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Mode-entanglement-based criteria and measures become insufficient for broadband emission, e.g., from
spasers (plasmonic nanolasers). We introduce criteria and measures for the (i) total entanglement of two wave
packets, (ii) entanglement of a wave packet with an ensemble, and (iii) total nonclassicality of a wave packet. We
discuss these criteria in the context of (i) entanglement of two wave packets emitted from two initially entangled
cavities (or two initially entangled atoms) and (ii) entanglement of an emitted wave packet with an ensemble or
atom for spontaneous emission and single-photon superradiance. We also show that, (iii) when two constituent
modes of a wave packet are entangled, this creates nonclassicality in the wave packet as a noise reduction below
the standard quantum limit. The criteria we introduce are all compatible with near-field detectors.
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I. INTRODUCTION

Quantum entanglement, a purely nonclassical effect, has
been observed both at the macroscopic [1] and microscopic
scales [2]. Observation of novel effects such as quantum
teleportation [3] with satellites [4], between two matter waves
[5], and detection of stealth jets [6] with entangled microwave
photons [7] (quantum radars) point to the impact of entangled
light on the current technology. This makes the generation,
detection, and quantification of nonclassical states—such as
quadrature or number-squeezed states [8], two-mode entan-
gled states, and many-particle entangled states [9,10]—an
important area of research.

Rapid and dramatic progresses in (quantum) plasmon-
ics not only enabled plasmonic nanolasers (i.e., spasers
[11,12]), nanometer-size optical (scanning near-field optical
microscopy (SNOM) [13,14]) and Raman (surface enhanced
Raman scattering (SERS) [15,16]) imaging, but also allowed
quantum optics effects to appear in nanostructures. Analogs
of electromagnetically induced transparency (EIT)-like [17]
path interference effects appear also in linear [18–21] and
nonlinear [22–24] plasmonic response. Surprisingly, squeezed
or entangled photons, converted into and back from nanowire
plasmon oscillations, are experimentally shown to keep quan-
tum features for times (i.e., 10−10 s [25–28]) much longer than
plasmons’ decay intervals. Considering also miniaturization
and high data transfer capacity, plasmons offer in microchips
[29], entanglement of two plasmon wave packets or entan-
glement of a plasmon wave packet with ensembles, e.g., for
quantum data storage, appear to likely dominate the quantum
optics field in the following decades [30,31].

Entanglement of matter waves is also an interesting phe-
nomenon [32–36], which can be utilized, e.g., for matter-
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wave quantum teleportation [5]. While entanglement between
the two components of a Bose-Einstein condensate, achieved
via hopping and collision interactions, refers to two sharp,
e.g., momentum, modes [32–36], a stronger entanglement,
obtained, e.g., via molecular dissociation [5] and collisions
possesses a wide (e.g., momentum) spectrum.

Witnesses and measures of quantum entanglement usually
rely on the inseparability of the two modes which are com-
monly represented by a single wave vector k, i.e., âk1 and
âk2 . Here, ω1,2 = ck1,2 are the carrier frequencies of the two
nonclassical beams. Such a treatment is acceptable for pulses
of narrow frequency width, especially when the detector is
placed (measurement is performed) in the far field, where
the choice of a single component k is justified also with the
directional (small solid angle) arguments. When a broadband,
e.g., a plasmon, emission is measured in the far field, a single
(carrier) k-mode is detected, still, due to the small angle
arguments. Hence, in a broadband source, too, detection of
entanglement via carrier frequencies does still work.

