach is not justified, since local
squeezing and their relative direction play an important role
in energy exchanges, as we saw in the previous section.

On the other hand, the treatment of two-mode Gaussian
states in the most general form involves too many parameters;
thus a full study of the thermodynamics in such a case is
beyond the scope of this paper. Our aim is to show that in
the presence of correlations new phenomena arise and to set
up the framework for future work. Then, in the following we
will limit our study only to local thermal states, correlated in
two possible ways, characterized by the choices c+ = c− = c
(type I) and c+ = −c− = c (type II), respectively. Type-I class
contains only separable states, while type II can also describe
entangled states. This approach will give us general hints
about the role of correlations in the studied thermodynamical
processes.
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B. Type-I correlated states

The covariance matrix for type-I correlated states is
given by

σ I
AB =

⎛⎜⎜⎜⎝
2NA+1

2 0 c 0

0 2NA+1
2 0 c

c 0 2NB+1
2 0

0 c 0 2NB+1
2

⎞⎟⎟⎟⎠. (99)

The constraints of Eq. (95) impose that c is bounded as

|c| � √
NANB. (100)

The coherent contribution to the modes is described by the
complex parameters α and δ for system and bath, respectively.
All states belonging to this class are not entangled.

1. Frequency converter and beam splitter

The variation of the internal energy of the thermodynami-
cal system for this class of states can be computed according
to Eq. (55). Since ε = cI2, one has

�EA = ωA sin2 θ (NB − NA + |δ|2 − |α|2)

+ωA sin 2θ [c cos ϕ + Re(αδ∗e−iϕ )]. (101)

From Eq. (56) one also has

σ ′
B =

(
2NA+1

2
sin2 θ+ 2NB + 1

2
cos2 θ−c sin 2θ cos ϕ

)
I2,

(102)

and hence the heat is given by

�Q = ωB[(NA − NB) sin2 θ − c sin 2θ cos ϕ]. (103)

Notice that inequality (69) for uncorrelated input states can
now be violated.

The work performed on the system is written

�WA = (ωA − ωB)[(NB − NA) sin2 θ + c sin 2θ cos ϕ]

+ ωA[sin2 θ (|δ|2 − |α|2) + sin 2θ Re(αδ∗e−iϕ )].
(104)

Note first that for ω = ωA = ωB, i.e., for a beam splitter,
the work performed on the system is independent of the
correlations and one recovers Eq. (73). Indeed, the increase

(decrease) in the internal energy due to correlations is ex-
actly balanced by the heat released (absorbed) by the bath.
The work in this case depends only on the coherence terms
described by the displacement operators.

Let us assume for simplicity that the coherent signal is set
to zero and ωA = ωB, which implies that �WA = 0. Consider
now the case when NA > NB, namely the system is hotter than
the bath, and focus on the heat flow. As long as condition (100)
is also satisfied, the heat is negative if

c >
1

2
(NA − NB)

tan θ

cos ϕ
, (105)

when cos ϕ > 0 (note that tan θ > 0, since θ ∈ [0, π
2 ]). If

cos ϕ < 0, we have a negative heat flow for

c <
1

2
(NA − NB)

tan θ

cos ϕ
. (106)

This can lead to an apparent violation of the second law: after
the process the bath is colder, even if initially TA > TB and
no work is performed on the system. Finally, notice that for
ϕ = π

2 or 3π
2 the presence of initial correlations does not affect

any thermodynamical quantity.

2. Parametric amplifier

For an initial state with covariance matrix of the form (99),
the variation of the internal energy from Eq. (59) is given by

�EA = ωA sinh2 r(NA + NB + 1 + |δ|2 + |α|2)

+ωA sinh 2r Re(αδ e−iψ ), (107)

which does not depend on the correlations, since ε = c I2 and
so Tr[R̃ψε] = 0.

