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Large-scale multisource networks have been employed to overcome the practical constraints that entangled
systems are difficult to faithfully transmit over large distances or store over long times. However, a full
characterization of the multipartite nonlocality of these networks remains out of reach, mainly due to the
complexity of multipartite causal models. In this paper, we propose a general framework of Bayesian networks
to reveal connections among different causal structures. The present model implies a special star-convex set of
nonsignaling correlations from multisource networks that allows the construction of a polynomial-time algorithm
for solving the compatibility problem of a given correlation distribution and a fixed causal network. It is then
used to classify the nonlocality originating from the standard entanglement swapping of tripartite networks. Our
model provides a unified device-independent information processing method for exploring the practical security
against nonsignaling eavesdroppers in multisource quantum networks.
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I. INTRODUCTION

Bell theorem states that by performing local measure-
ments on an entangled system, remote observers can create
nonlocal correlations, which are witnessed by violating a
special inequality [1–3]. These correlations cannot be pre-
cisely predicted by any classical local model with the causal
assumption that the measurement outcomes depend on shared
local variables and freely chosen observables. Nevertheless,
the nonsignaling condition allows local agents to build clas-
sical correlations going beyond to all quantum correlations
[4]. Thus, it is important to further investigate what causal
assumptions for a classical model are efficient to reproduce
nonlocal correlations [5–9]. Interestingly, all bipartite quan-
tum correlations are classically generated by relaxing either
the local assumption or the realism causal assumption [10].
For multipartite scenarios, genuinely multipartite nonlocali-
ties are introduced to characterize new quantum nonlocalities
[11–16].

In comparison to the bipartite case, it is difficult to char-
acterize most multipartite nonlocal correlations because of
the exponential number of free parameters. Recently, the
Bayesian network has been used to reveal the connections
among different causal structures [17]. This model is efficient
for depicting all the nonlocality classes in tripartite scenarios
and exploring new nonlocal causal structures. Unfortunately,
the potential applications of single entangled systems are
limited because of practical constraints such as the trans-
mission distance and storage time. Large-scale multisource
networks are then proposed [18–22], shown schematically
in Fig. 1. Differently from a Bell network consisting of one
entanglement, all observers in multisource quantum networks
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are allowed to perform local joint measurements on different
entangled systems. Remarkably, several spacelike separated
observers without prior shared entanglement can create new
nonlocal correlations with the help of others’ local mea-
surements. One typical example is standard entanglement
swapping using Einstein-Podolsky-Rosen (EPR) states [2,23]
to remotely generate a long-distance entangled singlet with
local operations and classical communication beyond clas-
sical correlations [24]. Several Bell-type inequalities have
recently been proposed to feature the extraordinary nonmul-
tilocality of statistics obtained from local measurements on
these quantum networks [25,26] or general quantum networks
[27–30]. However, a unified model for causal relaxations,
together with the nonmultilocality they lead to, is still an open
problem [31].

Bell theory is the foundation for various fields, such
as quantum information processing [32,33], unconditionally
secure key distributions [34–36], randomness amplification
[37–39], and quantum supremacy [40,41]. In most cases, the
trustworthiness of quantum devices according to specification
should be avoided in order to ensure adversary (noise)-tolerant
realizations. Hence, the so-called device-independent proto-
cols depend only on the statistics of measurement outputs.
More importantly, precise Bell inequalities can be constructed
to bound the leaked information for an eavesdropper or the
secure key rate in quantum key distributions [34–36]. A natu-
ral problem is how to extend these results on single-source
quantum networks to be suitable for multisource quantum
networks.

Our goal in this paper is to investigate a causal model for
general multisource networks. We develop a systematic way
to characterize causal relaxations of Bell correlations for mul-
tisource networks using generalized Bayesian networks [31].
The compatibility problem of a given nonsignaling correlation
and Bell-type directed acyclic graph is then formalized into
a star-convex programming problem that can be solved by a

2469-9926/2020/101(6)/062317(12) 062317-1 ©2020 American Physical Society

https://orcid.org/0000-0003-1287-4437
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.062317&domain=pdf&date_stamp=2020-06-09
https://doi.org/10.1103/PhysRevA.101.062317


MING-XING LUO PHYSICAL REVIEW A 101, 062317 (2020)

FIG. 1. Schematic multisource network. There are no fewer than
two independent sources that distribute states to different spacelike
separated agents.

polynomial-time algorithm. This result goes beyond the con-
vex correlation polytope defined by single-source networks
[9,33]. We then classify the causal structure of a tripartite
network derived from entanglement swapping by presenting
a full characterization of Bell localities. Interestingly, the
new model is also useful to bring out a device-independent
information processing model under the source-independence
assumption. Specifically, for an eavesdropper who holds in-
dependent systems, the violation of Bell inequalities [29]
provides the upper bound of the leaked information about the
outcomes of justifiable agents in multisource networks con-
sisting of generalized EPR and Greenberger-Horne-Zeilinger
(GHZ) states [42]. This goes far beyond previous results on
Bell networks [43] or chain-shaped and star-shaped networks
[44].

The rest of this paper is organized as follows. In Sec. II, we
propose a causal structure of generally multisource networks
according to the causal implication. This model can be used
to solve the compatibility problem, i.e., whether a given cor-
relation distribution is compatible with a fixed causal relation
of a given network. Section III provides the Bell classes of
multipartite causal networks, especially for a network with
three nodes and two hidden variables. Section IV is devoted to
the monogamy relationship for device-independent informa-
tion processing on multisource quantum networks. Section V
proposes some examples, while Sec. VI concludes the paper.

II. CAUSAL STRUCTURES OF GENERAL
MULTISOURCE NETWORKS

A. Causal structures of multisource networks

Causal structures of multisource networks are schemati-
cally represented by directed acyclic graphs (DAGs) [17,31],
as shown in Fig. 2. Each node of a DAG represents a classical
random variable, and each directed edge encodes a causal
relation between two nodes. For each edge, the start vertex
is called the parent and the arrival vertex is called the child.
Given a set V = {v1, . . . , vn}, V forms a generalized Bayesian
network with respect to the DAG G if the joint probability
P(v1, . . . , vn) describing the statistics of V can be decom-

FIG. 2. Correlations defined by |In,k | 1
k + |Jn,k | 1

k � c on the pro-
jected subspace spanned by {In,k, Jn,k}. It consists of a star-convex
set going beyond the convex set derived from single-source net-
works [1].

posed as

P(v1, . . . , vn) =
∏

i

p(vi|Svi ), (1)

where Svi denotes the set of parent nodes of vi in G.
In what follows, we focus on specific causal structures

with two common features. One is that they have a set of
unobservable nodes, the hidden variables λi, and two sets
of observables, the inputs x j and the outputs as, i.e., VBN =
{λi, a j, xs,∀i, j, s}. The other is that each output ai contains
the input xi and connected variables �i ⊆ {λi, i} as its par-
ents, i.e., {xi,�i} ⊆ Sai . These DAGs are called networking
Bell DAGs (NBDAGs). They reduce to special Bell DAGs
(BDAGs) [17] when m = 1.

