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Key rates for quantum key distribution protocols with asymmetric noise
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We consider the asymptotic key rates achieved in the simplest quantum key distribution protocols, namely,
the BB84 and the six-state protocols when nonuniform noise is present in the system. We first observe that
higher qubit error rates do not necessarily imply lower key rates. Second, we consider protocols with advantage
distillation and show that it can be advantageous to use the basis with higher quantum bit error rate for the key
generation. We then discuss the relation between advantage distillation and entanglement distillation protocols.
We show that applying advantage distillation to a string of bits formed by the outcomes of measurements in
the basis with a higher quantum bit error rate is closely connected to the two-to-one entanglement distillation
protocol of Deutsch-Ekert-Jozsa-Macchiavello-Popescu-Sanpera [Phys. Rev. Lett. 77, 2818 (1996)]. Finally, we
discuss the implications of these results for implementations of quantum key distribution.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] is one of the most
remarkable examples of the power of quantum mechanics.
Many classical cryptosystems used for secure communi-
cation nowadays are based on computational assumptions.
Computational assumptions make these systems vulnerable
to retroactive attacks in case more powerful quantum com-
puters become available in the future. In contrast, quantum
mechanics allows two parties to distribute a key achieving
information-theoretic security. This means that security is
guaranteed even against an eavesdropper that has unlimited
classical and quantum resources. Secure communication can
then be achieved if this key is used in a one-time pad scheme
[3,4] (for a discussion about the assumptions present in a QKD
implementation, see Ref. [5]).

Near-term quantum technologies suffer from imperfec-
tions. Therefore, even in the absence of an active eaves-
dropper, a QKD implementation will be subjected to a finite
amount of noise. In order to guarantee security, one is inter-
ested in designing protocols that can tolerate levels of noise
compatible with current technology and, at the same time,
achieve the highest possible key rates.

The simplest proposed QKD protocol, BB84 [1], is based
on the conjugate coding ideas developed by Wiesner in
Ref. [6]. In the BB84, Alice prepares a single qubit state in one
of the eigenstates of the Z-basis {|0〉, |1〉} or one of the eigen-
states of the X -basis {|+〉, |−〉}. An extension of the BB84,
exploring three conjugate bases, was proposed in Ref. [7]
and is called the six-state protocol. In the six-state protocol,
Alice can also prepare the qubit in one of the eigenstates of
the Y -basis {|+Y 〉 = 1√

2
(|0〉 + i|1〉), |−Y 〉 1√

2
(|0〉 − i|1〉)}. The

six-state protocol was proven to be more robust to noise [7].
Intuitively, this is due to the fact that more parameters are
characterized during the protocol, therefore, restricting the
possible actions of a potential eavesdropper.

In this article, we consider the asymptotic key rates that
can be obtained in the BB84 and six-state protocols as a
function of the quantum bit error rates (QBERs). We first
consider instances of these protocols in which information
reconciliation and privacy amplification are applied directly
to the raw keys formed by the outcomes of Alice’s and Bob’s
measurements. Then, we consider the case when, additionally,
a subroutine that allows Alice and Bob to select more corre-
lated parts of their string, namely, advantage distillation, is
applied to the raw keys before information reconciliation. We
discuss observed counterintuitive behaviors of the asymptotic
key rates with the QBER. As our main result, we show that,
in the presence of asymmetric noise, higher key rates may be
obtained if the basis with a higher QBER is used for the key
generation in protocols with advantage distillation. This can
have a direct impact for implementations that make use of
advantage distillation [8]. Finally, we show that implementing
the six-state protocol with advantage distillation and measure-
ments in the basis with a higher QBER is closely connected to
the two-to-one entanglement distillation protocol of Deutsch-
Ekert-Jozsa-Macchiavello-Popescu-Sanpera (DEJMPS) [9].

The paper is organized as follows: In the remainder of
this section, we detail the general structure of the QKD
protocols under consideration. In Sec. II, we first consider the
asymptotic key rates of the BB84 and the six-state protocols
without advantage distillation. We then proceed to analyze the
effect of advantage distillation and show interesting behaviors
of the key rates as a function of the QBERs. In Sec. III,
we discuss the relation of QKD and entanglement distillation
protocols. Finally, in Sec. IV, we discuss the implications of
our results to experimental implementations.

Quantum key distribution protocols

For an implementation of the BB84 or six-state protocols,
the only required resources are the preparation, transmission,
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and measurement of single-qubit states. That is, these pro-
tocols can be implemented in a prepare-and-measure setup
without the need of entanglement. However, both protocols
have an equivalent entanglement-based implementation [2,10]
in which a source (that may be in Alice’s laboratory) produces
a state that is distributed to Alice and Bob (ideally the max-

imally entangled state |�+〉 = 1√
2
(|00〉 + |11〉)). Then, upon

receiving their systems, Alice and Bob perform measurements
in randomly chosen bases (having two choices of basis for the
BB84, and three for the six-state protocol). As long as the
measurement devices are well characterized and controlled,
an entanglement-based implementation allows one to relax the
need for a precise characterization of the state preparation.
The entanglement-based version of the BB84 and six-state
protocols played a key role to formalize their security proofs
[11–13]. From now on, for the purpose of our analyses, we
focus on the entanglement-based version of these protocols.
However, we remark that, for all our results, there is an equiv-
alent implementation that requires only single-qubit states
preparation.