However, quantification of the entanglement or nonclassi-
cality via detecting the inseparability of only the two modes,
e.g., carrier frequencies of the two beams, is highly insuffi-
cient in the detection and “use” of the whole entanglement
potential of the two broadband pulses. Maximum entangle-
ment or nonclassicality harvesting, e.g., in quantum tele-
portation [3,5] and quantum thermodynamics (heat engines)
[37,38], is important in the efficiency of such devices. The
situation (insufficiency of mode-entanglement-based criteria)
becomes even more adverse if the quantification is performed
via two near-field detectors [39], where separation of two
modes becomes impossible. Therefore, the entanglement of
two wave packets, which once could be questioned due to
curiosity, now becomes a necessity [40] with the develop-
ment of fast-response nanocontrol [12] and nanoimaging [39]
techniques.
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In this paper, we aim to extend the notion of two-mode
entanglement to the entanglement of two wave packets, each
containing broadband frequency components. We also intro-
duce the notion for the nonclassicality of a wave packet, which
is referred to as single-mode nonclassicality. Furthermore, we
extend the definition of entanglement between an ensemble of
quantum emitters and the emitted mode [41] to the ensemble-
wave-packet entanglement [42].

After a survey among the possible extensions or general-
izations of the entanglement of wave packets, we demonstrate
that the most meaningful definition could be achieved via
making a replacement, â → ∑

r âr, from a single mode to
a wave packet. The summation

∑
r stands for the volume

or area of the detector, for the measurement via a near-field
detector, and

∑
r stands for the whole space for the calculation

of the total entanglement existing between the two wave
packets. Here, âr is the annihilation operator of a photon at
position r. In particular, we study the entanglement of wave
packets emitted from either two initially entangled cavities
or two initially-entangled atoms. Similar to electromagnetic
wave packets, continuous-variable entanglement between two
matter waves can be witnessed by referring to their center-of-
mass position or momentum.

The paper is organized as follows. In Sec. II, we introduce
the entanglement of two wave packets using the electric fields
of the two wave packets, i.e., âi → Ê (+)

i = ∑
k εkeik·râk. We

show that the generation (onset) of entanglement between the
two pulses, at positions r1 and r2, propagates with the speed
of light, c. This definition is demonstrated to be not useful for
two purposes:

(1) Entanglement does not quantify the inseparability of
the two wave packets, instead it witnesses on the insepara-
bility (correlations) of the electric field measurements at the
positions r1 and r2.

(2) Using such a definition, we are faced with a divergence
problem, in

∑
k εk , when we desire to use the analogs of

the stronger Simon-Peres-Horodecki (SPH) criterion [43] or
the Duan-Giedke-Cirac-Zoller (DGCZ) criterion [44] for the
wave packets. We face the same divergence problem when we
introduce âi → ∑

ki
âi,ki , although this definition has the po-

tential to detect the inseparability of any two modes selected
from each wave packet.

In Sec. III, we introduce âi → ∑
ri

âi,ri . This one can
circumvent both the divergence problem in item 2 and cal-
culate the total entanglement which two near-field detectors
measure. We can therefore calculate the whole entanglement
(potential) between the two wave packets. Here, i = 1, 2
refers to the two wave packets.

In Sec. IV, we define the total entanglement between two
wave packets by introducing the annihilation operator Âi =∑

ri
âi,ri . We introduce the criteria for wave-packet entangle-

ment that are analogs to the SPH criterion [43] and the Hillery-
Zubairy (HZ) criterion [45]. We study the time development
of the total entanglement of two wave packets, emitted from
two initially entangled cavities or atoms, using both HZ and
SPH criteria. Use of criteria for detecting the entanglement
between two matter waves is also discussed. In Sec. V,
we introduce ensemble-wave-packet entanglement criteria by
replacing âi → Âi. We study the spontaneous emission of a
single atom and superradiant single-photon emission from a

many-particle entangled ensemble. In Sec. VI, we define the
nonclassicality of a wave packet both via a noise matrix of X̂ ,
P̂ operators, defined over Â, and via a beam splitter (BS): by
measuring the wave-packet–wave-packet entanglement gen-
erated at the beam-splitter output when a nonclassical wave
packet is incident on the beam splitter. We show that, (a) when
some of the constituent modes belonging to the wave packet
are squeezed or (b) when two modes of the wave packet are
entangled, the wave packet becomes nonclassical, i.e., with
reduced noise in an X̂φ operator, with Âφ = eiφÂ. In Sec. VII,
we present a summary of our results.