Consider a Bayesian network in terms of the NBDAG.
Assume that independent variables � := λ1 . . . λm are shared
by remote agents A1, . . . , An. Each agent Ai shares variables
�i = λ j1 . . . λ j�i

. The measure of � is given by μ(�) =∏m
i=1 μi(λi ), where (�i, �i, μi ) denotes the measure space

of λi, i = 1, . . . , m. Then Eq. (1) can be rewritten in terms
of the generalized local hidden-variable (GLHV) model as
[28,29,31]

P(a|x) =
∫

�1×...×�m

m∏
i=1

dμi(λi)
n∏

j=1

P(a j |x j,� j ), (2)

which satisfies the nonsignaling condition [33] as

P(ai|x) = P(ai|xi ) (3)

for all ai’s and x j’s, where ai = a1 . . . ai−1ai+1 . . . an, xi =
x1 . . . xi−1xi+1 . . . xn. The causal model [17] is based on one
hidden variable shared by all parties, while the present n-
local model in Eq. (2) is based on independently hidden
variables [28]. If all hidden variables λi can be correlated, the
present model in Eq. (2) reduces to the single-variable model
[17]. Other causal structures are obtained using the causal
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relaxations of these NBDAGs of single-source networks
[6,10,45–50]. However, so far, there is no systematic inves-
tigation of n-partite causal structures of multisource networks
[43,51].

B. The compatibility problem

Consider a multisource network N consisting of n agents
A1, A2, . . . , An. Each agent Ai shares some independent
sources �i of λ1, λ2, . . . , λm. xi and ai denote the respec-
tive input and output of agent Ai. Let |xi| and |ai| be the
number of inputs and outputs of the ith agent, respectively,
i = 1, 2, . . . , n. Here, each multipartite correlation P is re-
garded as a vector with components Pa,x := P(a|x) in the
real space Rd with the dimension d = ∏n

i=1 |ai| × |xi|, where
a = a1a2 . . . an and x = x1x2 . . . xn.

Definition 1. P(a|x) is compatible with an IONBDAG with
given inputs {I1, I2, . . . , In} if it can be decomposed as

P(a|x) = ∑
λ1,...,λm

∏n
i=1 R(i)

�i
(ai|Ii)

∏m
j=1 μi(λ j ), (4)

where |Ii| denotes the number of parent inputs of the ith
output, and μi is the probability distribution of the source λi.
R(i)

�i
denotes the local deterministic response function of the

ith output ai of agent Ai given the parent inputs Ii for the local
deterministic sources �i, i = 1, 2, . . . , n.

Each R(i)
�i

in Eq. (4) can be represented by

R(i)
�i

(ai|Ii ) := δai, f (i)
�i

(Ii), (5)

where δ denotes the Kronecker delta and f (i)
�i

is the local de-
terministic assignment of Ii into ai depending on the sources
�i. The �th global deterministic response function is given
by the product

R� := R(1)
�1

× R(2)
�2

× . . . × R(n)
�n

. (6)

Note that R� can also be represented by a vector in
Rd , with components R�,a,x := R�(a|x) = (R(1)

�1
(a1|I1), R(2)

�2

(a2|I2), . . . , R(n)
�n

(an|In)).
If the sets �i are nonintersecting, P consists of a polytope

in the real space Rd , which is defined by the convex hull of
a finite number of external points, where each external point
is given by the vector R�i for different sources λi. Hence,
the problem of determining whether a given correlation P
is compatible with a Bayesian network with respect to the
inputs {I1, I2, . . . , In} (in the causal polytope) is equivalent
to solving a linear programming problem that can be solved
using the standard convex-optimization tools [17,52].

However, �i’s intersect for general networks with multiple
sources. In this case, P actually consists of a star-convex set
in the real space Rd going beyond the convex set. In fact, for a
general network with more than two independent agents who
have no prior shared sources, it is easy to prove that all the
nonsignaling correlations P satisfy the inequality

Rns := |In,k| 1
k + |Jn,k| 1

k � 2, (7)

where In,k and Jn,k are two quantities defined by In,k = 1
2k∑

xi,i∈I〈ax1 ax2 . . . axn〉0
I and Jn,k = 1

2k

∑
xi,i∈I (−1)

∑
j∈I x j

〈ax1 ax2 . . . axn〉0
I , I = {i1, i2, . . . , ik} denotes all the indexes

of the independent agents Ai j , I = 1, 2, . . . , n \ I, 〈ax1

ax2 . . . axn〉0
I = ∑

a(−1)
∑n

i=1 ai P(a|xI ; xs = 0, s ∈ I ), and

〈ax1 ax2 . . . axn〉1
I = ∑

a(−1)
∑n

i=1 ai P(a|xI ; xs = 1, s ∈ I ). In-
equality (7) defines a star-convex set with the center point at
the origin. This set contains the subset defined by Rc � 1 in
terms of the classical hidden-variable model and the subset
defined by Rq �

√
2 in terms of the quantum model, i.e.,

{P|Rc} ⊆ {P|Rq} ⊆ {P|Rns}. (8)

For cyclic networks without independent agents, we can
prove the inequality

|In,k| + |Jn,k| � 2 (9)

for all the nonsignaling correlations P. This inequality defines
also a star-convex set of P. Although one cannot distinguish
two sets generated by the classical causal model and quantum
model using the inequality |In,k| + |Jn,k| � 1 for the cyclic
networks, fortunately, in most cases we only need to con-
sider those networks with independent agents regarding the
following two facts: One is that lots of applications require an
acyclic network with independent agents such as generalized
entanglement swapping for building a large-scale entangle-
ment. The other is that one can obtain a reduced network
with independent agents from each cyclic network without
independent agents by omitting redundant entangled states.