The BB84 and the six-state protocols can be described by
four main steps:

(1) Distribution and measurements. Alice uses the source
to produce a two-qubit state. She keeps one qubit and sends
the other to Bob using a quantum channel. Upon receiving the
systems, Alice and Bob, each randomly chooses a basis and
performs the corresponding measurement. They repeat this
procedure N times. With the outcomes of their measurements,
they establish a string of N bits each.

(2) Sifting and parameter estimation. Alice and Bob com-
municate the measurement bases and discard the rounds in
which different bases were used. Moreover, they sacrifice m
bits in order to estimate their average correlation and decide
whether to abort or proceed with the protocol. If the protocol
does not abort, the remaining n bits constitute the raw key.

(3) Advantage distillation (optional). The goal is to clas-
sically postprocess the raw key in order to increase the corre-
lation between Alice and Bob and get an advantage over the
eavesdropper.

(4) Information reconciliation and privacy amplification.
In this step, Alice and Bob first implement an information
reconciliation protocol that allows Bob to correct his bit string
for errors. Finally, they apply a privacy amplification protocol
to transform a partially secure key of n bits into a secure key
of l < n bits.

The parameters estimated in Step 2 are determined by
the particular protocol. In an implementation of the BB84
protocol, Alice and Bob can estimate the values of the QBERs
in the X and Z bases QX and QZ . For the six-state protocol,
they will also have an estimate of the QBER in the Y -basis
QY . The QBER in the Z (X )-basis QZ (QX ) is the probability
that Alice and Bob get different outcomes when they both
measure their systems in the basis Z (X ). The QBER in the
Y basis is defined in a similar way, however, since the target
state |�+〉 exhibits anticorrelation in the Y basis, Bob flips his
outcomes whenever he chooses to measure in the Y basis.

In the originally proposed BB84 and six-state protocols,
all the bases were chosen with equal probability among the
set of bases specified by the protocols. However, as shown in

Ref. [14], the efficiency of these protocols can be increased
without compromising security if one of the bases is chosen
with a higher probability. Then, in the asymptotic limit, the
preferred basis is used almost all the time. The remaining
bases are used only occasionally in order to test for the
eavesdropper. This significantly increases the key rates as only
a small fraction of the rounds are discarded in the sifting
process. In these protocols, the raw key is usually created
from the rounds in which the preferred basis is used. The
remaining rounds in which other bases were chosen are used
for parameter estimation. For this reason, we denote the
basis chosen with higher probability as the key generation
basis.

Advantage distillation in Step 3 is an optional step. It
consists of Alice and Bob using two-way classical commu-
nication to select parts of the raw key that exhibit stronger
correlation. This method was introduced in the context of
classical protocols [15] and was proven to be useful for quan-
tum protocols as well [16,17]. Usually, advantage distillation
leads to significant drops in the key rate for the low noise
regime, but it can considerably increase the noise tolerance
of a protocol. For example, a BB84 implementation subjected
to depolarizing noise (in which QX = QZ ) without advantage
distillation can tolerate up to 11% QBER. If some advantage
distillation is performed, the noise tolerance can be increased
to 20% QBER [16]. Advantage distillation protocols that
have better performance in the low noise regime were also
proposed [18].

Information reconciliation in Step 4 aims at correcting
Bob’s string in order to make it equal to Alice’s string.
Information reconciliation can be implemented using only
one-way communication from Alice to Bob. Interactive proto-
cols [19], which are efficient to implement, are broadly used
in QKD implementations [20]. These protocols require two-
way communication, however, they should not be confused
with advantage distillation performed in Step 3. In advantage
distillation, two-way communication is essential and, more-
over, both Alice’s and Bob’s strings are modified during the
protocol.

II. RESULTS

A. Key rates for protocols without advantage distillation

We first consider the BB84 and the six-state protocols
when Alice and Bob skip Step 3. After measuring their
quantum systems, Alice and Bob proceed to perform infor-
mation reconciliation and privacy amplification. Information
reconciliation protocols based on two-universal hashing func-
tions leak the minimum amount of information necessary
to correct for errors in Bob’s string [19]. In Ref. [21], it
was proven that the minimum leakage of a one-way in-
formation reconciliation protocol is given by nH (A|B) +
O(