II. CORRELATIONS OF ELECTRIC-FIELD
MEASUREMENTS

Arriving at a convenient definition, or a notion, of the
entanglement of two wave packets (WPs) necessitates the
exploration of correlations between electric fields of the two
wave packets at different positions r1 and r2. It is straightfor-
ward to see that one can obtain the same forms with the two
criteria, DGCZ [43] and HZ [45,46], for â1 → Ê (+)

1 (r1) and
â2 → Ê (+)

2 (r2), where

Ê (+)
i (ri ) =

∑
ki

εki e
iki ·ri âi,ki (2.1)

are the positive parts of the electric field operators associated
with the two wave packets, i = 1, 2. εki = √

h̄cki/ε0Vi is the
electric field of a single photon, depending on the quantization
volume Vi of the ith wave packet. Following the same steps,
given in Ref. [45], a criterion analogous to the HZ criterion
can be obtained as

λHZ = 〈Ê (+)
2 (r2)Ê (−)

2 (r2)Ê (+)
1 (r1)Ê (−)

1 (r1)〉
− |〈Ê (+)

2 (r2)Ê (−)
1 (r1)〉|2, (2.2)

where λHZ < 0 witnesses the inseparability of the two wave
packets, or the presence of nonlocal correlations between elec-
tric field measurements of the two wave packets at positions
r1 and r2. Ê (−)

i (ri ) is the Hermitian conjugate of Ê (+)
i (ri ).

The Hillery-Zubairy criterion does not lead to any divergence
problem, in contrast to SPH or DGCZ criteria, since it does not
necessitate the evaluation of a term like 〈Ê (+)

i (ri )Ê
(−)
i (ri )〉.

One can also derive the analog of the DGCZ criterion for
the entanglement of two wave packets with the replacement
x̂1 → Ê1(r1) and x̂2 → Ê2(r2) using the same arguments in
Ref. [44], i.e., the Cauchy-Schwarz inequality for separable
states. Here, Êi(ri ) = Ê (+)

i (ri ) + Ê (−)
i (ri ) is the electric field

operator. This criterion, however, is not a useful one since it
contains terms like 〈Ê (+)

i (ri )Ê
(−)
i (ri )〉 which do diverge. The

SPH criterion also includes similar divergent terms and does
not have any practical use here.

Our experience shows us that the DGCZ criterion works
well for quadrature-squeezed-like states, while the HZ crite-
rion works well mainly for number-squeezed-like states and
superpositions of Fock states [47]. Here, in this section, we
consider the entanglement of two wave packets, emitted from
two initially entangled cavities, |ψ (0)〉 = a1(0)|1〉c1 |0〉c2 +
a2(0)|0〉c1 |1〉c2 , into two different reservoirs, or from two ini-
tially entangled atoms |ψ (0)〉 = a1(0)|e〉|g〉 + a2(0)|g〉1|e〉2.
(We study the extended version of the system considered
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FIG. 1. Two cavities are initially in an entangled state and they
decay into two different reservoirs. We examine the time evolution of
the onset of the entanglement between the two reservoirs or, in other
words, correlations in the electric field measurements of the wave
packets (WPs) emitted into the two reservoirs. We also calculate the
total entanglement of the two wave packets in Sec. IV.

in Ref. [48], where the reservoirs are treated as two single
modes.) Fortunately, we can study the correlations in such a
system. Because the system emits the superpositions of Fock
states, the HZ criterion, which does not diverge, can be used.

In Fig. 1, the two cavities are initially in an entangled state,
|ψ (0)〉 = (a1(0)|1〉c1 |0〉c2 + a2(0)|0〉c1 |1〉c2 )|0〉R1 |0〉R2 , where
| 〉c1,2 and | 〉R1,2 are the Fock states for the two entangled
cavities and the two reservoirs the cavities decay, respectively.
The solution of the interaction picture Hamiltonian [48]