In what follows, consider a general problem of determining
whether a given nonsignaling correlation P is compatible with
an IONBDAG with multiple sources (acyclic networks). By
contracting the multiple indexes � into a vector, Eq. (4) is
rewritten as

P = R�μ, (10)

where R� is a contracted matrix while μ = (μ1, μ2, . . . ,

μm)T is a contracted vector over the contracted vector �.
The compatibility problem of a given correlation vector
P and fixed Bayesian network with respect to the inputs
{I1, I2, . . . , In} is equivalent to determining μ1, μ2, . . . , μm

which satisfy inequality (9) and Eq. (10). From inequality (7),
it is equivalent to solving the optimization problem

min
∀μi�0,‖μ‖=1

Xμ, s.t., Rλμ = P, |In,k| 1
k + |Jn,k| 1

k � c,

P(ai|x) = P(ai|xi ), |In,k|, |Jn,k| � 1, (11)

where X is an objective matrix function and P(ai|x) =
P(ai|xi ) are nonsignaling conditions. c is an adjustable pa-
rameter satisfying 1 � c � 2, as shown in Fig. 2. One can
choose different values of c in the optimization for specific
goals. It is especially useful for exploring different classes
of correlations such as quantum correlations for c �

√
2 or

nonsignaling correlations going beyond quantum mechanics
for

√
2 < c � 2. If the optimization problem given in Eq. (11)

is feasible, P is compatible with {I1, I2, . . . , In}. Otherwise, P
is not included in the causal set derived from the IONBDAG
with the inputs {I1, I2, . . . , In}.

Note that g(P) = |In,k|1/k + |Jn,k|1/k defines a multivariable
star-convex function (without Lipschitz guarantees), which
has a unique global minimum (and star center) at the origin.
The standard gradient method and variants fail to make further
progress because the search point oscillates around a differ-
ent axis. Fortunately, there is a polynomial-time complexity
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algorithm that makes use of the ellipsoid method. Generally,
it repeatedly refines an ellipsoidal region containing the star
center to search for a global optimum [53]. They introduce a
randomized cutting plane algorithm refining a feasible region
of exponentially decreasing volume by iteratively removing
cuts. With this algorithm, one can efficiently solve the com-
patibility problem shown in Eq. (11). Thus, the so-called
verification algorithm is theoretically useful to search for new
causal correlations and Bell inequality.

III. BELL CLASSES OF MULTIPARTITE
CAUSAL NETWORKS

An NBDAG G1 is nonsignaling, implying another NBDAG
G2 if all nonsignaling correlations are compatible with G1

and also compatible with G2. If all causal relaxations in
G1 are presented in G2, G1 is nonsignaling, implying G2. In
addition, if G1 and G2 are nonsignaling mutually, they are
nonsignaling equivalent. Similarly to a single-source network,
if two NBDAGs are nonsignaling equivalent, the multipartite
correlations produced are useful for the same information-
theoretic protocols [17].

In what follows, let an NBDAG whose causal relaxations
consist of input-to-output locality relaxations be an input-
output NBDAG (IONBDAG). Each IONBDAG is described
by the subset of inputs that consists of the parents of each
output, as shown in Fig. 3. IONBDAGs propose generic
representatives of all the possible causal relaxations in the
nonsignaling framework. As an application, the following
theorem presents a full classification of the tripartite NBDAG
derived from the entanglement swapping.

Theorem 1. Consider an NBDAG with three nodes and
two hidden variables. There are 15 nonsignaling causal Bell
classes that are shown in Fig. 3.

The proof of Theorem 1 is completed by examining all
the possible NBDAGs. Figure 2 provides a simplified causal
hierarchy of nonsignaling Bell correlations. There, the three
red-shaded IONBDAGs of {(1), (2), (1, 2, 3)}, {(1), (2, 3),
(1, 2, 3)}, and {(1, 3), (2, 3), (1, 2, 3)} are equivalent to each
other and collapse to the star class {(1), (2), (1, 2, 3)}.
The two red-shaded classes of {(1), (1, 2, 3), (3)} and {(1),
(1, 2, 3), (2, 3)} are nonsignaling equivalent. The two purple-
shaded classes are new causal relations in comparison to these
DAGs with one variable [17]. The eight gray-shaded classes
are known not to reproduce all quantum correlations [17].
Similar classifications are available for small-scale networks
or special networks such as chain-shaped networks and star-
shaped networks.

Lemma 1. Let Ggen and Gio be two NBDAGs whose dif-
ference is that for 1 � i 	= j � n such that {a j, x j} ⊆ Sxi and
{a j, x j} ⊆ Sai for Ggen, whereas {x j} ⊆ Sai for Gio. Then Ggen

and Gio are nonsignaling equivalent.
One example is schematically shown in Fig. 4(a) and

Fig. 4(b), consisting of three agents and two variables, λ1

and λ2. There, the nonsignaling correlations produced by the
general locality relaxation from two agents to another on the
left side coincide with those produced by another input-to-
output locality relaxation on the right side.

Proof of Lemma 1. We prove Lemma 1 for the particular
case of NBDAGs with three agents and two sources, λ1 and

FIG. 3. Hierarchy (causal implications) of nonsignaling causal
classes of tripartite Bell correlations. ai and xi are the respective input
and output of one agent, i = 1, 2, 3. λ1 and λ2 are two independent
hidden variables. Each class is represented by an IONBDAG that
is labeled by a set {I1, I2, I3}, where each vector Ii consists of the
parents of the output ai. Each level of the hierarchy is defined by
the total number L of the input-to-output locality relaxations. The
dashed black arrow from one IONBDAG in one level to the followed
level denotes that the latter nonsignaling implies the former. The
bidirectional arrow represents the equivalent IONBDAGs.

λ2. A similar proof holds for general cases. It is sufficient to
prove the implication relations between the NBDAGs shown
in Fig. 4(a). The most general relaxation of the tripartite
locality is schematically represented by an NBDAG Ggen on
the left side of Fig. 4(a). A simple NBDAG Gio is shown on the
right side of Fig. 4(a). There, all the causal relaxations given
in Gio belong to the set consisting of all the causal relaxations
shown in Ggen. It follows that the NBDAG Gio implies Ggen in
terms of the nonsignaling conditions [4]. In what follows, we
need to prove the converse implication.

Note that any joint probability distribution which is com-
patible with the NBDAG Ggen can be rewritten as

P(a|x) =
∑
λ1,λ2

P(a, λ1, λ2|x)

=
∑
λ1,λ2

p(λ1|x)p(λ2|x)P(a|x, λ1, λ2) (12)
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FIG. 4. Schematic of locality relaxation of a Bayesian network
from the entanglement swapping. (a) Nonsignaling correlations
produced by the general locality relaxation from two independent
agents to another on the left side. ai and xi are the respective input
and output of one agent, i = 1, 2, 3. λ1 and λ2 are two hidden
variables. (b) Nonsignaling correlations produced by the general
locality relaxation from two agents to another on the left side. (c) The
relaxations of measurement independence on the left side and in
the center produce the same set of nonsignaling correlations as the
input-broadcasting model for two agents to two different agents on
the right side. (d) The relaxations of measurement independence
on the left side and in the center produce the same nonsignaling
correlations.