√
n), where H (A|B) is the entropy of Alice’s output condi-

tioned on Bob’s output, defined as H (A|B) = −∑
a,b p(A =

a, B = b) log2 p(A = a|B = b) with p(A = a, B = b) being
the probability that Alice and Bob obtain outcomes a and
b, respectively, for the measurement in consideration, p(A =
a|B = b) = p(A=a, B=b)

p(B=b) is the conditional probability, and the
logarithms are taken in basis 2.
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In order to analyze the key rate of the BB84 and the six-
state protocol, we can assume without loss of generality that
the state distributed by the source is a Bell-diagonal state [13],

ρ = λ00�00 + λ01�01 + λ10�10 + λ11�11, (1)

where �i j = |�i j〉〈�i j | and |�i j〉 = X iZ j ⊗ I|�+〉. Restrict-
ing the analysis to Bell-diagonal states is sufficiently general
because, for all states ρ ′ such that λi j = 〈�i j |ρ ′|�i j〉, the
corresponding Bell-diagonal state exhibits the same QBERs
as the original state and leads to the lowest key rate [13].

For the security analysis, it is also assumed that the mea-
surements are perfect, and all the noise can be mapped into the
distributed state. In this case, the Bell coefficients {λi j} relate
to the QBERs QX , QY , and QZ by the following:

λ00 = 1 − (QX + QY + QZ )

2
,

λ01 = QX + QY − QZ

2
,

λ10 = −QX + QY + QZ

2
,

λ11 = QX − QY + QZ

2
. (2)

Note that a Bell-diagonal state is completely characterized by
the three QBERs (QX , QY , QZ ).

The key rates for the BB84 and the six-state protocols can
be determined as a function of the coefficients of the estimated
Bell-diagonal state and, therefore, as a function of the QBERs.
In a real implementation in which a finite number of rounds
is considered, statistical effects play a role in the value of the
key rate. However, for a sufficiently large number of rounds,
the key rate of the six-state protocol with Z being the key
generation basis approaches the asymptotic value given by
[12,13,22]

Rsix-state = 1 − H ({λi j}), (3)

where H ({λi j}) = ∑
i j −λi j log2 λi j , and the logarithms are

taken in basis 2.
For BB84, since information about QY is not available, the

key rate is given by the minimum over all possible values of
QY . This results in [11,13,22]

RBB84 = 1 − h(QX ) − h(QZ ), (4)

where h(x) = −x log2 x − (1 − x) log2(1 − x) is the binary
entropy.

If one of the other available bases is used for the key
generation, the corresponding key rate can be obtained by
simply permuting the QBERs in expressions (3) and (4). Note
that choosing the basis for key generation implies a choice
of protocol. Once the key generation basis is fixed, Alice
and Bob can run the protocol using this basis for almost all
the rounds. The key rate now depends on the information
available to the eavesdropper when the estimated state, given
in Eq. (1), is measured in the chosen key generation basis. A
measurement in the X basis, or the Y basis, performed on the
estimated state, Eq. (1), can be seen as a Z-basis measurement
performed on a rotated state. The corresponding rotated state
for when the X basis, or the Y basis, is used for the key
generation measurement relates to Eq. (1) by a permutation

of the coefficients {λi j}. Equations (3) and (4) are invariant
under permutation of the QBERs. Therefore, the resulting
key rate for protocols that use information reconciliation with
minimum leakage is the same regardless of which of the
available bases is chosen for the key generation rounds. This
is stated in Proposition 1.

Proposition 1. In an implementation of the BB84 or the
six-state protocol in which an information reconciliation pro-
tocol with minimum leakage is used, the asymptotic key rate
does not depend on which of the available bases is chosen as
the key generation basis.

Remark. It is important to remark that Proposition 1 takes
into account that information reconciliation is performed us-
ing a protocol with minimum leakage. The minimum leakage
is asymptotically given by h(QM ), where M is the basis used
for the key generation rounds, M ∈ {X, Z} for BB84 and M ∈
{X,Y, Z} for the six-state protocol. Information reconciliation
protocols with minimum leakage cannot be implemented in
practice, and protocols that have higher leakage are used
instead. There exist efficient information reconciliation pro-
tocols with asymptotic leakage given by f h(QM ), where f �
1.2 [23–25]. The use of a suboptimal information reconcil-
iation protocol creates an asymmetry of the QBERs in the
key rate, and in this case, in order to maximize the key, it is
advantageous to choose the basis with the lowest QBER for
the key generation rounds.

Now, we state an interesting fact regarding the key rates
of the six-states protocol when an information reconciliation
protocol with minimum leakage is used.

Observation 1. For fixed values of QX and QZ , the key rate
is not a monotonically decreasing function of QY .

Proof. If we fix the values of QX and QZ in order to
ensure positivity of the corresponding Bell-diagonal state, the
possible values of QY are in the range,

|QX − QZ | � QY � QX + QZ . (5)

Additionally, we require that QX + QY + QZ < 1 in order to
have an entangled state. One can see this by inspecting Eq. (2).

Now, evaluating the derivative of the key rate, Eq. (3), with
respect to QY , we conclude that the minimum occurs for

Q∗
Y = QX + QZ − 2QX QZ , (6)

which can be strictly smaller than the maximum attainable
value for QY . �

Observation 1 is illustrated in Fig. 1 for the family of Bell-
diagonal states (QX = 0.1, QY , QZ = 0.1).

