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We analyze the geometry of the generalized Pauli channels constructed from the mutually unbiased bases.
The Choi-Jamiołkowski isomorphism allows us to express the Hilbert-Schmidt line and volume elements in
terms of the eigenvalues of the generalized Pauli maps. After determining appropriate regions of integration,
we analytically compute the volume of generalized Pauli channels and their important subclasses. In particular,
we obtain the volumes of the generalized Pauli channels that can be generated by a legitimate generator and are
entanglement breaking. We also provide the upper bound for the volume of positive, trace-preserving generalized
Pauli maps. This helps us to better understand the structure of high-dimensional sets of quantum channels.
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I. INTRODUCTION

Due to their unique properties, both the Pauli channels and
the generalized Pauli channels have found many important
applications in quantum information theory. Their construc-
tion is mainly based on the sets of mutually unbiased bases
[1]. The generalization of the Pauli channels, also known as
Pauli diagonal channels constant on axes, was defined and
analyzed by Nathanson and Ruskai [2]. They were interpreted
as the depolarizing channels whose degree of depolarization
depends on the choice of the axis. Most effort was put
into finding the properties of the channels constructed from
the maximal number of mutually unbiased bases (MUBs).
However, the authors also showed how to define the gen-
eralized Pauli channels for nonmaximal numbers of MUBs,
and these are the channels that are our main consideration.
In recent literature, the generalized Pauli channels have been
considered as an example of commutating dynamical maps
[3]. It has been shown that their behavior under uniform time
dilation of the corresponding memory kernel is linked to their
P-divisibility property [4]. This property has also been studied
in Refs. [5,6]. It turns out that, under certain conditions, the
generalized Pauli channels belong to the class of absolutely
separating channels, which means that their output cannot be
unitarily transformed into any entangled state [7]. In Ref. [8],
the authors have presented estimators for the channel parame-
ters using a quantum process tomography method.

This paper is a continuation of Ref. [9], where we intro-
duced the geometry on the space of positive, trace-preserving
Pauli maps. There, we used the Choi-Jamiołkowski isomor-
phism [10,11] to obtain the the Hilbert-Schmidt metric on
the space of Pauli maps. Using this metric, we calculated
the volumes of the entanglement-breaking channels, P- and
CP-divisible channels, as well as the channels obtainable
through time-local generators. The paper was motivated by
the question about the extent to which the formalisms of
quantum channels and master equations coincide. The relative
amount of channels that can be produced using the master
equations with time-local generators was established. The

volume formulas allowed us to learn more about the shapes
and structures of several subsets of quantum channels.

Other works on the geometry of quantum channels include
Ref. [12] where Narang and Arvind obtained the volume
of the Pauli channels that can be simulated by a one-qubit
mixed state environment. Similar calculations were repeated
by Jung et al. for the generalized amplitude-damping channels
[13]. The Choi-Jamiołkowski isomorphism was also used
to compute the volume of unital qubit channels with the
Lebesque measure [14]. For the Hilbert-Schmidt measure,
Szarek et al. [15] listed the bounds for the volume radii of
positive, trace-preserving qudit maps and their nested subsets.
Recently, the geometry of the sets of quantum channels has
been analyzed for the Pauli channels [16] and Weyl channels
[17] accessible via the Lindblad semigroup. There also exist
first results for continuous variable systems. The geometry of
quantum Gaussian channels has been considered with respect
to the Hilbert-Schmidt [18] and the Bures-Fisher [19] metric.

In the following sections, we start with the definition of
the generalized Pauli channels in dimension d that are con-
structed from N � d + 1 mutually unbiased bases. We derive
the positivity and complete positivity conditions in terms of
the channel eigenvalues. Next, we introduce the associated
Choi-Jamiołkowski states to find the Hilbert-Schmidt line and
volume elements of the channels. Having obtained the nec-
essary positivity conditions, we give the upper bound on the
volume of positive, trace-preserving generalized Pauli maps.
It is very hard to establish analytical regions of integration for
arbitrary N and d , and for this reason we consider three special
examples: N = d + 1, N = d , and N = 3, two of which yield
the same results. In each case, we present the integration re-
gions in such a way that it is possible to analytically calculate
the volume integrals. This way, we get the relative volumes as
functions of dimension d for the generalized Pauli channels,
as well as the subset of channels that are provided with legit-
imate generator and entanglement-breaking channels. Due to
the generalized Pauli channels being higher dimensional, and
therefore harder to analyze, than the Pauli channels, some of
our results provide bounds on the volumes rather than exact
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values. In Conclusions, we list the open problems that have
arisen during our research.