=
∑
λ1,λ2

p(λ1|x)p(λ2|x)p(a1|x1, x2, λ1)

× p(a2|x, λ1, λ2)p(a3|x2, x3, λ1, λ2) (13)

=
∑
λ1,λ2

p(λ1|x)p(λ2|x)p(a1|x1, λ1)

×p(a2|x, λ1, λ2)p(a3|x3, λ1, λ2) (14)

=
∑
λ1,λ2

p(λ1)p(λ2)p(a1|x1, λ1)

×p(a2|x, λ1, λ2)p(a3|x3, λ1, λ2). (15)

This is an explicit expression of generic correlations pro-
duced by Bayesian networks with respect to the NBDAG
Gio shown in Fig. 4(a), where a = a1a2a3, x = x1x2x3. Equa-
tion (12) follows from the independence of two sources,
λ1 and λ2. Equation (13) follows from the nonsignal-
ing conditions: p(a1|x1, x2, x3, λ1, λ2) = p(a1|x1, x2, λ1) and
p(a3|x1, x2, x3, λ1, λ2) = p(a3|x2, x3, λ2). To obtain Eq. (14),
a new variable, λ̂1 (with more outputs), is defined for repre-
senting two variables, λ1 and x2, where x2 is deterministic.
Similarly, one can define a variable λ̂2 for representing two

variables, λ2 and x2. Equation (15) follows from the indepen-
dence of variables.

Note that in Eq. (13) if a new variable, λ̂2, is used to repre-
sent two conditional variables, λ2 and x3, for the variable a2,
i.e., p(a2|x, λ1, λ2) = p(a2|x1, x2, λ2), one can prove another
structure shown on the right side of Fig. 4(a). A similar result
holds for the NBDAG shown in Fig. 4(b). Consequently, the
proof is complete. �

Lemma 2. Let G1 and G2 and Gb be three NBDAGs whose
differences are λ j ∈ Sxi for G1, xi ∈ Sλ j for G2, and xi ∈ Sak ,
with all k ∈ I j for Gb and 1 � i � n, where I j satisfies
that {xs, s ∈ I j} ⊆ Sak . Then G1, G2, and Gb are nonsignaling
equivalent.

The proof of Lemma 2 is forward and easily completed.
Two examples are shown in Fig. 4(c) and Fig. 4(d). Here,
the relaxations of measurement independence both on the left
side and in the center produce the same set of nonsignaling
correlations as the input-broadcasting model for two agents to
two different agents on the right side. The proof can be com-
pleted by considering the subnetworks consisting of one hid-
den variable [for example, subnetwork {x1, x2, a1, a2, λ1} or
{x2, x3, a2, a3, λ2} of the NBDAG on the left side of Fig. 4(c)]
using the recent measurement-independence relaxation [17].

Remarkably, Lemmas 1 and 2 imply that every causal
relaxation on a GLHV model is accounted for by an input-to-
output locality relaxation when any nonsignaling correlations
are concerned. Thus, Lemmas 1 and 2 are useful for reducing
the total number of examined NBDAGs. For example, all
the NBDAGs of 15 different ways of connecting directed
edges from one agent to another are collectively grouped
into a single IONBDAG due to Lemma 1, where there are
15 instances of general locality relaxations similar to those
shown in Fig. 4(a). All NBDAGs with directed edges from
hidden variables to any of the inputs are further grouped
together into an IONBDAG due to Lemma 2.

Proof of Theorem 1. Inspired by the method in [17], to
prove Theorem 1 we first present the causal hierarchy of a
network with n = 3 and k = 2 shown in Fig. 5 from Lemmas
1 and 2, where the symmetry of two agents, A1 and A3, has
been used to reduce causal classes.

A. Case 1. Nonsignaling borning causal classes

In Fig. 4, we first prove that the orange boxes are
nonsignaling borning. It can be completed by proving that
{(1), (1, 2), (1, 2, 3)} and {(1), (1, 2, 3), (1, 3)} in the third
level are nonsignaling borning. Consider the arbitrary tripar-
tite correlation P(a|x) with a = a1a2a3, x = x1x2x3. It can be
decomposed as

P(a|x) = p(a2|x, a1, a3)p(a3|x, a1)p(a1|x) (16)

= p(a2|x, a1, a3)p(a3|x1, x2, a1)p(a1|x1), (17)

where Eq. (16) follows from Bayes’ rule, and Eq. (17) follows
from the nonsignaling constraints given by Eq. (3). Now,
from Eq. (2), p(a2|x1, x2, x3, a1, a3)p(a3|x1, x2, a1)p(a1|x1) is
a special correlation produced by a generalized Bayesian
network with respect to an NBDAG with locality relaxations
from agent A1 to agent A2 or A3 and from A3 to A2. From
Lemma 1, these correlations are always within the causal Bell
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FIG. 5. Causal hierarchy of nonsignaling classes of Bell correlations from a network with n = 3 and k = 2. Each class is represented by an
IONBDAG and labeled by a set {I1, I2, I3}, where each vector Ii is composed of the parent inputs of ai. Each level of the hierarchy has the total
number L of input-to-output locality relaxations. The dashed black arrow from one IONBDAG in one level to the followed level represents
that the latter nonsignaling implies the former.

class {(1), (1, 2, 3), (1, 3)}. A similar result can be proved for
{(1), (1, 2), (1, 2, 3)}.

B. Case 2. Two equivalences of causal classes

Now, we prove the equivalence of three red boxes, i.e.,
{(1), (2), (1, 2, 3)} ←→ {(1), (2, 3), (1, 2, 3)} ←→ {(1, 3),
(2, 3), (1, 2, 3)}. Similar results hold for {(1), (1, 2, 3),
(3)} ←→ {(1), (1, 2, 3), (2, 3)}. It is sufficient to prove
the implication relationships {(1), (2), (1, 2, 3)} ←
{(1), (2, 3), (1, 2, 3)} ← {(1, 3), (2, 3), (1, 2, 3)}.