Note that the minimum of the curve in Fig. 1 gives the key
rate for the BB84 protocol when QX = QZ = 0.1.

Observation 1 together with the continuity of the key rate
for the six-state protocol implies the following corollary.

Corollary 1. There exists a state ρ (1) with QBERs
(Q(1)

X , Q(1)
Y , Q(1)

Z ) and a state ρ (2) with QBERs (Q(2)
X ,

Q(2)
Y , Q(2)

Z ) such that

Q(1)
X > Q(2)

X , Q(1)
Y > Q(2)

Y , Q(1)
Z > Q(2)

Z ,

and

Rsix-state(ρ (1) ) > Rsix-state(ρ (2) ).
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FIG. 1. Asymptotic key rate of the six-state protocol with mini-
mum leakage information reconciliation as a function of the QBER
in the Y basis QY for the family of Bell-diagonal states with QX =
QZ = 0.1.

As an example of Corollary 1, take ρ (1) to be the state with
QBERs Q(1)

X = Q(1)
Z = 10% and Q(1)

Y = 20%, and ρ (2) to be
the state with Q(2)

X = Q(2)
Z = 9.8% and Q(2)

Y = 18%. It holds
that Rsix-state(ρ (1) ) > Rsix-state(ρ (2) ).

We, now, investigate the behavior of the singlet fidelity and
the entanglement of formation [26] for the family of states
considered in Fig. 1.

For an entangled Bell-diagonal state ρ, Eq. (1), with λ00 >
1
2 , the entanglement of formation [26] (EoF) is given by

EoF(ρ) = h
(

1
2 +

√
λ00(1 − λ00)

)
, (7)

and the singlet fidelity F is

F (ρ) = λ00. (8)

Figure 2 illustrates that both quantities are monotonically
decreasing functions of QY . This supports the intuition that
a state with higher QBER is less close to the ideal state.
However, as stated in Observation 1 (see also Fig. 1), this
monotonic behavior is not always observed in the key rates
of the six-state protocol.

FIG. 2. (a) Singlet fidelity and (b) entanglement of formation for
the family of Bell-diagonal states specified by QBERs (0.1, QY , 0.1).
Both quantities decrease monotonically as QY increases in the range
of possible values of QY , 0 � QY � 0.2.

B. Key rates for protocols with advantage distillation

We now consider the BB84 and the six-state protocols
when advantage distillation is employed in Step 3. In particu-
lar, we consider the advantage distillation protocol [13,17,27]
described in Protocol I.

The key rates for the BB84 and six-state protocols with ad-
vantage distillation, Protocol I, were derived in Refs. [13,17].
For the six-state protocol, the key rate is given by

RAD
six-state = 1

2 pAD
succ[1 − H ({λ̃i j})], (9)

where pAD
succ is the probability that Protocol I succeeds, i.e., that

Alice and Bob do not discard a block. This occurs if either the
two bits of Alice and Bob are equal or if both bits in the block
are flipped. Note that steps 3 and 4 of Protocol I check whether
the pair of bits of Alice and the pair of bits of Bob have the
same parity. If the raw key is generated by measurements in
the Z basis, then

pAD
succ = (λ00 + λ01)2 + (λ10 + λ11)2

= Q2
Z + (1 − QZ )2. (10)

And the coefficients {λ̃i j} are given by

λ̃00 = (λ00 + λ01)2 + (λ00 − λ01)2

2pAD
succ

,

λ̃01 = (λ00 + λ01)2 − (λ00 − λ01)2

2pAD
succ

,

λ̃10 = (λ10 + λ11)2 + (λ10 − λ11)2

2pAD
succ

,

λ̃11 = (λ10 + λ11)2 − (λ10 − λ11)2

2pAD
succ

, (11)

where {λi j}’s relate to the QBERs by Eq. (2).
In Refs. [13,17], it was shown that applying advantage

distillation, Protocol I, has the same effect as if Alice and Bob
would apply a quantum operation that brings two copies of
a Bell-diagonal state with coefficients {λi j} into one copy of
a Bell-diagonal state with coefficients {λ̃i j} and then perform
the measurement in this final state. This operation succeeds
with probability pAD

succ. We will see, in Sec. III, that the
corresponding quantum operation is the application of bilocal
CNOT gates (i.e., Alice applies a CNOT to her two subsystems,
and Bob does the same to his subsystems), followed by
measurements of the target qubits and postselection of the
results.

The key rate for the BB84 protocol is obtained by taking
the minimum of Eq. (9) over all possible values of QY .

Note that, for protocols with advantage distillation, the
key rate, Eq. (9), is not symmetric over permutation of the
QBERs. Therefore, choosing a different basis (among the
set of available bases) for key generation may lead to dif-
ferent key rates. We now state a curious observation about
QKD protocols in which advantage distillation, given by
Protocol I, is performed.