The final covariance matrix of the bath reads

σ ′
B =

(
2NA + 1

2
sinh2 r + 2NB + 1

2
cosh2 r

)
I2

+ c sinh 2rR̃ψ, (108)

and hence

det σ ′
B =

(
2NA + 1

2
sinh2 r + 2NB + 1

2
cosh2 r

)2

− c2 sinh2 2r . (109)

The heat exchanged can then be expressed as

�Q = ωB

√(
2NA + 1

2
sinh2 r + 2NB + 1

2
cosh2 r

)2

− c2 sinh2 2r − ωB
2NB + 1

2
. (110)

For fixed NA and NB the heat has its maximum value for c = 0, for which �Q = ωB sinh2 r(NA + NB + 1) � 0. Notice that such
value also saturates inequality (90), which holds only for factorized initial states. For increasing values of the correlation |c| the
heat decreases, and may even become negative, differently from the case of Sec. IV B for uncorrelated input states. In fact, for

|c| >

√( 2NA+1
2 sinh2 r + 2NB+1

2 cosh2 r
)2 − ( 2NB+1

2

)2

sinh 2r
, (111)

one has �Q < 0. Note, however, that |c| cannot be arbitrarily large since necessarily |c| � √
NANB ≡ cM in order to guarantee

a physical state. For instance, if r = 1, NA = 20, and NB = 10, then we have �Q < 0 if 13.90 < |c| � cM = 14.14. Since the
right-hand side in (111) increases with r while c is bounded, notice also that there exists a maximum value of r for which the
condition (111) can be satisfied while keeping NA and NB fixed. Anyway, the minimum of �Q versus the correlations is reached
for |c| = cM .
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Finally, the work performed on the system is

�WA = ωA sinh 2r Re(αδe−iψ ) + ωA sinh2 r(NA + NB + 1 + |δ|2 + |α|2)

+ωB

√(
2NA + 1

2
sinh2 r + 2NB + 1

2
cosh2 r

)2

− (c sinh 2r)2 − ωB
2NB + 1

2
. (112)

Note that the dependency of the work on the correlations
cannot be eliminated even for ωA = ωB, differently from
the case of frequency conversion. Moreover, for increasing
values of |c|, �WA decreases. Therefore, we have shown that
the presence of correlations, although pertaining to separa-
ble states, allows new phenomena for this process, such as
negative heat flows, which are impossible in the absence of
correlations. This may happen even when the bath is colder
than the system.

C. Type-II correlated states

The covariance matrix for type-II correlated states is
given by

σ II
AB =

⎛⎜⎜⎜⎝
2NA+1

2 0 c 0

0 2NA+1
2 0 −c

c 0 2NB+1
2 0

0 −c 0 2NB+1
2

⎞⎟⎟⎟⎠. (113)

These states are locally thermal and can be separable or
entangled, depending on the range of c. The constraints in
Eq. (95) impose the conditions

|c| �
√

NA(1 + NB), (114)

if NA � NB, or

|c| �
√

NB(1 + NA), (115)

if NA > NB. By applying Simon’s criterion, we know that
system and bath are entangled iff

|c| >
√

NANB. (116)

1. Frequency converter and beam splitter

For this class of states �EA, given by Eq. (55), reads

�EA = ωA sin2 θ (NB − NA + |δ|2 − |α|2)

+ωA sin 2θ Re(αδ∗e−iϕ ), (117)

which is independent of the correlations, differently from the
type-I states. In fact, since ε = cσZ , then Tr [Rϕε] = 0 for any
ϕ. The final covariance matrix of the bath is

σ ′
B =

(
2NA + 1

2
sin2 θ + 2NB + 1

2
cos2 θ

)
I2

− c sin 2θ R̄ϕ, (118)

where

R̄ϕ =
(

cos ϕ − sin ϕ

− sin ϕ − cos ϕ

)
, (119)

and its determinant is given by

det σ ′
B =

(
2NA + 1

2
sin2 θ + 2NB + 1

2
cos2 θ

)2

− c2 sin2 2θ.

(120)

Hence the stronger are the correlations, the lower is the final

temperature of the bath. Since det σB = ( 2NB+1
2 )

2
, the heat

exchanged can be expressed as

�Q = ωB

√(
NA sin2 θ + NB cos2 θ + 1

2

)2

− (c sin 2θ )2

−ωB
2NB + 1

2
. (121)

The heat �Q has a maximum for c = 0, for which inequality
(90) is saturated, and decreases for increasing values of |c|.
Since for fixed NA and NB the state is entangled only if |c| >√

NANB, the decrease of �Q is emphasized the more the initial
state is entangled. For

|c| >

√(
NA sin2 θ + NB cos2 θ + 1

2

)2 − ( 2NB+1
2

)2

sin 2θ
, (122)

along with condition (114) or (115), the heat flow becomes
negative. Anomalous heat flows can be found also in this
case, with general enhancement for increasing correlations
and entanglement.