II. GENERALIZED PAULI CHANNELS

Consider mixed unitary qubit evolution given by

�[ρ] =
3∑

α=0

pασαρσα, (1)

where pα is a probability distribution and σα’s denote the
Pauli matrices. Observe that � is unital; i.e., it preserves the
maximally mixed state ρ∗ = I2/2. An important feature of
the Pauli channel is that the eigenbases of the Pauli matrices
are mutually unbiased. Recall that the two orthonormal bases
{ψα} and {ϕβ} in H � Cd are mutually unbiased if and only
if their vectors satisfy

|〈ψα|ϕβ〉|2 = 1

d
. (2)

One can always find between three and d + 1 mutually unbi-
ased bases in a given dimension d [20]. The maximal number
N = d + 1 of MUBs is reached for d being a prime number
or a prime power [1,21]. If d = d1d2, then there are at least
N = 1 + min{d1, d2} mutually unbiased bases [22].

Now, let P(α)
k := |ψ (α)

k 〉〈ψ (α)
k | be a rank-1 projector onto

the kth vector |ψ (α)
k 〉 of the αth mutually unbiased bases.

Then, construct the quantum-classical channels 	α[ρ] =∑d−1
k=0 P(α)

k ρP(α)
k . The generalized Pauli map in any dimension

d is constructed from N � d + 1 mutually unbiased bases in
the following way [2],

� = pN+11l +
N∑

α=0

pα	α, (3)

where 	0[ρ] := 1
d Id Tr[ρ] is the completely depolarizing

channel.
For N < d + 1, the generalized Pauli map � is a quantum

channel if and only if

pN+1 +
N∑

α=1

pα + p0 = 1,

d2 pN+1 + d
N∑

α=1

pα + p0 � 0,

d pα + p0 � 0, α = 1, . . . , N,

p0 � 0.

(4)

Indeed, 	0 and 	α can be alternatively rewritten as

	α[ρ] = 1

d

d−1∑
k=0

U k
α ρU k

α (5)

and

	0[ρ]= 1

d2

⎛
⎝ρ +

N∑
α=1

d−1∑
k=1

U k
α ρU k†

α +
d+1−N∑

β=1

d−1∑
k=1

Aβ,kρA†
β,k

⎞
⎠,

(6)

respectively. The set {Id ,U k
α , Aβ,l} forms an orthogonal oper-

ator basis with respect to the Hilbert-Schmidt inner product,
whereas U k

α := ∑d−1
j=0 ω jkP(α)

j are the unitary operators con-

structed from P(α)
k and ω := e2π i/d . Therefore, the complete

positivity conditions are equivalent to the positivity of all
the coefficients in the operator sum representation, which
is exactly Eq. (4). The map � is mixed unitary if U k

α are
the Weyl operators Wkl := ∑d−1

m=0 ωkm|m + l〉〈m| [23] or their
tensor products, as then one can always find unitary operators
Aβ,k that complete the orthonormal basis. In this case, the
generalized Pauli channel is mixed unitary regardless of the
dimension d . Using the Weyl operators, one can always
construct at least N = 3 mutually unbiased bases [20]. If
N = d + 1, then 1l = ∑N

α=1 	α − d	0 is linearly dependent
on 	α and 	0. Hence, pN+1 is set to zero as an excessive
degree of freedom and the condition p0 � 0 is dropped [2].

Note that any generalized Pauli channel is unital, as
�[Id ] = Id . Moreover,

	α

[
U k

β

] = δαβU k
β , 	α[Aβ,l ] = 0, (7)

and hence the remaining eigenvalue equations read

�
[
U k

α

] = (pα + pN+1)U k
α , �[Aβ,l ] = pN+1Aβ,l . (8)

The complete positivity conditions in terms of the eigenvalues

λα = pN+1 + pα, λN+1 = pN+1 (9)

are as follows:

− 1

d − 1
�

N∑
β=1

λβ + (d + 1 − N )λN+1

� 1 + d min
α=1,...,N+1

λα. (10)

Note that for N = d + 1, one has λN+1 = 0, which recovers
the generalized Fujiwara-Algoet conditions [2,24]. Moreover,
conditions for N = d and N = d + 1 coincide.