Observation 2. In an implementation of the BB84 or the
six-state protocol in which advantage distillation, given by
Protocol I, is performed, higher key rates may be obtained if
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Protocol I: Advantage distillation.

Let {a1, . . . , an} and {b1, . . . , bn} be strings of bits held by Alice and Bob, respectively.
1: Alice and Bob divide their strings in blocks of two consecutive bits.
2: for each block j of size 2 do
3: Alice chooses a random bit r ∈ {0, 1} and publicly communicates (c j1 , c j2 ) := (aj1 ⊕ r, aj2 ⊕ r) to Bob.
4: Bob checks whether (bj1 ⊕ c j1 , bj2 ⊕ c j2 ) ∈ {
0, 
1}. If that is the case he accepts, acc = 1, else he sets acc = 0.
5: Bob communicates acc to Alice.
6: If acc = 1, Alice keeps aj1 , and Bob keeps bj1 for their raw key. Else they discard the two bits of the block.
7: end for

the basis with the higher QBER is used for the key generation
rounds.

Figure 3 illustrates Observation 2 for the family of states
QX = QZ = 0.1 considered in the previous section. In com-
parison with Fig. 1, we note that, for lower values of QY ,
higher rates are obtained when no advantage distillation is per-
formed. However, as QY increases, an advantage is obtained
with the use of advantage distillation and, especially, if the
basis with higher QBER is used for the key generation rounds.
Note also that, similar to Observation 1, an increase in the key
rate with QY for high values of QY is also observed for the key
generated with measurements in the Y basis.

In order to explore Observation 2 in more detail, we
have performed an extensive numerical check over the range
of possible values of QBERs (QX , QY , QZ ). For the BB84
protocol, Fig. 4 illustrates that, for almost all the values of
QX and QZ that lead to positive key, the highest asymptotic
key rate is obtained when the key generation basis is the one
with a higher QBER. This behavior inverts only for a small
range of parameters, next to the limiting region where positive
key can no longer be obtained. It is interesting to note that
the success probability of the advantage distillation protocol,
given in Eq. (10), is a monotonically decreasing function of
the QBER of the key generation basis. However, even with the
contribution of this factor to the key rate, see Eq. (9), Fig. 4
shows that it is typically advantageous to use the basis with a
higher QBER for the key generation rounds.

FIG. 3. Key rates for the six-state protocol with advantage distil-
lation, given by Protocol I, for the family of states QX = QZ = 0.1.
Blue (dark gray) curve shows the key rate when the Z basis is used
for key generation, and the yellow (light gray) curve when the Y basis
is used for key generation.

For the six-state protocol, we numerically compared, for
the range of allowed parameters, the rates achieved when
each of the three bases is used for key generation. Similar
to the BB84 case, we observed that higher key rates are
obtained for key generation in the basis with higher QBER
except for a small range of parameters. We found that it is
not advantageous to use the basis with higher QBER for key
generation only for some range of QBERs (QX , QY , QZ ) next
to the region where no key can be obtained. As an example, for
a state with QBERs (QX = 0.39, QY = 0.39, QZ = 0.01),
one can obtain a secret key only if the Z basis is used for key
generation in the six-state protocol with advantage distillation
given by Protocol I.

It is interesting to remark that the advantage of using
the basis with higher QBERs for protocols with advantage
distillation can also occur in practical implementations where
information reconciliation is performed using an one-way

FIG. 4. Comparison of the key rates for the BB84 protocol with
advantage distillation given by Protocol I when the X and the Z
bases are used for the key generation. The blue (dark gray) dots
represent the parameters for which higher key rates are achieved
when Z is the key generation basis. The yellow (light gray) dots
represent the case when higher rates are achieved if X is used for key
generation. One can observe that, for almost all ranges of parameters,
higher rates are obtained when the basis with higher QBER is used
for key generation. This behavior only inverts for a small range of
parameters, near the limiting region where positive key can no longer
be extracted.
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FIG. 5. Comparison of the key rates for the BB84 protocol with
an advantage distillation protocol that uses blocks of size 7. The
blue (dark gray) dots represent the parameters for which higher key
rates are achieved when the Z basis is used for key generation. The
yellow (light gray) dots represent the case when higher key rates
are achieved with measurements in the X basis. For this case, it is
advantageous to always use the basis with higher QBER for key
generation.

protocol [23–25] with nonoptimal asymptotic leakage
f h(QM ) for f � 1.2. Indeed, the advantage obtained by the
use of a basis with higher QBER can be sufficiently large to
compensate for the penalty of using an efficient information
reconciliation protocol with higher leakage.

Protocol I can be generalized to blocks of arbitrary size b
[15]. Even though this leads to a significant decrease in the
key rate in the low noise regime, higher noise tolerance can
be achieved [16,17,27]. Figure 5 illustrates the behavior of
the key rates for the BB84 with advantage distillation using
blocks of size 7. We now find that it is advantageous to use
the basis with the higher QBER for key generation in all the
ranges of parameters that lead to a positive key rate.