2. Parametric amplifier

The variation of the internal energy (59) for initial states
with covariance matrix (113) reads

�EA = ωA sinh2 r(NA + NB + 1 + |δ|2 + |α|2)

+ωA sinh 2r[c cos ψ + Re(αδ e−iψ )]. (123)

Since the final covariance matrix of the bath is σ ′
B =

( 2NA+1
2 sinh2 r + 2NB+1

2 cosh2 r + c sinh 2r cos ψ )I2, the cor-
responding heat is given by

�Q = ωB[(NA + NB + 1) sinh2 r + c sinh 2r cos ψ]. (124)

Hence the work performed on the system is written

�WA = ωA[sinh2 r(|δ|2 + |α|2) + sinh 2r Re(αδ e−iψ )]

+ (ωA + ωB)[(NB + NA + 1) sinh2 r

+ c sinh 2r cos ψ] . (125)

Both �EA and �Q depend in the same way on the corre-
lations, and their effect adds up in the work. The strength
of correlations rules the sign of all these thermodynamic
quantities. For instance, we have �Q < 0 iff

c < −
(

NA + NB + 1

2

)
tanh r

cos ψ
, (126)
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for cos ψ > 0, or

c > −
(

NA + NB + 1

2

)
tanh r

cos ψ
, (127)

for cos ψ < 0, with the additional constraint (114) or (115).
Stronger correlations, in the sense of greater values of |c|, do
not result automatically in lower values for �Q and �WA, due
to a not trivial dependence on the phase ψ . Finally, notice that
for ψ = π

2 or 3π
2 the presence of initial correlations does not

affect any thermodynamical quantity.

D. Role of correlations on heat exchanges:
An information-theoretic approach

In the previous subsection we have focused on the role
of initial correlations between system and bath, considering
the heat flow and the work performed on the system. Here,
following an information-theoretic approach, we consider a
different perspective by studying how the variation of correla-
tions between the initial and final state can determine the heat
flows for a general entropy-preserving transformation.

For generic interaction between two bosonic systems the
heat is evaluated by Eq. (28). As a consequence, the sign
of the heat is determined by the sign of the variation of
the bath von Neumann entropy; namely we have �Q > 0
iff �SB = S(ρ ′

B) − S(ρB) > 0. Since for entropy-preserving
transformations we have �I (A : B) = �SA + �SB, the heat
exchange is positive iff �I (A : B) > �SA. When both �SA >

0 and �SB > 0, both the intrinsic temperatures of system and
bath increase, thus leading to an increase in the correlations.
Conversely, if the process lowers both temperatures, it must
also decrease the total amount of correlations.

For bipartite pure states the von Neumann entropy of the
marginal state(s) is a well defined measure of entanglement.
As a consequence, for a pure initial state one has �Q > 0
iff the amount of entanglement increases, while a decreasing
entanglement implies that the temperature of the bath de-
creases, independent of the temperature of the system. Notice
that this may also happen for W = 0, i.e., when no external
work is performed. A paradigmatic example is the case of two
pure squeezed states in orthogonal direction under a balanced
beam splitter, producing a twin-beam state, and the reversed
transformation.

Specifically for Gaussian states, a quantifier of the informa-
tion encoded in a state ρ is provided by the Renyi-2 entropy
[51–53]

S2(ρ) = 1
2 ln (det σ ), (128)

where σ is the covariance matrix associated to ρ. By com-
paring with Eq. (47), we notice that the Renyi-2 entropy just
replaces the concave function g(x) of Eq. (27) appearing in
the von Neumann entropy by a different concave function,
namely ln(x + 1

2 ). Recalling Eq. (45), one also has S2(ρ) =
− ln(2μρ ).

The Rényi-2 entropy satisfies the strong subadditivity in-
equality for all Gaussian states and coincides up to a constant
with the Wigner entropy. Typically, this link allows for a
fundamental simplification of the problem of characterizing
entropy production, as one can map an open system dynamics
into a Fokker-Planck equation for the Wigner function, and

hence employ tools of classical stochastic processes to obtain
simple expressions for entropy production rate and entropy
flux rate from the system to the environment [53–57]. The
Renyi-2 entropy can also be used to define a Gaussian entan-
glement measure, the Gaussian Renyi-2 (GR2) entanglement,
which for pure states ψAB is given by

E2(ψAB) = 1
2 ln (det σB) = S2(ρB). (129)