III. LINE AND VOLUME ELEMENTS

Let us analyze the geometry of the generalized Pauli
channels � by considering the properties of the associated
Choi-Jamiołkowski quantum states [10,11]

ρ� = 1

d

d−1∑
k,l=0

|k〉〈l| ⊗ �[|k〉〈l|]. (11)

In general, it is very hard to explicitly write the state ρ�

corresponding to a given �, as the choice of the mutually
unbiased bases is arbitrary. However, we can still introduce the
metric via the Hilbert-Schmidt line element ds2 = Tr(dρ2

�)
[25]. In terms of the channel eigenvalues, it reads

ds2 = d − 1

d2

(
N∑

α=1

dλ2
α + (d + 1 − N )dλ2

N+1

)
. (12)

Now, the metric tensor has the diagonal form g =
d−1
d2 diag(1, . . . , 1, d + 1 − N ) with N ones. Hence, the

associated volume element dV = √
det g

∏N+1
α=1 dλα is given
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by

dV = √
d + 1 − N

(√
d − 1

d

)N+1 N+1∏
α=1

dλα. (13)

Notably, for N = d + 1, dλ2
N+1 vanishes, and therefore one

has

ds2 = d − 1

d2

d+1∑
α=1

dλ2
α,

dV =
(√

d − 1

d

)d+1 d+1∏
α=1

dλα. (14)

For d = 2, the above formulas reproduce the line and volume
elements for the Pauli channels that have been recently ob-
tained in Ref. [9].

IV. RELATIVE VOLUMES OF QUANTUM CHANNELS

In this section, we analytically derive the volumes of the
generalized Pauli channels and their important subclasses.
However, it is a nontrivial task to find the regions of integra-
tion for arbitrary N and d . Therefore, for the most part, we
limit our consideration to two extreme cases: N = d + 1 and
N = 3.

A. Generalized Pauli positive maps

Before we calculate the volumes of generalized Pauli chan-
nels, let us find the normalization factor that makes our results
more clear to read. Consider a trace-preserving generalized
Pauli map � that, in general, is not completely positive. From
the definition, � is positive if and only if

∀P,Q Tr(�[Q]P) � 0, (15)

where P and Q are rank-1 projectors. Unfortunately, this
inequality is very hard to check. Therefore, we analyze the
necessary conditions

min
P,Q∈{P(α)

k ,Q(β )
l }

Tr(�[Q]P) � 0, (16)

with the minimum taken over

P(α)
k = 1

d

[
Id +

d−1∑
m=1

ω−mkU m
α

]
(17)

and

Q(β )
l = 1

d

[
Id +

d−1∑
n=1

q(β,l )
n Aβ,n

]
. (18)

Using the method presented in Ref. [26], it is straightforward
to show that

min
P,Q∈{P(α)

k ,Q(β )
l }

Tr(�[Q]P)

= 1

d
[1 + min{−λmax, (d − 1)λmin}], (19)

where λmax = maxα λα and λmin = minα λα for α = 1, . . . , N .
Note that for N = d + 1, the above formula is the maximal

output ∞-norm [26]. Now, the necessary condition for posi-
tivity of trace-preserving generalized Pauli maps is

− 1

d − 1
� λα � 1. (20)

Unfortunately, numerical calculations indicate that such con-
ditions may lead to maps that are not positive. Hence, condi-
tion (16) is not sufficient. However, we can at least calculate
the upper estimate on the volume of positive, trace-preserving
generalized Pauli maps. Explicitly, it reads

VP(d, N ) = √
d + 1 − N

(√
d − 1

d

)N+1 N+1∏
α=1

∫ 1

− 1
d−1

dλα

=
√

d + 1 − N

(d − 1)N+1
, (21)

for N = 1, . . . , d , and

VP(d ) =
(√

d − 1

d

)d+1 d+1∏
α=1

∫ 1

− 1
d−1

dλα

= 1√
(d − 1)d+1

,

(22)

for N = d + 1. Note that for N = d , one has VP(d, d ) =
VP(d ). In the upcoming subsection, VP(d ) is used for normal-
ization purposes.