In Ref. [18], Watanabe et al. introduced an advantage
distillation protocol that does not suffer from a big drop of the
key rate in the low noise regime. The protocol introduced in
Ref. [18] contains Protocol I as a subroutine, and, in the high
noise regime, the key rate coincides with the one obtained
using Protocol I. Therefore, we expected that Observation 2
may also have an impact in this protocol. Indeed, in Fig. 6,
we illustrate that choosing the basis with the higher QBER for
key generation leads to higher rates for the family of states
QX = QZ = 0.1 when the advantage distillation protocol of
Ref. [18] is performed. This effect played a role on the key
rates estimated in Ref. [8] for near-term implementations
based on nitrogen-vacancy platforms and quantum repeaters.

III. QKD AND ENTANGLEMENT DISTILLATION
PROTOCOLS

In this section, we show that the DEJMPS entanglement
distillation protocol [9] is related to advantage distillation,

FIG. 6. Key rates for the six-state protocol with the advantage
distillation protocol introduced in Ref. [18] for the family of states
QX = QZ = 0.1. Blue (dark gray) curve illustrates the key rates when
the Z basis is used for the key generation rounds, and the yellow
(light gray) curve when the Y basis is used for the key generation
rounds.

Protocol I, when it is applied to a string of bits generated by
measurements in the basis with the higher QBER.

A maximally entangled state provides a perfectly secure bit
of key. Therefore, quantum key distribution and entanglement
distillation are closely related [2,11]. In fact, if the states
shared by Alice and Bob have distillable entanglement, Alice
and Bob could first distill maximally entangled states out
of their noisy shared states and then proceed to extract a
perfectly secure key by measuring the distilled states. In-
terestingly, some entanglement distillation protocols can be
completely mapped into a classical postprocessing of the
string of bits obtained after measurements on the initial states
[16]. In that case, the entanglement distillation protocol has
a corresponding QKD protocol that can be implemented in
a prepare-and-measure setup. In a prepare-and-measure pro-
tocol, measurements of the quantum states are performed as
soon as the states are received by Alice and Bob. This is of
great interest for practical implementations as no quantum
memory is required to implement these protocols. In Ref. [16],
Gottesman and Lo characterized the properties that an entan-
glement distillation protocol needs to satisfy in order to be
turned into a prepare-and-measure QKD protocol. The main
idea is that some quantum operations (as CNOT gates) can be
translated into classical operations (as XOR of the bits) on
the string of bits generated by measurements in the initial
state.

One-way information reconciliation based on hashing
functions followed by privacy amplification is closely re-
lated to one-way entanglement distillation protocols based
on Calderbank-Shor-Steane codes that can correct for the
corresponding amount of bit flip and phase flip errors [11,12].
Similarly, the advantage distillation protocol, given by Proto-
col I, can be related to a two-to-one entanglement distillation
protocol that takes two copies of a two-qubit state and maps
it into one two-qubit state, hopefully more entangled than
the original ones. Under the assumption that the eavesdrop-
per is restricted to individual attacks, it has been shown
[28,29] that a positive key can be extracted from any entan-
gled state if advantage distillation with blocks of arbitrarily
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Protocol II: DEJMPS entanglement distillation.

Consider that Alice and Bob share n copies of a Bell-diagonal state.
1: Alice and Bob apply local unitary operations to each copy

of their states in order to bring them to the form
ρ = λ00�00 + λ10�10 + λ11�11 + λ01�01,

such that λ00 >
1

2
and λ00 > λ10 � λ11 � λ01. (12)

2: for every 2 systems do
3: Apply bilocal CNOT gates between the two copies.
4: Measure the target qubits, and communicate the results.
5: If the measured flags are 00 or 11, keep the first system.

Else discard both pairs.
6: end for

large size is applied. This shows that prepare-and-measure
implementation is as powerful as entanglement distillation
if the eavesdropper is restricted to individual attacks. This
result was also generalized to high-dimensional QKD [30,31].
However, this equivalence does not hold true under general
attacks [27].

In the following, we will focus on a two-to-one entan-
glement distillation protocol. We will prove an interesting
relation between the two-to-one entanglement distillation pro-
tocol introduced in Ref. [9], the DEJMPS protocol described
in Protocol II, and advantage distillation with blocks of size
two, given by Protocol I.

Protocol II includes a rotation of the initial states, step
1, before the application of the CNOT gates. Any entangled
two-qubit Bell-diagonal state can be brought to the form (12)
by local unitaries (e.g., applying a Hadamard to each qubit
leads to a permutation of the Bell states �01 and �10). The
originally proposed DEJMPS protocol [9] includes specific
rotations that are independent of the input state. In Ref. [32],
it was proven that bringing the state to the form (12), before
applying the CNOT gates, maximizes the fidelity of the output
state. Here, we include, in the DEJMPS protocol, as a first
step, the rotations that optimize the output fidelity. Moreover,
note that the DEJMPS protocol can also be applied to non-
Bell-diagonal states as any two-qubit entangled state that has
singlet fidelity higher than 1

2 can be brought to the form
(12) by local operations and classical communication [26,
Appendix A].