The bound energy can be reformulated in terms of the Renyi-2
entropy, namely B(χB) = ωB exp [S2(χB)], and hence the heat
is rewritten as

�Q = ωB{exp[S2(ρ ′
B)] − exp[S2(ρB)]}. (130)

Then, for pure Gaussian states the heat has a clear interpre-
tation in terms of the variation of the GR2 entanglement, i.e.,

�Q = ωB{exp[E2(ρ ′
AB)] − exp [E2(ρAB)]}. (131)

Here again we see that if the state loses entanglement in
the thermodynamical transformation then �Q < 0; namely
the bath becomes colder. Conversely, if the transformation
increases the entanglement, the bound energy of the bath
increases.

In the case of mixed states we expect that also correlations
of separable states are involved in the heat exchange, as we
have already seen in many previous examples. The Renyi-2
entropy leads to a well-defined measure of correlations for
Gaussian states, namely the Renyi-2 mutual information

I2(A : B) = 1

2
ln

(
det σA det σB

det σAB

)
. (132)

Let us consider its variation under Gaussian transformations

�I2(A : B) = 1

2
ln

(
det σ ′

A det σ ′
B

det σA det σB

)
, (133)

where we used the fact that det σ ′
AB = det σAB. Equivalently,

one has

�I2(A : B) = �S2(ρA) + ln

(
B
(
ρ ′

B

)
B(ρB)

)
, (134)

which implies

B(ρ ′
B) = {exp [�I2(A : B) − �S2(ρA)]}B(ρB). (135)

The relevant point of equality (135) is the fact that it relates
initial and final temperature of the bath by a multiplicative
factor directly related to information quantities. In this context
then the bath is heated iff �I2(A : B) > �S2(ρA). Finally, we
recall that the Renyi-2 entropy and mutual information have
already been explicitly related to the entropy production in
irreversible processes [53–56], also assessed experimentally
[57]. Hence further developments may consider irreversible
entropy production mechanisms in the present framework.

VI. WORK EXTRACTION SCHEMES

Our final aim is to suggest possible implementations for
work extraction. For a bipartite system, described by a global
state ρAB, the extractable work is upper bounded by the global
free energy F (ρAB). In most cases it is not possible to have
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full access to both the system and the bath, since one may
perfectly control the former but not the latter. Hence extracting
the whole F (ρAB) might be an impossible task. On the other
hand, if one considers only the system then it is possible to
extract at most F (ρA), which is generally far below F (ρAB).
To enhance the amount of extractable work one can make
the system interact with the bath via an entropy-preserving
process, increasing the free energy to F (ρ ′

A) > F (ρA), and
then extract work from the system. Here we do not formalize a
working medium to explicitly implement the work extraction
from the system, but we will instead focus on engineering the
interaction via bilinear transformation of the modes pertaining
to system and bath, in order to achieve the optimal increase of
the free energy of the system.

In this context, for a fair treatment the relevant quantity
is the variation W̃ ≡ �FA − W , which represents the balance
between the increase of the free energy of the system and the
cost employed by the interaction W = �EA + �EB (which
is zero for the passive beam splitter). Recalling that the free
energy bounds the extractable work, then a positive value of
W̃ is intended as a positive contribution for work extraction in
the first stage of a work engine, where just system and bath
interact. We also notice the possibility of having both �FA >

0 and W < 0, which means that an increase of the system free
energy can be contextually accompanied by work extraction
[58]. Notice also the following equivalent expression for W̃ :

W̃ = −(�EB + �BA), (136)

which formally corresponds to the work extracted from the
bath. For the study of W̃ , we will consider bipartite states in
Eq. (21) with no coherent signal on the system, i.e., α = 0,
since the corresponding contribution to the free energy of
the states can be trivially extracted by the inverse unitary
displacement with no entropy exchange. Since the bath is con-
sidered as not directly accessible, its coherent signal cannot be
extracted with the same procedure, and it must be generally
taken into account in the engineering of the transformation.

The net increase in the extractable work W̃ is given by the
two contributions �EB and �BA, which for a general two-
mode bosonic state can be expressed as

�EB = ωB(〈b†b〉ρ ′
B
− 〈b†b〉ρB

), (137)

�BA = ωA{g−1[S(ρ ′
A)] − g−1[S(ρA)]}, (138)

respectively. Therefore, to get a positive W̃ a competition ap-
pears between an appropriate reduction of the internal energy
of the bath and a sufficient decrease in the bound energy—and
hence entropy—of the system.