B. N = d + 1 and N = d mutually unbiased bases

From now on, let us assume, without a loss of general-
ity, that λ1 � λ2 � · · · � λd+1. Note that there are (d + 1)!
possible index permutations for a given dimension d , so the
total volume for arbitrarily ordered λα is (d + 1)! times the
volume for nondecreasingly ordered eigenvalues (for details,
see Appendix B). This simple trick significantly simplifies
the regions of integration. The results of this subsection are
calculated for N = d + 1, but they also apply to the case with
N = d .

The volume VCP(d ) of the generalized Pauli channels is
calculated by integrating the volume element dV over the
complete positivity region (see Appendix A). Due to the
nature of lower and upper bounds of λα , we are unable to
derive the final formula for VCP(d ) directly. Instead, we find
the analytical volume ratios VCP(d )/VP(d ) for small values of
d (for more details, see Appendix B),

VCP(2)

VP(2)
= 1

3
,

VCP(4)

VP(4)
= 1

30
,

VCP(3)

VP(3)
= 1

8
,

VCP(5)

VP(5)
= 1

144
,

and conjecture that the general formula reads

VCP(d )

VP(d )
= d

(d + 1)!
. (23)

Quantum channels are used to provide the evolution of
open quantum systems. Instead of a single channel �, one
takes a time-parametrized family {�(t )|t � 0,�(0) = 1l} that
is called the dynamical map. The simplest example of a
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dynamical map is the Markovian semigroup �(t ) = etL. It is
the solution of the master equation

�̇(t ) = L�(t ), (24)

where L is the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) generator [27,28]

L =
N∑

α=0

γα (	α − 1l), (25)

with positive decoherence rates γα � 0. If N = d + 1, then
γ0 = 0 [24]. One way of including non-Markovian effects
is to introduce the time-local generator L(t ), which is given
via formula (25) but with time-dependent γα (t ) � 0. Observe
that the generalized Pauli channel � belongs to a family of
generalized Pauli dynamical maps �(t ) generated by L(t ) if
and only if � = �(t∗) for a fixed t∗ � 0. Equivalently, one has
λα � 0, which provides the integration region

λk−1 � λk � 1

d + 2 − k

⎛
⎝1 + dλ1 −

k−1∑
β=1

λβ

⎞
⎠,

k = 2, . . . , d + 1,

0 � λ1 � 1,

(26)

when paired with the complete positivity condition from
Appendix A. Let us call the channels with λα � 0 achievable
with the time-local generators and denote their volume by
VG(d ). Again, we calculate the analytical volumes VG(d ) for
small values of d ,

VG(2)

VCP(2)
= 3

16
,

VG(4)

VCP(4)
= 1215

4096
,

VG(3)

VCP(3)
= 64

243
,

VG(5)

VCP(5)
= 24576

78125
,

and conjecture that the general formula reads

VG(d )

VCP(d )
= d2 − 1

d2

(
d − 1

d

)d

. (27)

Surprisingly, this is the only relative volume we consider that
does not go to zero with the increase of d . Indeed, if we take
the limit d → ∞, then Eq. (27) monotonically approaches e
from below.

An interesting subclass of the generalized Pauli channels,
with many applications in quantum communication and in-
formation processing, consists in the channels that are entan-
glement breaking (EB). A quantum channel � is entangle-
ment breaking if and only if its Choi-Jamiołkowski state ρ�

is separable. If λα � 0, then
∑d+1

α=1 λα � 1 is the necessary
and sufficient condition for breaking the entanglement [2].
Therefore, the generalized Pauli channel achievable with the
time-local generators that are also EB corresponds to the

FIG. 1. A graphical representation of the volumes for selected
classes of the generalized Pauli trace-preserving maps constructed
from d or d + 1 mutually unbiased bases.

region

λk−1 � λk � 1

d + 2 − k

⎛
⎝1 −

k−1∑
β=1

λβ

⎞
⎠,

k = 2, . . . , d + 1,

0 � λ1 � 1

d + 1
.