V̂ =
2∑

i=1

∑
ki

h̄gki â
†
i,ki

ĉi e−i(�i−ωki )t + H.c. (2.3)

in the subspace of possible states

|ψ (t )〉 = (b1(t )|0〉c1 |1〉c2 + b2(t )|1〉c1 |0〉c2 )|0〉R1 |0〉R2

+ |0〉c1 |0〉c2

⎛
⎝∑

k1

d1,k1 (t )|1k1〉R1 |0〉R2

+ |0〉R1

∑
k2

d2,k2 (t )|1k2〉R2

⎞
⎠ (2.4)

is determined by the coefficients

bi(t ) = e−γit/2ai(0), (2.5)

di,ki (t ) = gki ai(0)
1 − e−i(�i−ωki )t−γit/2

(ωki − �i ) + iγi/2
, (2.6)

where �i and γi are the cavity resonance and damping rate,
respectively. gki is the coupling strength between the ith cavity
and the ith reservoir. When we consider sufficiently long
cavities, and thin mirrors which couple the cavities to the
reservoirs, the HZ criterion for the entanglement of the two
wave packets can be calculated as

λHZ(t ) � −(2π )2g2
1(�1)D1(�1)g2

2(�1)D2(�2)εK1εK2

× e−γ1|z1−ct |/2c e−γ2|z2−ct |/2c

×�(t − z1/c) �(t − z2/c), (2.7)

where we assume that dispersion of the cavity emission is
negligible in the transverse directions, x̂i and ŷi. D(�i ) is the
density of states at the cavity resonance �i and can be related
to the damping rate as γi = πDi(�i )g2(�i). εK1 = √

h̄�i/ε0Vi

with Ki = �i/c. The step functions in Eq. (2.7), �(t − zi/c),
reveal the luminal “onset” of correlations (entanglement)
between the two wave packets, at z1 and z2. We note that

this approximate result for entanglement is realistic in the
following aspect. For two collimated wave packets of narrow
frequency band, the entanglement does not decay (or decays
negligibly) with z propagation. We also evaluate the λHZ(t )
for an uncollimated emission, where we find that the absolute
value of its negativity decreases with spatial spreading.

Such a definition of entanglement (correlations) between
two wave packets is instructive especially for exploring the
onset of the entanglement in spatial dimensions. However,
such a definition fails to work for most useful nonclassical
states, the Gaussian states, which are the ones convenient to
generate and use in the experiments.

Moreover, it has a potential only to quantify the wave-
packet–wave-packet entanglement on a position-to-position
basis. That is, it does not quantify the “total” entanglement
between the two wave packets. A candidate for quantify-
ing the total entanglement, i.e., between all of the modes,
could be

âi →
∑

ki

âi,ki or âi →
∑

ki

εki âi,ki , (2.8)

which have the potential to address the entanglement of any
two modes, â1,k1 and â2,k2 , between the two wave packets.1

Such definitions, however, are again not useful for Gaussian
states since they lead to divergence in SPH and DGCZ criteria.

III. CONVENIENCE OF WORKING IN THE SPATIAL
DOMAIN: CONVERGENCE

Next, we realize that we cannot avoid the divergence of
∑

k
summation, since we cannot adopt a bound for the k-space. In
contrast to momentum space, fortunately, a

∑
r summation is

bound by the volume V which can be handled theoretically or
can be limited in the experiments. Thus, we choose to work in
the spatial domain by introducing the mode expansion [49,50]

â(r) =
∑

k

eik·râk, (3.1)

which can be Fourier transformed as∑
r

â(r)e−ik·r =
∑

k′

(∑
r

ei(k−k′ )·r
)

âk′ = âk (3.2)

by defining the normalized summation
∑

r → ∫
d3r/V and

using
∑

k → V
(2π )3

∫
d3k as usual [17]. Hermitian conjugates

of Eqs. (3.1) and (3.2) can be employed, applied in vacuum,
to relate the spatial and momentum Fock spaces, e.g., as

|1r〉 =
∑

k

e−ik·r|1k〉 and |1k〉 =
∑

k

eik·r|1r〉. (3.3)

The advantage of working in the spatial domain, by defin-
ing the annihilation operator

âi → Âi =
∑

ri

âi(ri ), (3.4)

1We use the phrase “has the potential to detect entanglement” on
purpose, because noise reduction due to â1,k1 ↔ â2,k2 entanglement
can be screened by a noise increase due to two other modes â1,k′