For Gaussian states undergoing a symplectic transforma-
tion � as in Eq. (38), the variation of the internal energy of
the bath is given by

�EB = ωB

2
Tr[BσBBT + CσACT + CεBT + BεT CT ]

+ ωB

2
(‖〈BRB〉‖2 − ‖〈RB〉‖2 − Tr [σB]), (139)

where we considered that the system does not have coherent
signal.

The variation of the system bound energy is given
by �BA = ωA(

√
det σ ′

A − √
det σA), where the covariance

matrix of the system after the process reads as

σ ′
A = AσAAT + DσBDT + AεDT + DεT AT . (140)

The net increase in the free energy of the system W̃ depends
on the symplectic transformation � that makes the system
interact with the bath. Typically, � is characterized by some
parameters that reflect possible configurations of an experi-
mental setup. Since W̃ is a function of the transformation, i.e.,
W̃ = W̃ (�), we can look for the appropriate configuration of
� such that W̃ (�) > 0 and is maximum.

A. Frequency converter and beam splitter

For this process the variation of the internal energy of the
bath is given by

�EB = ωB

2
sin2 θ (Tr [σA] − Tr [σB] − 2|δ|2)

− ωB

2
sin 2θ Tr

[
RT

ϕ ε
]
, (141)

whereas the final covariance matrix of the system reads

σ ′
A = cos2 θσA + sin2 θRϕσBRT

ϕ + 1
2 sin 2θ

(
εRT

ϕ + RϕεT
)
.

(142)

Since for this process �EB = −ωB
ωA

�EA [58], one has W̃ =
ωB
ωA

�EA − �BA. Hence the employed transformation must
increase the internal energy of the system while decreasing
its intrinsic temperature.

In the following we consider specific examples for the
frequency converter transformations.

1. Coherence from the bath

In this simple example we consider a state of the form

I ⊗ D(δ)(νNA ⊗ νNB )I ⊗ D†(δ), (143)

namely two local thermal modes, with coherent signal in the
bath mode. Using a frequency converter one has

�FA = ωA sin2 θ |δ|2, (144)

which has the maximum value �Fmax = ωA|δ|2 for UFC ( π
2 ).

This corresponds to a swap of the system and the bath state,
which is physically not trivial for ωA �= ωB. The net increase
in the extractable work W̃ is given by

W̃ = (ωB − ωA) sin2 θ (NB − NA) + ωB sin2 θ |δ|2, (145)

which is positive as long as

|δ|2 >
ωA − ωB

ωB
(NB − NA), (146)

and maximum for θ = π/2. If condition (146) is violated
the cost of the transformation exceeds the increase in the
extractable work. We observe that for a balanced beam splitter
(i.e., ωA = ωB and θ = π/4) the transformation would leave
system and bath at the same temperature, but would be less
efficient since it would create correlations and also leave
coherence (and hence free energy) in the bath. Finally, notice
that when Eq. (146) holds along with

W = (ωA − ωB)(|δ|2 + NB − NA) < 0 (147)
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the increase of the system free energy is accompanied by work
extraction.

2. Exploiting type-I correlated states

In the following example the optimal transformation
strongly depends on the state parameters. We consider corre-
lated local thermal states with ε = c I2, which are therefore
described by the covariance matrix given in (99). We have
seen that the net increase in the free energy of the system
is W̃ = ωB

ωA
�EA − �BA. According to Eq. (101), the variation

of the internal energy of the system for this class of states is
given by

�EA = ωA sin2 θ (NB − NA + |δ|2) + ωA sin 2θ c cos ϕ,

(148)

whereas the corresponding variation of the bound energy
reads

�BA = ωA sin2 θ (NB − NA) + ωA sin 2θ c cos ϕ. (149)

Hence one obtains

W̃ = (ωB − ωA)[sin2 θ (NB − NA) + sin 2θ c cos ϕ]

+ωB sin2 θ |δ|2. (150)

Let us consider the case δ = 0 in order to study the pure effect
of correlations. For this class of states if ωA = ωB one has
W̃ = 0, namely the procedure does not provide any advantage.