(28)

For small dimensions d , we find relatively simple analyti-
cal formulas for the volumes VEB(d ) of the entanglement-
breaking channels achievable with the time-local generators,

VEB(2)

VG(2)
= 1

3
,

VEB(4)

VG(4)
= 1

5
,

VEB(3)

VG(3)
= 1

4
,

VEB(5)

VG(5)
= 1

6
,

from which we conjecture that

VEB(d )

VG(d )
= 1

d + 1
. (29)

The results of this subsection are presented in Fig. 1. The
curves have no physical meaning and are plotted only to show
the behavior of the discretely valued relative volumes. Note
that the only function that does not monotonically decrease
with the increase of the dimension d is VG(d )/VCP(d ), which
approaches 1/e for d → ∞. This means that the bigger the
Hilbert space, the more there are generalized Pauli channels
with positive eigenvalues. For d = 2, the results coincide with
Ref. [9]. Interestingly, for d > 2, the volume of positive, trace-
preserving maps is no longer equal to unity.

C. N = 3 mutually unbiased bases

Now, let us analyze the volumes of the generalized Pauli
channels constructed from three mutually unbiased bases.
This is another interesting choice, as one can construct three
MUBs in any dimension. Once again, in order to simplify
the integrals, we assume that λ1 � λ2 � λ3. There are 3! = 6
possible index permutations for λα = 1, 2, 3. However, due
to N < d + 1, we have one more eigenvalue, λ4, and there
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FIG. 2. A graphical representation of the volumes for selected
classes of the generalized Pauli trace-preserving maps constructed
from three mutually unbiased bases.

are four possible ways that λ4 can be placed in the above
sequence of inequalities. For each possible placement of λ4,
we derive the integration regions separately (see Appendix
C). Therefore, the final result is the sum of four integrals
multiplied by 6.

As the number of eigenvalues is set, we are able to directly
derive the formulas for the relative volumes of the channels
considered in the previous subsection. These are

VP(d ) =
√

d − 2

(d − 1)2
,

VCP(d )

VP(d )
= d

24(d − 2)
,

VG(d )

VCP(d )
= (d2 − 1)(d − 1)3

d5
,

VEB(d )

VG(d )
= 1

d + 1
,

(30)

where we used the notation V (d, 3) ≡ V (d ) for the sake of
simplicity. The only difference is that VEB(d ) is the volume of
channels achievable with the time-local generator that satisfy
the condition [2]

N∑
α=1

λα + (d + 1 − N )λN+1 � 1 (31)

for breaking the entanglement, which is necessary but may
not be sufficient. Hence, for d = 3, VEB(d ) gives just the upper
bound for the volume of entanglement-breaking channels with
positive eigenvalues. Despite this fact, VEB(d )/VG(d ) for N =
3 is given by the same formula as in the case of N = d, d + 1,
which could indicate that condition (31) is sufficient after all.

In Fig. 2, we plot the relative volumes for small dimensions
d . One can notice several similarities with Fig. 1. Again,
all the functions decrease monotonically with the increase of
the dimension d , except for VG(d )/VCP(d ), which this time
approaches identity for d → ∞. For d = 3, the results agree
with the calculations for the maximal number of MUBs from
the previous subsection.

V. CONCLUSIONS

In this paper, we establish the geometry of the generalized
Pauli channels constructed from N mutually unbiased bases,
where N ranges up to d + 1. Using the Choi-Jamiołkowski
isomorphism between quantum channels and quantum states,
we find the Hilbert-Schmidt line and volume elements in the
state space. In more detail, we consider two special examples:
N = d + 1 and N = 3. In both cases, we express the integra-
tion regions for the channels, channels achievable with the
time-local generators and their entanglement-breaking sub-
class in a way that allows us to calculate the volume integrals
analytically. Finally, we obtain the relative channel volumes
as functions of the dimension d . Some interesting behavior
can be observed, like the percentage of channels with positive
eigenvalues approaching a constant, nonzero value with the
increase of d . Our results can be interpreted as the probability
that a randomly selected generalized Pauli channel has the
desired properties. Moreover, they show how little channels
are accessible with time-local generators and therefore how
important it is to develop the memory kernel approach.