1
↔

â2,k′
2
.
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is, now, the quantity 〈ÂiÂ
†
i 〉 does not diverge. Here, i = 1, 2

enumerates the two wave packets. Moreover, Eq. (3.4), when
used in an entanglement criterion, has the potential to detect
correlations between any two spatial modes, â1,r1 ↔ â2,r2 , of
the two wave packets. One can obtain the commutation

[Â, Â†] = 1 (3.5)

from the relation [â(r), â(r′)] = V δ(r − r′), which deduces
from Eq. (3.1) and [âk, âk′ ] = δk,k′ . Commutation (3.5) re-
mains convergent and dimensionless via normalized definition
of the spatial integration

∑
r → 1

V

∫
d3r.

In the next section, we use the annihilation operator
Â, defined in Eq. (3.4), to obtain wave packet analogs of
DGCZ [44], HZ [45], and SPH [43] criteria. We also use
the same form, Â, for introducing the ensemble-wave-packet
entanglement (Sec. V) and nonclassicality of a wave packet
(Sec. VI).

IV. WAVE-PACKET–WAVE-PACKET ENTANGLEMENT

In order to obtain a “convergent” entanglement criterion
which has the potential to address a kind of “total” entan-
glement, e.g., taking all spatial or k-mode correlations into
account, we introduce Âi = ∑

ri
âi(ri ), for instance, for the

DGCZ criterion [44]

λDGCZ = 〈(û)2〉 + 〈(v̂)2〉 − (α2 + β2), (4.1)

where λDGCZ < 0 witnesses the inseparability of the two wave
packets. Here, the operators are

û = αX̂1 + βX̂2, (4.2)

v̂ = αP̂1 − βP̂2, (4.3)

where

X̂i = (Â†
i + Âi )/

√
2 =

∑
ri

x̂i(ri ), (4.4)

P̂i = i(Â†
i − Âi )/

√
2 =

∑
ri

p̂i(ri ). (4.5)

X̂i and P̂i satisfy the usual commutation relation

[X̂i, P̂i] = i. (4.6)

Equation (4.6) is a central result of the paper. Most useful
criteria are shown to be derived, even in stronger forms,
using the Heisenberg uncertainty and Schrödinger-Roberson
inequalities, via a partial transpose method [51,52]. These
inequalities, and the derivation of the criteria, are based on
the uncertainty of observables, e.g., X̂i and P̂i here, and their
commutations, e.g., [X̂i, P̂i]. Thus, any two-mode entangle-
ment criterion derived for â1 ↔ â2, see also Ref. [53], is valid
also for the inseparability of the two wave packets, when X̂i

and P̂i are defined as in Eqs. (4.4) and (4.5).
More explicitly, if one defines the operators

ξ̂ = [X̂1 P̂1 X̂2 P̂1] (4.7)

and calculates the noise matrix

Vi j = 1
2 〈ξ̂iξ̂ j + ξ̂ j ξ̂i〉 − 〈ξ̂i〉〈ξ̂ j〉, (4.8)

the SPH criterion [43]

λSPH = det A det B + (
1
4 − | det C|)2 − tr(AJCJBJCT J )

− 1
4 (det A + det B) (4.9)

is also valid for the entanglement of two wave packets. Here,
A, B, and C are 2 × 2 matrices defining the 4 × 4 noise matrix
V = [A , C ; CT , B]. The SPH criterion [43] is a particularly
important one, since it accounts for any intramode rotations,
i.e., Âφ = eiφÂ, in the Xi-Pi plane [53].

In Sec. III.3 of Ref. [53], we show that such a strong crite-
rion is possible to be derived also for number-phase-squeezed-
like states [8]. Similar to the SPH criterion [43], it accounts
for intramode rotations in the n-�, number-phase, plane. This
new criterion is also valid for detecting the entanglement of
two wave packets.

Similarly, the HZ criterion [45]

λHZ = 〈Â†
2Â2Â†

1Â1〉 − |〈Â†
2Â1〉|2 (4.10)

can be derived, using the same arguments in Ref. [45], for the
two wave packets.