The following theorem states that the DEJMPS protocol
is actually related to the six-state protocol with advantage
distillation, given by Protocol I when the basis with the higher
QBER is chosen for the key generation.

Theorem 1. The following two procedures result in the
same key rates:

(i) Alice and Bob implement the six-state protocol with
advantage distillation, given by Protocol I, using the basis with
the higher QBER for key generation.

(ii) Alice and Bob apply the DEJMPS protocol to every
two copies of their states and, subsequently, implement the
six-state protocol without advantage distillation by measuring
the distilled states.

Proof. In order to prove the equivalence of procedures (i)
and (ii), we show that generating a string of bits by performing
measurements in the basis with the higher QBER followed
by advantage distillation is equivalent to performing the DE-
JMPS entanglement distillation protocol and measuring the
resulting state in the Z basis.

We first note that steps 2–6 of Protocol II, followed by the
measurement of the remaining qubits, can be, equivalently,
implemented in a prepare-and-measure scenario. This is due
to the following observations: (a) The CNOT gate commutes
with measurements in the Z basis; (b) the final measurements
performed on the remaining control qubits also commute
with the postselection operation applied in step 5. This is
due to the fact that, in step 5, a pair of qubits is discarded
according to the outputs of the target qubits only, therefore,
this operation acts as the identity on the control qubits of
the remaining systems. Observations (a) and (b) imply that
in an implementation of steps 2–6 of Protocol II followed by
measurement of the remaining qubits, one can first measure
all the subsystems and then proceed to apply the CNOT gate,
step 3, and postselection of results, step 5. In this equivalent
description in which all the systems are measured first, the
CNOT gate and the postselection act on classical strings. Their
action, then, corresponds to Alice and Bob locally computing
the XOR of their respective two bits and comparing if they have
the same parity. And this is exactly the action of the advantage
distillation described in Protocol I (note that, in Protocol I,
acc = 1 iff a j1 ⊕ a j2 = b j1 ⊕ b j2 ).

Protocol II includes a local rotation of the quantum states
in step 1. Instead of rotating the state, we could equivalently
rotate the operations. From the previous paragraphs, we have
seen that procedure (ii) of the theorem can be implemented
by performing measurements in the Z basis on all the subsys-
tems before applying the CNOT gates and postselection of the
results. The first step of measurements is described as(∑

i

|i〉〈i|A ⊗
∑

i

|i〉〈i|B
)

ρAB

(∑
i

|i〉〈i|A ⊗
∑

i

|i〉〈i|B
)

.

(13)

If the initial states are rotated before the measurements ρAB �→
UA ⊗ UBρABU †

A ⊗ U †
B , then, we have

(∑
i

|i〉〈i|A ⊗
∑

i

|i〉〈i|B
)

(UA ⊗ UBρABU †
A ⊗ U †

B )

(∑
i

|i〉〈i|A ⊗
∑

i

|i〉〈i|B
)

=
(∑

i

|i〉〈i|UA ⊗
∑

i

|i〉〈i|UB

)
ρAB

(∑
i

U †
A |i〉〈i| ⊗

∑
i

U †
B |i〉〈i|

)
. (14)

Since the rotations are local, they can be mapped into the
measurements, and the last expression of (14) describes

measurements in the rotated bases {U †
A |i〉} and {U †

B |i〉} on
the original state ρAB. By the equivalence established in the
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previous paragraph, Protocol II, followed by measurement of
the remaining qubits, corresponds to applying the advantage
distillation, Protocol I, to a string of outcomes obtained from
measurements performed in the corresponding rotated basis.

Finally, let us evaluate the effect of the rotation performed
in step 1 of Protocol II. The QBERs of a Bell-diagonal state
are given by

QX = λ01 + λ11,

QY = λ01 + λ10,

QZ = λ10 + λ11. (15)

Given the relations satisfied by the coefficients after the
rotation in step 1, Eq. (12), we have that QZ � QX and
QZ � QY . Therefore, after the initial rotation, Z is the basis
with the highest QBER. In the alternative picture in which
all the measurements are performed first, and the rotation of
the state is mapped into a rotation of the measurements, see
Eq. (14), we have that the rotated bases {U †

A |i〉} and {U †
B |i〉}

correspond to measurements in the basis with the highest
QBER.

So the DEJMPS protocol followed by a measurement in
the Z basis corresponds to advantage distillation, given by
Protocol I, applied to the outcomes of measurements in the
basis with highest QBER. This proves the equivalence of
procedures (i) and (ii) of Theorem 1. �

Theorem 1 establishes that the DEJMPS protocol falls into
the category of entanglement distillation protocols that have a
corresponding prepare-and-measure QKD as characterized by
Gottesman and Lo [16]. Moreover, it shows that the particular
rotation introduced in step 1 of Protocol II can be imple-
mented in the prepare-and-measure scenario by choosing the
basis with the higher QBER for key generation.