One of the open problems is the characterization of inte-
gration regions for the generalized Pauli channels constructed
from any number of mutually unbiased bases. It would be
interesting to obtain the channel volumes with both d and
N dependence, even for λN+1 = 0. Tighter conditions for
the positive maps and entanglement-breaking channels would
make it possible to find the exact volumes instead of their
upper bounds. Also, the problem that requires further study
is establishing the system of conditions under which a given
channel is a semigroup [29,30]. Another task is to compare
our results with the volumes calculated using other metrics,
like the Fisher-Rao [31], Bures [32,33], or Hastings [34,35]
measure.

Recall that the Hilbert-Schmidt volume is a volume on the
set of bipartite quantum states. Therefore, one could compare
the volume of all Choi-Jamiołkowski states to the volume of
all quantum states. Sommers and Życzkowski [25] obtained
the general formula for the volume of states with respect to
the Hilbert-Schmidt metric:

V (n) = √
n(2π )n(n−1)/2

∏n−1
k=2 k!

(n2 − 1)!
. (32)

For n = d2, one recovers the volume of bipartite d × d states.
It is easy to see that this formula does not resemble any
of the channel volumes calculated in this paper. One could
also analyze the relation between the volumes of all separa-
ble states and all separable Choi-Jamiołkowski states, which
correspond to entanglement-breaking channels. Due to the
complexity of calculations, the most well-studied case is a
two-qubit state, for which the Hilbert-Schmidt [36,37], Fisher
[38], and Dirichlet [39] volumes are known. These volumes
do not coincide, which could indicate that relative channel
volumes might also depend on the metric. Interestingly, the
Hilbert-Schmidt relative volume of separable two-qubit states
(8/33) is almost halfway through in value between the volume
of EB Pauli channels (1/6) [9] and the volume of EB Pauli
channels achievable with the time-local generators (1/3).
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APPENDIX A: REGIONS OF INTEGRATION FOR N = d + 1

The complete positivity region for trace-preserving generalized Pauli maps is obtained from the generalized Fujiwara-Algoet
condition

− 1

d − 1
�

d+1∑
α=1

λα � 1 + d min
α

λα. (A1)

For nondecreasingly ordered channel eigenvalues, this region consists in λα that satisfy one of the following systems of
inequalities: ⎧⎪⎪⎨

⎪⎪⎩
− 1

d−1 − ∑d
β=1 λβ � λd+1 � 1 + dλ1 − ∑d

β=1 λβ,

λk−1 � λk � − 1
d+2−k

(
1

d−1 + ∑k−1
β=1 λβ

)
∀2�k�d ,

− 1
d−1 � λ1 � − 1

d2−1 ,

(A2)

or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λd � λd+1 � 1 + dλ1 − ∑d
β=1 λβ,

λk−1 � λk � 1
d+2−k

(
1 + dλ1 − ∑k−1

β=1 λβ

)
∀k>M ,

− 1
d+2−M

(
1

d−1 + ∑M−1
β=1 λβ

)
� λM � 1

d+2−M

(
1 + dλ1 − ∑M−1

β=1 λβ

)
,

λk−1 � λk � − 1
d+2−k

(
1

d−1 + ∑k−1
β=1 λβ

)
∀k<M ,

− 1
d−1 � λ1 � − 1

d2−1 ,

(A3)

for a fixed M such that 2 � M � d , or{
λk−1 � λk � 1

d+2−k

(
1 + dλ1 − ∑k−1

β=1 λβ

)
∀2�k�d+1,

− 1
d2−1 � λ1 � 1.