We first prove that these Bayesian networks,
{(1), (2), (1, 2, 3)}, {(1), (2, 3), (1, 2, 3)}, and {(1, 3),

(2, 3), (1, 2, 3)}, generate the same marginal correlations
P(a1, a2|x1, x2). Consider the arbitrary correlation P(a|x)
produced by a generalized tripartite Bayesian network with
respect to the inputs {(1, 3), (2, 3), (1, 2, 3)}. Then the
marginal correlations of agents A1 and A2 have the following
components:

P(a1, a2|x1, x2)

:=
∑
a3 ,x3 ,

λ1 ,λ2

P(a, x3|x1, x2, λ1, λ2)p(λ1)p(λ2)

× p(a3|x, λ1, λ2)p(x3|x1, x2, λ1, λ2)p(λ1)p(λ2) (18)

062317-6



NONSIGNALING CAUSAL HIERARCHY OF GENERAL … PHYSICAL REVIEW A 101, 062317 (2020)

=
∑
a3 ,x3 ,

λ1,λ2

p(a1|x1, x3, λ1)p(a2|x2, x3, λ1, λ2)

×p(a3|x, λ2)p(x3|λ1, λ2)p(λ1)p(λ2)

=
∑

x3,λ1,λ2

p(a1|x1, x3, λ1)p(a2|x2, x3, λ1, λ2)

×P(x3, λ1, λ2) (19)

=
∑
λ′

1,λ2

p(a1|x1, λ
′
1)p(a2|x2, λ

′
1, λ2)p(λ′

1)p(λ2) (20)

=
∑
λ′

1

p(a1|x1, λ
′
1)p(a2|x2, λ

′
1)p(λ′

1). (21)

Here, Bayes’ rule has been used in Eq. (18). Equation
(2) has been used to get Eq. (19). Equation (20) follows
from the normalization equality

∑
a3

p(a3|x, λ2) = 1 and
Bayes’ rule p(x3|λ1, λ2)p(λ1)p(λ2) = p(x3, λ1, λ2). Equa-
tion (21) follows from a redefined variable, λ′

1 := (x3, λ1).
Equation (21) is obtained from the normalization equal-
ity

∑
λ2

p(λ2)p(a2|x2, λ
′
1, λ2) = p(a2|x2, λ

′
1). Equation (21)

defines bipartite correlations of a GLHV model for two
agents, A1 and A2. These correlations are the same as those
generated from Bayesian networks, {(1), (2), (1, 2, 3)} and
{(1), (2, 3), (1, 2, 3)}.

In what follows, we prove that three Bayesian networks,
{(1), (2), (1, 2, 3)}, {(1), (2, 3), (1, 2, 3)}, and {(1, 3), (2, 3),
(1, 2, 3)}, can generate the same nonsignaling correlation.
Consider the arbitrary nonsignaling correlation P(a|x). Then
it holds that

P(a|x) =
∑
λ1,λ2

P(a|x, λ1, λ2)p(λ1)p(λ2)

=
∑
λ1,λ2

p(a3|a1, a2, x, λ2)P(a1, a2|x, λ1, λ2)

·p(λ1)p(λ2) (22)

=
∑
λ2

p(a3|a1, a2, x, λ2)P(a1, a2|x1, x2, λ2)p(λ2)

(23)

for any ai, x j . Here, Eq. (22) follows from Bayes’ rule.
Equation (23) is from the nonsignaling condition and
the normalization equality

∑
λ1

p(λ1)P(a1, a2|x, λ1, λ2) =
P(a1, a2|x, λ2).

Assume that P is produced by a Bayesian network
with respect to one of three NBDAGs: {(1), (2), (1, 2, 3)},
{(1), (2, 3), (1, 2, 3)}, and {(1, 3), (2, 3), (1, 2, 3)}. From
Eq. (21) the marginal distribution P(a1, a2|x1, x2, λ2) =
P(a1, a2|x1, x2)/p(λ2) in Eq. (23) for two agents, A1 and
A2, defines the same correlation for three NBDAGs. More-
over, the marginal distribution p(a3|a1, a2, x, λ2) given in
Eq. (23) spans the same set of the conditional proba-
bility distributions given by a1, a2, x, and λ2. The rea-
son is that for each NBDAG A3 knows the other’s in-
puts and the variable λ2. Thus, A3 can reproduce all the
conditional distributions of p(a3|a1, a2, x, λ2). Hence, from
Eq. (23), the arrows from A3 to A1 or A1 do not generate
new nonsignaling correlations. This means that the three
Bayesian networks, {(1), (2), (1, 2, 3)}, {(1), (2, 3), (1, 2, 3)},

and {(1, 3), (2, 3), (1, 2, 3)}, generate the same nonsignaling
correlations.

C. Case 3. Other causal classes

We consider eight gray-shaded classes. All the causal
classes denoted by {(1), (2), (3)}, {(1), (1, 2), (3)}, {(1), (2),
(2, 3)}, {(1, 2), (1, 2), (3)}, {(1), (1, 2), (1, 3)}, {(1), (1, 2),
(2, 3)}, and {(1, 2), (1, 2), (1, 3)} are partially paired correla-
tions [51], which satisfy the following Svetlichny inequality
[11]:

−〈A0B0C0〉 + 〈A0B0C1〉 + 〈A0B1C0〉
+〈A0B1C1〉 + 〈A1B0C0〉 + 〈A1B0C1〉
+〈A1B1C0〉 − 〈A1B1C1〉 � 4. (24)

This inequality is violated by quantum correlations obtained
from local measurements on an entangled quantum state [11].
Unfortunately, it may be useless to verify distributed entan-
gled states.

For the class represented by {(1, 3), (1, 2), (2, 3)}, it has
been proved that all the compatible correlations satisfy the
following inequality [17]:

〈A0B0C0〉 + 〈A0B0C1〉 + 〈A0B1C0〉
+〈A0B1C1〉 + 〈A1B0C0〉 + 〈A1B0C1〉
+〈A1B1C0〉 − 〈A1B1C1〉 � 6. (25)

This inequality is violated up to the algebraic maximal value
8 by the nonsignaling correlations as

P(a1, a2, a3|x1, x2, x3) = 1
4δa1⊕a2⊕a3,x1×(x2⊕x3 ), (26)

which is originally identified in Ref. [52]. This proves that
{(1, 3), (1, 2), (2, 3)} is nonsignaling.