Suppose now that ωB > ωA. From Eq. (150) it is clear that
the optimal choice of ϕ depends on the sign of c, namely if c <

0 then ϕ = π , while for c > 0 we choose ϕ = 0. For NB > NA

we have W̃ > 0 for any θ . If NB < NA, a positive W̃ can be
obtained if

tan θ <
2|c|

NA − NB
. (151)

In both cases the optimal value of θ maximizing W̃ is
given by

θmax = 1

2
arctan

(
2|c|

NA − NB

)
, (152)

with the suitable choice ϕ = 0 or ϕ = π . Notice that the more
correlated is the state, the larger is the net increase of the
system free energy.

When ωB < ωA, again the sign of c fixes ϕ at zero or π . For
NB < NA, we have W̃ > 0 for any θ . Otherwise, if NB > NA,
the net increase W̃ is positive for

tan θ <
2|c|

NB − NA
. (153)

The optimal value of θ is provided by

θmax = 1

2
arctan

(
2|c|

NB − NA

)
. (154)

Notice that both solutions (152) and (154) satisfy the respec-
tive conditions (151) and (152). In summary, for all values of
NA, NB, and c, we can provide a transformation that increases
the net free energy of the system, i.e., W̃ > 0, for suitable
choice of ϕ and θ .

Finally, note that for c = 0 the procedure runs only for
(ωB − ωA)(NB − NA) > 0, consistent with Eq. (146), with

FIG. 1. Plots of W̃ for classically correlated thermal states with
no coherent signal, NA = 5, NB = 10, and ωB = 2ωA, for different
values of c. W̃ (cM ) represents W̃ for the maximum value of the
correlations cM = √

NANB, while W̃ (cM/2) for c = cM/2. W̃ (0) is
the extractable work for uncorrelated modes, which is maximized
for θ = π/2.

optimal θmax = π/2. In Figs. 1 and 2 we report examples of
W̃ (θ ) as a function of θ for different values of c, for fixed NA,
NB, and ωB/ωA.

3. Exploiting type-II correlated states

We consider the type-II correlated states, whose covariance
matrix is given in (113). We recall that the net increase in
the free energy of the system reads as W̃ = ωB

ωA
�EA − �BA.

For this class of states the variation of the internal energy is
obtained by Eq. (117), namely

�EA = ωA sin2 θ (NB − NA + |δ|2). (155)

FIG. 2. W̃ as function of θ for classically correlated thermal
states with no coherent signal, NA = 10, NB = 5, and ωB = 2ωA, for
different values of c, as in Fig. 1. Since NA > NB, to get W̃ > 0,
θ must be smaller than a threshold that depends on NA, NB, and c
[see Eq. (151)]. When the modes are uncorrelated (c = 0) the work
extraction scheme is useless.
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The final covariance matrix of the system is given by

σ ′
A =

(
2NB + 1

2
sin2 θ + 2NA + 1

2
cos2 θ

)
I2

+ c sin 2θ R̄ϕ, (156)

and hence the corresponding variation of the bound energy is
written

�BA = ωA

√(
NB sin2 θ + NA cos2 θ + 1

2

)2

− (c sin 2θ )2

−ωA
2NA + 1

2
. (157)

The net increase in the free energy of the system can be
therefore expressed as

W̃ = ωB sin2 θ (NB − NA + |δ|2) + ωA
2NA + 1

2

− ωA

√(
NB sin2 θ + NA cos2 θ + 1

2

)2

− (c sin 2θ )2.

(158)

For fixed values of state parameters NA, NB, c, δ the optimal
value of θ is chosen to maximize W̃ , possibly with W̃max >

0. For a better understanding of this case, let us explicitly
consider a two-mode squeezed vacuum state, which repre-
sents a type-II pure entangled state between system and bath.
The pertaining covariance matrix is obtained for σA = σB =
cosh 2r

2 I2 and c = sinh 2r
2 , along with δ = 0. Then Eq. (158) is

rewritten as

W̃ = ωA
cosh 2r

2
− ωA

√
cosh2 2r

4
− sinh2 2r

4
sin2 2θ. (159)

The maximal W̃ is attained when θ = π
4 , for which

W̃max = ωA sinh2 r. (160)

We notice that such an optimal transformation corresponds to
a complete removal of correlations, which are used to increase
the free energy of the system (and the bath). This effect can
also be understood by means of the identity (85). In fact, since
the two-mode squeezed state is generated by UPA(ξ ) on the
vacuum state |0〉A ⊗ |0〉B and UFC (ζ )|0〉A ⊗ |0〉B = 0, one has

UFC

(π

4

)
UPA(r)|0〉A ⊗ |0〉B = [SA(r)|0〉A] ⊗ [SB(−r)|0〉B].