(A4)

APPENDIX B: ANALYTICAL INTEGRATION OF THE VOLUME

Let us observe how the analytical volume integrals are calculated by analyzing the example of the Pauli channels, which
correspond to the choices d = 2 and N = d + 1. Their volume is obtained by integrating the volume element dV from Eq. (14)
over the complete positivity region CP (2),

VCP(2) =
∫
CP (2)

dV = 1

8

∫
CP (2)

dλ1dλ2dλ3. (B1)

Now, assume that the eigenvalues are nondecreasingly ordered, so that λ1 � λ2 � λ3. According to Appendix A, the region of
integration CP ′(2) for ordered λα’s is provided by the following systems of inequalities:⎧⎪⎨

⎪⎩
−1 − λ1 − λ2 � λ3 � 1 + λ1 − λ2,

λ1 � λ2 � − 1
2 (1 + λ1),

−1 � λ1 � − 1
3 ,

⎧⎪⎨
⎪⎩

λ2 � λ3 � 1 + λ1 − λ2,

− 1
2 (1 + λ1) � λ2 � 1

2 (1 + λ1),

−1 � λ1 � − 1
3 ,

⎧⎪⎨
⎪⎩

λ2 � λ3 � 1 + λ1 − λ2,

λ1 � λ2 � 1
2 (1 + λ1),

− 1
3 � λ1 � 1.

(B2)

Therefore, the corresponding volume reads as follows:

V ′
CP(2) =

∫
CP ′(2)

dV = 1

8

( ∫ − 1
3

−1
dλ1

∫ − 1
2 (1+λ1 )

λ1

dλ2

∫ 1+λ1−λ2

−1−λ1−λ2

dλ3 +
∫ − 1

3

−1
dλ1

∫ 1
2 (1+λ1 )

− 1
2 (1+λ1 )

dλ2

∫ 1+λ1−λ2

λ2

dλ3

+
∫ 1

− 1
3

dλ1

∫ 1
2 (1+λ1 )

λ1

dλ2

∫ 1+λ1−λ2

λ2

dλ3

)
= 1

8

4

9
= 1

18
,

(B3)

where the more detailed calculations are omitted due to the integrals being elementary. To obtain the total volume of the Pauli
channels VCP(2), we make another observation. Both the volume element dV and the Fujiwara-Algoet conditions [40]

−1 � λ1 + λ2 + λ3 � 1 + 2 min
α

λα (B4)

062323-6



GEOMETRY OF GENERALIZED PAULI CHANNELS PHYSICAL REVIEW A 101, 062323 (2020)

are symmetric with respect to index permutations. Therefore, by permuting the indices in the ordering λ1 � λ2 � λ3, we can
cover all the possible orders that constitute to the general case of nonordered λα’s. There are a total of six possible ways to order
the channel eigenvalues, and hence we finally get

VCP(2) = 6V ′
CP(2) = 1

3
. (B5)

Analogical calculations are performed to derive all the other volumes presented in this paper. For higher dimensions d , the
volume V ′

CP(d ) = ∫
CP ′(d ) dV for nondecreasingly ordered eigenvalues is a sum of d + 1 polynomial integrals. The region of

integration CP ′(d ) is again given in Appendix A. Now, there are (d + 1)! possible index permutations for ordered λα , so the
total volume VCP(d ) = (d + 1)!V ′

CP(d ). The difficulty in obtaining the general formula for VCP(d ) lies not in the complexity of
integrals but in the fact that this formula is a sum of d + 1-tuple integrals whose limits depend on d . However, for fixed d , the
derivations, even if lengthy, are straightforward.

APPENDIX C: REGIONS OF INTEGRATION FOR N = 3

For trace-preserving generalized Pauli maps constructed from three mutually unbiased bases, the complete positivity region
is determined by the generalized Fujiwara-Algoet condition

− 1

d − 1
� λ1 + λ2 + λ3 + (d − 2)λ4 � 1 + d min{λ1, λ2, λ3, λ4}. (C1)

We assume that λ1 � λ2 � λ3 and

{λ1, λ2, λ3, λ4} = {λmin, λmid1, λmid2, λmax}, (C2)

where λmin � λmid1 � λmid2 � λmax. Now, inequality (C1) holds if and only if the eigenvalues λα satisfy one of the following
systems of inequalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λmid2 � λmax � 1

1 + (d − 3)δmax,4
[1 + (d − 1)λmin − λmid1 − λmid2 − (d − 3)(δmid1,4 + δmid2,4)λ4],