A. Two entangled cavities

In the following, we calculate the total entanglement be-
tween two WPs emitted from two initially entangled cavities
into two different reservoirs. This is depicted in Fig. 1. First,
we calculate the λHZ(t ) given in Eq. (4.10), since the emitted
pulses are superpositions of Fock states. Second, we perform
the same calculation for λSPH given in Eq. (4.9). Similar results
can be obtained also for the emission of two initially entangled
atoms.

1. HZ criterion

The solution of Eq. (2.4) for the emission of two entangled
cavities can be transformed to the spatial domain of the two
reservoirs as

|ψ (t )〉 = (b1(t )|0〉c1 |1〉c2 + b2(t )|1〉c1 |0〉c2 )|0〉R1 |0〉R2

+ |0〉c1 |0〉c2

[
|0〉R1

(∑
r2

I2(r2, t )|1r2〉R2

)
(4.11)

+
( ∑

r1

I1(r1, t )|1r1〉R1

)
|0〉R2

]
, (4.12)

where Ii(ri, t ) = ∑
ki

di,ki (t )eiki ·ri with di,ki (t ) is given in
Eq. (2.6). Using the contour-integration method, the momen-
tum integral can be calculated as

Ii(ri, t ) = V bi(0)

2πcri
Kigi(�i )e

−(i�i+γi/2)ri/c�(ct − ri ), (4.13)

where Ki = �i/c and gi(�i ) is the cavity-reservoir coupling
evaluated at the cavity resonance ω = �i. We remark that
in the evaluation of Ii we did not make a collimated-beam
approximation, i.e., k � kz, which we performed in Eq. (2.7).
In Eq. (2.7), we perform a collimated-beam approximation
to provide an easier understanding of the experiments. The
notion of entanglement would not change if we did or did not
perform such an approximation.
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FIG. 2. Hillery-Zubairy and Simon-Peres-Horodecki criteria,
which become λHZ(t ) = λSPH(t ) for the two wave packets emitted
from two initially entangled cavities depicted in Fig. 1. In contrast to
pointwise, E1(r1, t ) ↔ E2(r2, t ), electric-field correlations studied in
Sec. II, λHZ,SPH(t ) < 0 witnesses a kind of total entanglement between
the two wave packets emitted into two different reservoirs.

When the Â1 operator acts on |ψ (t )〉, we obtain

Â1|ψ (t )〉 =
( ∑

r1

∑
r′

1

I1(r1, t )â1(r′
1)|1r1〉R1

)
|0〉R2 |0〉c1 |0〉c2

=
( ∑

r1

I1(r1, t )

)
|0〉R1 |0〉R2 |0〉c1 |0〉c2 . (4.14)

The same form appears for (Â2|ψ (t )〉)† = 〈ψ (t )|Â†
2. If we

define the spatial integral in Eq. (4.14) as Ji(t ) = ∑
ri

Ii(ri, t ),
the second term of the λHZ, in Eq. (4.10), can be identi-
fied as −|J1(t )|2 |J2(t )|2. It is evident from Eq. (4.14) that
Â2Â1|ψ (t )〉 = 0. Hence, the first term in Eq. (4.10) is zero.
Then, the HZ criterion for two wave packets reduces to

λHZ(t ) = −|J1(t )|2 |J2(t )|2, (4.15)

where spatial integrals can be evaluated as

Ji(t ) = 2bi(0)

c
Kigi(�i )

1 − eαict + eαictαict

α2
i

, (4.16)

with αict = −(i�i + γi/2)t , which do not depend on the
reservoir volume. In Fig. 2, we plot λHZ(t ). The total en-
tanglement increases until the two wave packets leave the
two cavities (or the two atoms) completely. Then, it drops
but approaches a constant value as γ t 	 1. We scale the y
axis of Fig. 2 with 4a(0)b(0)K1K2g1(�1)g2(�2)/c2α2

1α
2
2 . We

consider emission from a plasmonic cavity, and thus choose
γ = 10−2� where � is in the optical regime.