Generally, for DAGs with multiple sources, it is difficult
to classify all the external nonsignaling correlations using
the standard convex-optimization tools [53]. Actually, these
nonsignaling correlations consist of a star-convex set such as
those proved in Sec. II. Thus, the star-convex optimization
[54] is useful for exploring new nonsignaling causal classes
for a specific network. �

IV. DEVICE-INDEPENDENT INFORMATION
PROCESSING IN GENERAL QUANTUM NETWORKS

Consider a general network N consisting of n agents,
A1, . . . , An, who share m independent hidden sources. N
is k independent if there are k agents without prior-shared
sources. Each agent Ai performs local measurements with
dichotomic input, denoted xi ∈ {0, 1}, and obtains dichotomic
output, denoted ai ∈ {−1, 1}. Similar results hold for multiple
inputs and outputs using linear superposition of different
inputs and outputs. The schematic causal relations are shown
in an NBDAG in Fig. 6(a). If all sources λi are equivalent ran-
dom variables, the classically achievable n-partite correlations
satisfy the nonlinear inequality [29]

Rk := |In,k| 1
k + |Jn,k| 1

k � 1, (27)

where In,k and Jn,k are linear superpositions of correlations
[29]. Similarly to the standard device-independent informa-
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FIG. 6. (a) A k-independent network in terms of the GLHV
model. Ai and B share some independent sources �i = λ j1 . . . λ j�i

,
where �i’s satisfy ∪n

i=1�i = λ1 . . . λm. Assume �i = λi for simplic-
ity. λ = λk+1 . . . λm. B includes all the other agents, Ak+1, . . . , An.
(b) An IONBDAG in terms of the device-independent model. An
eavesdropper holds some systems, each of which is correlated with
one source, λi. zi and ei denote the respective input and outcome of
the measurement on each eavesdropper’s system λi. e = ek+1 . . . en.
(c) An eavesdropper holds some systems, some of which are corre-
lated with multiple sources in �i, which may be correlated into a new
variable λ̂i. Take �1 = {λ1, λ2} as an example. The eavesdropper
can correlate λ1 and λ2 into a new variable, λ̂1. (d) An eavesdrop-
per holds a system that correlates with λ1 and λ2 (represented by
red lines).

tion processing in Bell networks, the adversary is limited
to recovering privacy information of legal agents. Assume
herein that the eavesdropper holds m independent systems,
each of which is correlated with one of m sources, as shown
in Fig. 6(b). The eavesdropper’s systems can be postquantum
(nonsignaling). The output ei of each eavesdropper’s system
depends on its input zi and correlated sources. To complete
a general network task, it is reasonable to permit indepen-
dent agents Ai with i ∈ I to classically communicate with
each other. Informally, a violation of inequality (27) provides
an upper bound of an eavesdropper’s information about the
outcomes of independent agents. Denote the variational dis-
tance of two probability distributions, {p(x)} and {q(x)}, as
D(p, q) = 1

2

∑
x |p(x) − q(x)|.

Theorem 2. The total information about independent
agents’ outcome recovered by an eavesdropper satisfies the

inequality

D(P(e|ai, i ∈ I; x, z),
m∏

i=1

p(ei|zi )) � k(2 − Rk ) (28)

if all the variables λi with i ∈ I are independent, where e =
e1 . . . em, x = x1 . . . xn, and z = z1 . . . zm.

Proof. Consider a general network N consisting of n nodes
(or agents), A1, A2, . . . , An, who share m independent hidden
sources. N is k independent if there are k spacelike separated
agents without prior-shared hidden sources. Each agent Ai

performs local measurements with dichotomic input, denoted
xi ∈ {0, 1}, and then obtains dichotomic output, denoted ai ∈
{−1, 1}. Similar results hold for multiple inputs and outputs
using linear superposition of different inputs and outputs. The
schematic causal relations of all the agents’ inputs and outputs
are shown in an NBDAG in Fig. 3(a). If all the sources λi

are equivalent random variables, the classically achievable
n-partite correlations satisfy the nonlinear inequality [29]

Rk := |In,k| 1
k + |Jn,k| 1

k � 1, (29)

where

In,k = 1

2k

∑
xi,i∈I

〈ax1 ax2 . . . axn〉0
I, (30)

Jn,k = 1

2k

∑
xi,i∈I

(−1)
∑

j∈I x j 〈ax1 ax2 . . . axn〉1
I, (31)

which are defined in Eq. (7), I = {i1, i2, . . . , ik} denotes the
indexes of independent agents Ai j , I = {1, 2, . . . , n} \ I de-
notes the complement set of I, 〈ax1 ax2 . . . axn〉0

I = ∑
a1,...,an

(−1)
∑n

i=1 ai P(a|xI ; xs = 0, s ∈ I ), and 〈ax1 ax2 . . . axn〉1
I =∑

a1,...,an
(−1)

∑n
i=1 ai P(a|xI ; xs = 1, s ∈ I ).

Now, consider a quantum realization of N , where N con-
sists of generalized EPR states [2] or GHZ states [42]. Each
observer Ai performs local two-valued positive-operator-
valued-measurements defined by positive semidefinite oper-
ators. We proved that the expectation of quantum correlations
among spacelike separated observers satisfies the Cirel’son
bound [29]

1 < |Iq
n,k|

1
k + |Jq

n,k|
1
k �

√
2, (32)

which violates inequality (29), where Iq
n,k and Jq

n,k are the cor-
responding quantities of In,k and Jn,k constructed by quantum
correlations. This nonlinear Bell-type inequality is useful for
verifying multisource quantum networks [29].

Consider the conditional distribution P(a, b, e|x, y, z),
where a and b are binary random variables and x and y are
s-valued (s � 2), satisfying the nonsignaling conditions

P(a, b|x, y, z) = P(a, b|x, y),

P(a, e|x, y, z) = P(a, e|x, z),

P(b, e|x, y, z) = P(b, e|y, z). (33)

It easily implies new nonsignaling conditions:

p(a|b, x, y, z) = p(a|b, x, y), p(b|c, x, y, z) = p(b|c, y, z),

p(c|a, x, y, z) = p(c|b, x, z). (34)
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We only prove p(a|b, x, y, z) = p(a|b, x, y) as an example,
which is obtained from the equalities

p(b|x, y, z)p(a|b, x, y, z) = P(a, b|x, y, z)

= P(a, b|x, y)

= p(b|x, y)p(a|b, x, y) (35)

and p(b|x, y, z) = p(b|x, y) (nonsignaling condition).
From Fig. 6(b), we get the conditional independence rela-

tions

P(e|ai, i ∈ I; x, z) =
k∏

i=1

p(ei|xλi , aλi , zi )

×
m∏

j=k+1

p(e j |xλ j , aλ j , z j ), (36)

where we have assumed for convenience that the sources
λ1, λ2, . . . , λk are shared by all independent agents of
A1, A2, . . . , Ak . All the other sources λk+1, λk+2, . . . , λm are
shared by the agents included in B as shown in Fig. 6(b).
xλi and aλi denote the respective inputs and outputs of all
the agents who have shared the source λi, i = 1, 2, . . . , m. A
similar proof holds for other cases by combining the shared
sources into a new one for each agent.