(161)

B. Parametric amplifier

The variation of the internal energy of the bath is given by

�EB = ωB

2
sinh2 r(Tr [σA] + Tr [σB] + 2|δ|2)

+ ωB

2
sinh 2r Tr[R̃ψε], (162)

whereas the final covariance matrix of the system reads

σ ′
A = cosh2 rσA + sinh2 rR̃ψσBR̃ψ + 1

2 sinh 2r(εT R̃ψ + R̃ψε).
(163)

For this process we have �EB = ωB
ωA

�EA [58,60], and hence

W̃ = −( ωB
ωA

�EA + �BA), which can also be expressed as W̃ =
−ωB

ωA
�FA − (1 + ωB

ωA
)�BA. In order to increase the extractable

work (�FA > 0) we need �BA < 0 and |�BA| > ωB
ωA+ωB

�FA.
We notice, however, that for Gaussian factorized input

states one always has �BA > 0. In fact, for symmetry reasons
�BA = �Q as in Eq. (90) with ωA replacing ωB, and hence
the presence of initial correlations is needed to obtain W̃ > 0.
Let us consider then the last example.

Exploiting type-II correlated states

We consider the type-II correlated states, whose covariance
matrix is given in (113). The variation of the internal energy
is obtained by Eq. (123) with α = 0, namely

�EA = ωA sinh2 r(NA + NB + 1 + |δ|2)

+ωA sinh 2r c cos ψ, (164)

whereas �BA = �Q as in Eq. (124) upon replacing ωB with
ωA. Then one has

W̃ = −ωB sinh2 r|δ|2 − (ωA + ωB)[(NA + NB + 1) sinh2 r

+ c sinh 2r cos ψ]. (165)

For fixed values of state parameters NA, NB, c, δ, the optimal
values of r and ψ are chosen to maximize W̃ . For simplicity,
let us consider the case ω = ωA = ωB, NA = NB = N , and c =√

N (N + 1), which corresponds to an input pure two-mode
squeezed state displaced by a coherent signal δ in the bath
mode. Then,

W̃ = −ω[(4N + 2 + |δ|2) sinh2 r

+ 2
√

N (N + 1) sinh 2r cos ψ]. (166)

Clearly, the optimal choice for ψ is ψ = π , and by solving
∂W̃ /∂r = 0 one obtains the optimal value of r as rmax =
atanh 2

√
N (N+1)

4N+2+|δ|2 . The corresponding optimal net increase of the
system free energy is given by

W̃max = ω
4N (N + 1)(4N + 2 + |δ|2)

(4N + 2 + |δ|2)2 − 4N (N + 1)
. (167)

VII. CONCLUSIONS

In this work we have studied the thermodynamics of
two bosonic systems that interact via entropy-preserving
transformations in the mode operators. The first mode
represents the thermodynamical system, while the second
describes the bath which, different from standard formulations
of thermodynamics, is treated as a quantum system; namely it
can possess coherence or squeezing and can be correlated with
the system. The main result of this work is the formulation
of the first law of thermodynamics for any two-mode states;
hence the balance between the heat (28) and the variation
of the internal energy (36) of the system which gives the
work performed onto the thermodynamical system in the
entropy preserving transformation. We have systematically
considered the two different bilinear transformations, namely
the frequency converter and beam splitter and the parametric
amplification. Although our results hold for any two-mode
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states, we have mainly focused on the case of Gaussian states,
where the heat and the variation of the internal energy take
simple expressions. In particular, we have derived the first law
in the case of initial uncorrelated modes, providing the most
general formulation for bilinear transformations. Moreover,
we have considered the case of initial correlations between
the thermodynamical system and the bath by analyzing two
types of correlated states, one that considers only separable
states and the other that enables also entanglement. The

case of correlated states has also been considered from an
information-theoretical point of view by means of the Renyi
entropy of order two, thus showing how anomalous heat
flows can occur by exploiting correlations. Finally, we have
proposed work-extraction schemes, showing how one can en-
gineer entropy-preserving transformations to increase the free
energy of the system, namely the amount of extractable work,
by letting the system interact with the bath, thus exploiting
the presence of correlations, squeezing, or coherence.
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