2. SPH criterion

We can also calculate the total entanglement between the
two wave packets, using the SPH criterion defined in Eq. (4.9).
The terms like 〈Â2

i 〉 and 〈Â2Â1〉 do vanish. So, the 2 × 2
matrices become

A =
[
�1 0
0 �1

]
, B =

[
�2 0
0 �2

]
, and C =

[
a b

−b a

]
, (4.17)

where �1,2 = 1
2 + |J1,2|2, a = (J∗

2 J1 + J∗
1 J2)/2, and b =

i(J2J∗
1 − J1J∗

2 )/2. The SPH criterion is evaluated as

λSPH = �2
1�

2
2 + (

1
4 − (a2 + b2)2

)2

− 2�1�2(a2 + b2) − 1
4

(
�2

1 + �2
2

)
, (4.18)

which reduces to

λSPH(t ) = −|J1(t )|2 |J2(t )|2 = λHZ(t ) (4.19)

for the particular system we consider here.

B. Matter-wave entanglement

The criteria developed for electromagnetic radiation above
can also be used for matter waves when x̂i(ri ) and p̂i(ri ),
in Eqs. (4.4) and (4.5), are replaced by the individual
positions and momenta of the particles. That is, X̂1,2 =

1
N1,2

∑N1,2

i1,2=1 x̂i1,2 (ri1,2 ). Now, X̂1, P̂1 and X̂2, P̂2 in Eq. (4.7) refer
to the center-of-mass coordinates on which measurements are
conducted to witness the entanglement. We use a particle
number normalization instead of volume normalization. De-
pending on the type of the interaction between the two matter
waves used in the generation of the entanglement, both SPH
and HZ criteria can be used in detecting the entanglement.
Unlike the collective operators Ŝ(i)

+ , introduced in the follow-
ing section, these criteria witness the continuous-variable en-
tanglement between the two matter waves.2 When one of the
two observable sets in Eq. (4.7) belongs to the electromagnetic
wave packet, e.g., in a superradiant emission, one can witness
the continuous-variable entanglement between a matter wave
[55] and an electromagnetic wave packet.

When the entanglement between two matter waves is
generated via interactions like hopping or weak interspecies
collisions [32–35], one can obtain a large portion of the total
entanglement by calculating the entanglement between the
two recoil (momentum) modes. When techniques like molec-
ular dissociation [5,36] are used, where strong interactions
in diatomic molecules come into play, however, momentum
distribution in each matter-wave ensemble can be broadened.
In such a case, continuous-variable entanglement detection
based on the criteria studied above becomes more feasible
regarding quantum optics applications.

V. ENSEMBLE–WAVE-PACKET ENTANGLEMENT

Similarly, we can introduce an entanglement criterion be-
tween an ensemble and a (e.g., emitted) wave packet. When
we change â → Â in Eq. (4) of Ref. [10], it is straightforward
to obtain the criterion

μHZ = 〈Ŝ+Ŝ−Â†Â〉 − |〈Ŝ+Â〉|2, (5.1)

which works better for the entanglement of numberlike (Fock-
like) states with an ensemble. This is the case for the sponta-
neous emission of a single atom [17] or superradiant single-
photon emission from an ensemble of many-particle entangled

2For a network of matter waves or wave packets, a multimode
generalization can be performed [54].
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atoms [10,56,57]. Here, Ŝ+ = ∑N
j=1 σ

(+)
j is the collective rais-

ing operator for the ensemble containing N two-level atoms
where σ

(+)
j is the Pauli matrix of the jth atom, and Ŝ− = Ŝ†

+.
One can also obtain the analog of the DGCZ criterion for

ensemble–wave-packet entanglement, â → Â in Ref. [41], by
examining the uncertainty bound for 〈(û)2〉 + 〈(v̂)2〉 using

û = Ŝx + X̂ and v̂ = Ŝy − P̂, (5.2)

where X̂ = (Â† + Â)/
√

2, P̂ = i(Â† − Â)/
√

2, Ŝx = (Ŝ+ +
Ŝ−)/2, and Ŝy = i(Ŝ− − Ŝ+)/2. Such a criterion has already
been studied for the entanglement between an ensemble and a
single mode of light [41], in the context of squeezing transfer
from a nonclassical light to an ensemble resulting in spin
squeezing. Here, we only make the replacement â → Â and
introduce ensemble–wave-packet entanglement. The DGCZ
criterion works fine for Gaussian or quadrature-squeezed-like
states.