λmid1 � λmid2 � 1 + (d − 1)λmin − λmid1 − (d − 3)(δmid1,4 + δmin,4)λ4

d − 1 − (d − 3)(δmid1,4 + δmin,4)
,

λmin � λmid1 � 1 + (d − 1)λmin − (d − 3)δmin,4λ4

d − (d − 3)δmin,4
,

− 1

d2 − 1
� λmin � 1

(C3)

or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

1 + (d − 3)δmax,4

[
1

d − 1
+ λmin + λmid1 + λmid2 + (d − 3)(1 − δmax,4)λ4

]
� λmax

� 1

1 + (d − 3)δmax,4
[1 + (d − 1)λmin − λmid1 − λmid2 − (d − 3)(δmid1,4 + δmid2,4)λ4],

λmid1 � λmid2 � −
1

d−1 + λmin + λmid1 + (d − 3)(δmid1,4 + δmin,4)λ4

d − 1 − (d − 3)(δmid1,4 + δmin,4)
,

λmin � λmid1 � −
1

d−1 + λmin + (d − 3)δmin,4λ4

d − (d − 3)δmin,4
,

− 1

d − 1
� λmin � − 1

d2 − 1
,

(C4)

or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λmid2 � λmax � 1

1 + (d − 3)δmax,4
[1 + (d − 1)λmin − λmid1 − λmid2 − (d − 3)(δmid1,4 + δmid2,4)λ4],

−
1

d−1 + λmin + λmid1 + (d − 3)(δmid1,4 + δmin,4)λ4

d − 1 − (d − 3)(δmid1,4 + δmin,4)
� λmid2 � 1 + (d − 1)λmin − λmid1 − (d − 3)(δmid1,4 + δmin,4)λ4

d − 1 − (d − 3)(δmid1,4 + δmin,4)
,

λmin � λmid1 � −
1

d−1 + λmin + (d − 3)δmin,4λ4

d − (d − 3)δmin,4
,

− 1

d − 1
� λmin � − 1

d2 − 1
,

(C5)
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or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λmid2 � λmax � 1

1 + (d − 3)δmax,4
[1 + (d − 1)λmin − λmid1 − λmid2 − (d − 3)(δmid1,4 + δmid2,4)λ4],

λmid1 � λmid2 � 1 + (d − 1)λmin − λmid1 − (d − 3)(δmid1,4 + δmin,4)λ4

d − 1 − (d − 3)(δmid1,4 + δmin,4)
,

−
1

d−1 + λmin + (d − 3)δmin,4λ4

d − (d − 3)δmin,4
� λmid1 � 1 + (d − 1)λmin − (d − 3)δmin,4λ4

d − (d − 3)δmin,4
,

− 1

d − 1
� λmin � − 1

d2 − 1
.

(C6)

By δα,k , we understand the Kronecker delta, where α = 1, 2, 3, 4 and k = min, mid1, mid2, max. For example, δmin,1 does not
vanish if and only if λ1 = λmin. Now, if one has λα � 0, then the region of integration for the channels achievable with the
time-local generators is determined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λmid2 � λmax � 1

1 + (d − 3)δmax,4
[1 + (d − 1)λmin − λmid1 − λmid2 − (d − 3)(δmid1,4 + δmid2,4)λ4],

λmid1 � λmid2 � 1 + (d − 1)λmin − λmid1 − (d − 3)(δmid1,4 + δmin,4)λ4

d − 1 − (d − 3)(δmid1,4 + δmin,4)
,

λmin � λmid1 � 1 + (d − 1)λmin − (d − 3)δmin,4λ4

d − (d − 3)δmin,4
,

0 � λmin � 1.

(C7)

Finally, if the nondecreasingly ordered eigenvalues of the generalized Pauli channel are non-negative and satisfy condition (31),
then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λmid2 � λmax � 1

1 − (d − 3)δmax,4λ4
[1 − λmin − λmid1 − λmid2 − (d − 3)(1 − δmax,4)],

λmid1 � λmid2 � 1 − λmin − λmid1 − (d − 3)(δmin,4 + δmid1,4)λ4

d − 1 − (d − 3)(δmin,4 + δmid1,4)
,

λmin � λmid1 � 1 − λmin − (d − 3)δmin,4λ4

d − (d − 3)δmin,4
,

0 � λmin � 1

d + 1
.

(C8)

Note that there are some similarities between these conditions and the conditions in Appendix A— for example, if d = 3, the
integration regions for N = 3 and N = d, d + 1 coincide.
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