In Ref. [32], it was shown that the DEJMPS protocol, Pro-
tocol II, is the two-to-one entanglement distillation protocol
that achieves the highest fidelity among all possible protocols
that involve Pauli rotations. In Ref. [33], it was proven that the
DEJMPS is the optimal two-to-one entanglement distillation
protocol for rank 3 Bell-diagonal states. I.e., the highest pos-
sible fidelity is achieved with the highest possible probability
of success, considering all possible protocols that take two
copies into one. We now state analogous results for the key
rates of the corresponding QKD protocol.

A Bell-diagonal state of rank up to 3 satisfies that one of the
QBERs is equal to the sum of the other two. Without loss of
generality, we can consider QY = QX + QZ . The correspond-
ing Bell-diagonal state is then,

ρ = (1 − QX − QZ )�00 + QZ�10 + QX �11. (16)

We numerically compared the key rates achieved by the state
given in Eq. (16) for the six-state protocol with advantage
distillation given by Protocol I and key generation in all of
the three bases. In the region of positive key rate, we observed
that, over all the ranges of values of QX and QZ , the higher
rate is achieved when Y is the key generation basis.

For rank-4 states, using the basis with the highest QBER
is not always advantageous. As mentioned in Sec. II, a
counterexample is given by the state with QBERs (QX =
0.39, QY = 0.39, QZ = 0.01). For a Bell-diagonal state with
the specified QBERs, a positive key rate can only be obtained

by performing measurements in the Z basis in an implementa-
tion of the six-state protocol with advantage distillation given
by Protocol I. We remark, however, that this does not contra-
dict the fact that the corresponding state, after an application
of the DEJMPS procedure, has higher fidelity. Indeed, as
we have seen from Observation 1, higher fidelity does not
necessarily imply higher key rates in the six-state protocol.
Analyzing this example in detail, we find that the fidelity of
the initial state is 0.605 and no key can be extracted by directly
applying information reconciliation and privacy amplification.
If entanglement distillation is performed without the previous
rotations, i.e., by applying only steps 4–6 of Protocol II, the
final fidelity is 0.525 and a positive key can be extracted
from the corresponding final state using a six-state protocol
with an optimal one-way hashing information reconciliation.
Applying the DEJMPS protocol in which the initial rotations
are performed, we obtain a state with higher fidelity, equal to
0.698, yet this state does not lead to positive key rate in the
six-state protocol.

IV. IMPLICATIONS TO EXPERIMENTAL
IMPLEMENTATIONS

We now discuss the implications of our results to fiber-
based implementations of quantum key distribution over long
distances.

The most common way of transmitting qubits over long
distances is by using photons sent through optical fibers.
One of the challenges of a fiber-based implementation is that
the transmissivity of the channel decays exponentially with
the distance. It has been shown that this also leads to an
exponential decay of the achievable secret-key rate over such
a channel [34,35], thus, making practical QKD over direct
fiber connections impossible for longer distances. Significant
amounts of both theoretical and experimental efforts are being
invested into overcoming this problem using the so-called
quantum repeaters [36], which have the capability of beating
the exponential scaling of secret-key rate with distance. One
of the fundamental building blocks of such quantum repeater
schemes is a memory node that can store quantum information
over time. By dividing the channel into elementary links,
entanglement generation can be attempted independently over
those segments, thanks to the quantum memories at the in-
termediate repeater stations. Unfortunately, quantum states
stored in such memories decohere with time.

Decoherence is often a complex process that could be
modeled by a composition of different noise channels depend-
ing on the physical implementation of the quantum memory.
However, often, the dominant type of noise corresponds to
the dephasing channel. This has been observed for many
physical platforms which are promising candidates for long-
lived quantum memories, such as nitrogen-vacancy centers
[37–39], trapped ions [40], and neutral atoms [41]. Therefore,
the dephasing channel is frequently used to model memory
decoherence in quantum repeater literature, thus, leading to
expected nonuniform QBERs over the three bases [8,42–45].
Hence, the results of this paper will be highly relevant for
choosing the key generation basis for entanglement-based
QKD schemes implemented across a future quantum repeater
network. In fact, some of the authors of this paper have
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already applied the results of this paper into their model
of near-term proof-of-principle quantum repeaters based on
nitrogen-vacancy centers [8].

Regarding prepare-and-measure QKD schemes, the
method of decoy states was introduced to overcome
vulnerabilities due to imperfections in the source [46,47].
In a decoy state protocol, the asymptotic key rates (3) and
(4) are modified to account for the information leakage from
the rounds in which multiple photons are generated. The
modified key rates have a much more intricate dependence
on the QBERs and, therefore, a detailed analysis is required
to determine the effects of asymmetric noise in decoy state
implementations. We leave it as an interesting open question
for future investigation.
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