Note that all the agents included in B are not permitted for
classical communications. From the nonsignaling conditions
shown in Eqs. (33) and (34), we can rewrite Eq. (36) as

P(e|ai, i ∈ I; x, z) =
k∏

i=1

p(ei|xλi , aλi , zi )
m∏

j=k+1

p(e j |z j ). (37)

Consider the left side of inequality (28). From Eq. (37) it
can be decomposed as follows:

D(P(e|ai, i ∈ I; x, z),
m∏

i=1

p(ei|zi ))

= D(
k∏

i=1

p(ei|xλi , aλi , zi )
m∏

j=k

p(e j |z j ),
m∏

i=1

p(ei|zi ))

=
∑

ek+1,...,em

D(
k∏

i=1

p(ei|xλi , aλi , zi ),
k∏

i=1

p(ei|zi ))

×
m∏

j=k+1

p(e j |z j )

= D(
k∏

i=1

p(ei|xλi , aλi , zi ),
k∏

i=1

p(ei|zi )) (38)

� 1

2

∑
e1,...,ek

p(e1|xλ1 , aλ1 , z1)|
k∏

i=2

p(ei|xλi , aλi , zi )

−
k∏

i=2

p(ei|zi )| + 1

2

∑
e1,...,ek

|p(e1|xλ1 , aλ1 , z1)

− p(e1|z1)|
k∏

i=2

p(ei|zi) (39)

� 1

2

∑
e1,...,ek

|
k∏

j=2

p(e j |xλ j , aλ j , z j ) −
k∏

j=2

p(e j |z j )|

+ D(p(e1|xλ1 , aλ1 , z1), p(e1|z1)) (40)

�
k∑

i=1

D(p(ei|xλi , aλi , zi ), p(ei|zi)) (41)

�
k∑

i=1

I2(P(ai, bi|xi, yi )). (42)

In Eq. (38), we have used the normalization conditions∑
e j

p(e j |z j ) = 1 for j = k + 1, k + 2, . . . , m. Here, inequal-
ity (39) follows from the triangle inequality |x − y| � |x −
z| + |z − y|. Inequality (40) follows from the normalization
conditions

∑
e1

p(e1|xλ1 , aλ1 , z1) = 1 and
∑

e j
p(e j |z j ) = 1

for j = 2, 3, . . . , k. In inequality (41), we have iteratively
used inequality (40) for 1

2

∑
e2,...,ek

| ∏k
j=2 p(e j |xλ j , aλ j , z j ) −∏k

j=2 p(e j |z j )|. In inequality (42), I2 is from the chained Bell
inequality [8] with two measurement settings, defined as

I2(P(ai, bi|xi, yi )) := P(ai = bi|xi = 1, yi = 2)

+
∑

|xi−yi|=1

P(ai 	= bi|xi, yi ), (43)

where xi and yi denote the respective input of agents Ai and
the related agent Bi included in B, and ai and bi denote
the respective output of agent Ai and the related agent Bi

included in B. Inequality (42) follows from the inequality
D(p(e|a, x, z), p(e|z)) � Ik (P(a, b|x, y)) [55–57] and the gen-
eral form

D(p(e|x, a, z), p(e|z)) � Ik (P(ai, a j |xi, x j )), (44)

with Ik (P(a, b|x, y)) = P(a = b|x = 1; y = k) + ∑
|x−y|=1 P

(a 	= b|x; y), where all the agents Ai and the potential eaves-
dropper are correlated by one source. Inequality (44) can be
proved by following the same procedure [56] and the fact
that P(a|x, z) is a conditional probability distribution for given
inputs x and z.

Now, consider a quantum network N in which all the
agents have binary inputs and outputs (a similar result holds
for the multiple inputs and outputs [45]). Especially, as proved
in Ref. [29], all the independent observers Ai perform sep-
arable measurements Axi

i = Axi
i,0 ⊗ Axi

i,1, while all the other
agents B j included in B perform separable measurements
B

yj

j = B
yj

j,0 ⊗ B
yj

j,1 on local systems. We can get

〈Ax1
1 Ax2

2 . . . Axk
k By〉 =

k∏
i=1

〈
Axi

i Byi
i

〉
. (45)

From the definitions of In,k and Jn,k shown in Eqs. (30) and
(31), respectively, it follows that

In,k = 1

2k

k∏
i=1

(〈
A0

jB
0
j

〉 + 〈
A1

jB
0
j

〉)
,

Jn,k = 1

2k

k∏
i=1

(〈
A0

jB
1
j

〉 − 〈
A1

jB
1
j

〉)
. (46)
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From Eq. (46) and the arithmetic-geometric inequality
(
∏n

i=1 xi )1/n � 1
n

∑n
i=1 xi, we get

Rk = |In,k| 1
k + |Jn,k| 1

k

� 1

2

k∑
i=1

(∣∣〈A0
jB

0
j

〉 + 〈
A1

jB
0
j

〉∣∣ + ∣∣〈A0
jB

1
j

〉 − 〈
A1

jB
1
j

〉∣∣)

:= 1

2k

k∑
i=1

CAiBi
2 , (47)

where CAiBi
2 := |〈A0

jB
0
j 〉 + 〈A1

jB
0
j 〉| + |〈A0

jB
1
j〉 − 〈A1

jB
1
j〉| is a

special quantity used in the CHSH inequality [58].
By using 〈AB〉 = 2p(A = B) − 1, one can prove [17] that

I2(ei ) = 2 − 1
2CAiBi

2 . (48)

Combining Eqs. (47) and (48), the right side of inequality (42)
is evaluated as

k∑
i=1

I2(ei ) =
k∑

i=1

(
2 − 1

2
CAiBi

2

)

� k(2 − Rk ), (49)

which completes the proof. �
If the eavesdropper can correlate sources, λi’s, inequality

(28) will then be extended from a similar proof. An example
is shown in Fig. 6(c). Here, one first combines the correlated
sources λ1 and λ2 (λ3 and λ4) into a new one, λ̂1 (λ̂2).
Define ê = (e1e2, e3e4, e5, . . . , em). A similar result holds by
replacing the left side of inequality (28) with D(P(ê|ai, i ∈
I; x, z), p(e1e2|z1z2)p(e3e4|z3z4)

∏m
i=3 p(ei|zi )). For example,

assume that the eavesdropper holds two uncorrelated sources,
λ1 and λ2, after readjusting the network. It is then sufficient to
use a new nonlinear inequality, R2 = √|In,2| + √|Jn,2| � 1,
by considering two independent agents who own the respec-
tive sources λ1 and λ2 [29], where In,2 and Jn,2 are new quanti-
ties with respect to two independent agents [29]. Hence, a new
inequality, D(P(e1, e2|ai, i ∈ I; x, z1, z2), p(e1|z1)p(e2|z2)) �
2(2 − R2), follows for the eavesdropping information from a
proof similar to that above.

Note that for a network consisting of white noisy sources of
EPR states or GHZ states [29], the visibility from inequality
(27) is still unchanged in comparison to those networks with
a single entangled source in terms of the CHSH inequal-
ity [57]. So, similarly to the standard Bell network, noisy
sources cannot strengthen the security in a general network
in terms of the nonlinear inequality (27). Hence, all agents
can make use of some strategies such as nonseparable mea-
surements or different forms of inequality (27) to against
leaking information. Nevertheless, the result fails to feature
the strongest eavesdropper who can correlate all sources, as
shown in Fig. 6(d), which are reduced to a single-source
network [34–36].

V. SOME EXAMPLES OF DEVICE-INDEPENDENT
INFORMATION PROCESSING

A. Chain-shaped networks

A long-distance chain-shaped network is schematically
shown in Fig. 7(a). We have shown that multipartite quantum

FIG. 7. Schematic IONBDAGs in terms of the device-
independent information processing model. (a) Chain-shaped
network. There are n independent hidden sources λ1, λ2, . . . , λn.
Each spacelike separated agent Ai shares some sources, λ j’s.
(b) Star-shaped network. There are n independent hidden sources
λ1, λ2, . . . , λn. Each pair of spacelike separated agents Ai and B
shares one source λi. (c) Hybrid chain-shaped network. There are
four independent sources λ1, λ2, . . . , λ4. Each spacelike separated
agent Ai, B j , or Cs shares some sources. One eavesdropper holds
some systems, each of which is correlated with one source λi.

correlations of long-distance entanglement distributions vio-
late inequality (27) for all the bipartite entangled pure states
as resources [29], where k = �n/2� denotes the number of
independent observers and �x� denotes the smallest integer no
less than x. The maximal violation is achieved for EPR states.
From Theorem 2, if an eavesdropper holds n independent
systems each of them is correlated with one of n sources
λ1, λ2, . . . , λn. Each system can be measured by a device
with input zi and output ei. In the experiment, each agent Ai

first outputs ai depending on the input xi and shared sources,
i = 2, 3, . . . , n. Then, each agent A j outputs a j depending
on its input x j and shared sources, j = 1, n + 1. zi and ei

denote the respective input and outcome of the measurement
on each eavesdropper’s system λi. If we permit agents A1 and
An+1 to communicate with each other, Theorem 2 reduces to
a recent result [17] for classical simulation. Generally, if all
the independent agents A1, A3, . . . , An+1 for an even n (A1,
A3, . . . , An−2, An+1 for an odd n) can communicate with each
other, from Theorem 2 we obtain the upper bound k(2 − Rk )
for the classical correlations for these independent agents and
the eavesdropper.
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B. Star-shaped networks

A general star-shaped network [26] is schematically shown
in Fig. 7(b). It is proved that multipartite quantum correlations
violate inequality (27) with k = n [29] when the network
consists of generalized EPR states. For device-independent
information processing [44], assume that an eavesdropper
holds n independent systems, where each system is correlated
with one source λi and can be measured by a device with
input zi and output ei. In the experiment, agent B first outputs
b depending on its input y and shared sources. Then, each
agent Ai outputs ai depending on the input xi and shared
sources, i = 1, 2, . . . , n. zi and ei denote the respective input
and outcome of the measurement on each eavesdropper’s
system λi. Assume that all the sources λ1, λ2, . . . , λn are not
correlated by the eavesdropper. Theorem 2 gives an upper
bound of the leaking information of all the agents’ outputs
[44]. Otherwise, assume that partial sources λi1 , λi2 , . . . , λik
are not correlated. We can obtain from Theorem 2 the upper
bound k(2 − Rk ) of the eavesdropper’s information, where
Rk depends on all the independent agents Ai1 , Ai2 , . . . , Aik
chosen for constructing the nonlinear inequality (27) given in
Ref. [29].

C. Hybrid chain-shaped networks

Differently from the standard chain-shaped network shown
in Fig. 7(a), a new network consisting of multipartite re-
sources is shown in Fig. 7(c). A previous result [29] shows that
multipartite quantum correlations violate inequality (27) with
k = 3 when all resources consist of generalized EPR states
and GHZ states, where A1, B2, C1 are independent observers
who have no preshared entanglement [29]. In the experiment,
each agent Bi first outputs bi depending on the input yi and
shared sources, i = 1, 2, 3. Then, agents Ai and C j output one
respective bit ai and c j . zi and ei denote the possible input
and outcome of the measurement on each eavesdropper’s
system λi. Assume that an eavesdropper has four indepen-
dent systems, each of which is correlated with one source.
When A1, B2, C1 are allowed to communicate with each
other, Theorem 2 provides the upper bound 3(2 − R3) of the
information relevant to these agents’ outputs. Similar results
hold for partially correlated hidden sources. For example, if
λ1 and λ3 or λ2 and λ4 are correlated, from Theorem 2 we can
also obtain the upper bound 2(2 − R2) of leakage information
for an eavesdropper, where R2 depends on two independent

agents, A1 and C1, for constructing the nonlinear inequality
(27) given in Ref. [29].

VI. DISCUSSION AND CONCLUSIONS

Multipartite Bell causal correlations with multiple inde-
pendent sources consist of star-convex sets which may in-
spire interesting applications in deep learning or artificial
intelligence. From Theorem 1 the compatible nonsignaling
correlations are featured in a simple input-output causal net-
work using only locality relaxations. This framework is useful
for identifying new multipartite causal structures that cannot
reproduce quantum correlations. Another application is to
derive new Bell-type inequalities [17] and quantum causal
networks [10,47].

From Theorem 2 the eavesdropper’s information relevant
to independent observers’ outcome is bounded by the viola-
tion of inequality (27). The result is reasonable because the
statistics from separable measurements provides the maximal
nonmultilocality by maximally violating the inequality [29].
This achievement suggests a device-independent key distri-
bution in acyclic networks going beyond the standard Bell
network. This is interesting for multipartite communication or
quantum Internet [19]. An interesting problem is to establish
a full security proof of these applications going beyond the
bound provided.

In conclusion, we have presented a framework to charac-
terize nonsignaling causal correlations by relaxing different
assumptions on multisource networks. This model implies
a star-convex set of correlations and is further exemplified
by classifying all nonsignaling correlations of the entangle-
ment swapping network. For large-scale applications in the
presence of an eavesdropper, a unified device-independent
information processing model is presented to bound the leak-
ing information on all acyclic networks by making use of
explicit nonlinear Bell inequalities. These results are both fun-
damentally interesting in Bell theory and significantly appli-
cable in quantum information processing and communication
complexity.
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