Below, first, we calculate μHZ(t ) for the spontaneous emis-
sion of a single atom. Next, we evaluate μHZ(t ) for single-
photon superradiant emission [56,57] from an initially entan-
gled ensemble of atoms [10].

A. Spontaneous emission of a single atom

The wave function of a two-level atom, initially in the
excited state, is given by [17]

|ψ (t )〉 = β(t )|e〉|0〉 + |g〉
∑

k

γk(t )|1k〉, (5.3)

where spontaneous emission is possible into many k modes
with probability amplitudes

γk(t ) = e−ik·r0 gk
1 − ei(ωk−ωeg)t−�t/2

(ωk − ωeg) + i�/2
, (5.4)

where r0 is the position of the atom and β(t ) = e−�t/2. Spon-
taneous emission takes place into a vacuum. ωeg and � are the
level spacing and damping rate of the atom, respectively. gk is
the coupling strength of the k vacuum mode with the atomic
dipole. When Â acts on this state, it results in

Â|ψ (t )〉 =
[∑

r

(∑
k

eik·rγk(t )

)]
|g〉|0〉, (5.5)

where
∑

k integration in the inner parentheses, IA, yields

IA(r, t ) = V

2π crs
g(ωeg)Kege−(iωeg+�/2)rs/c�(ct − rs), (5.6)

with rs = |r − r0|, Keg = ωeg/c, and �(x) is the step function.
Then, the

∑
r spatial integration results in

JA(t ) = 2g(ωeg)Keg

c

1 − eαct + eαctαct

α2
, (5.7)

similar to Eq. (4.16) of the previous section. Here, αct =
−(iωeg + �/2)t . It is easy to see from Eq. (5.5) that
Ŝ−Â|ψ (t )〉 = 0, which turns the first term in μHZ, Eq. (5.1),
equal to zero. The (〈ψ (t )|Ŝ+)† = Ŝ−|ψ (t )〉 is

Ŝ−|ψ (t )〉 = β(t )|g〉|0〉. (5.8)

So, the HZ criterion becomes

μHZ(t ) = −|β(t )|2 |JA(t )|2 = −e−�t |JA(t )|2. (5.9)

In Fig. 3, we plot μHZ(t ).
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FIG. 3. Spontaneous emission from a single atom into the vac-
uum. Evolution of the entanglement, μHZ(t ) < 0, between the atom
and the emitted wave packet. Superradiant single-photon emission
from an ensemble shows a similar behavior except for the emission
time determined by collective decay γN in place of single-atom
decay γ .

B. Superradiant emission from an ensemble

We also study the entanglement of the superradiantly emit-
ted single photon from an initially entangled ensemble of
atoms |φ(0)〉ens = ∑N

j=1 eik0·r j |e j〉, where |e j〉 indicates that
the jth atom is in the excited state and the remaining N − 1
ones are in the ground state. The method for the generation
of such a state is described in Ref. [57]. r j are the positions
of the atoms in the ensemble which can be much larger
than the emission wavelength λ0 = 2π/k0 [56]. In Fig. 4 of
Ref. [10], we demonstrated the entanglement between the
central mode (carrier frequency) of the emitted light and the
ensemble. Here, in contrast, we examine the entanglement of
the ensemble with the whole emitted light, the WP.

Time evolution, i.e., superradiant emission, of this initial
state into vacuum3 is given [56] by

|ψ (t )〉 =
N∑

j=1

β j (t )|e j〉|0〉 +
(∑

k

γk(t )|1k〉
)

|g〉, (5.10)

where

β j (t ) = 1√
N

e−γN t eik0·r j , (5.11)

γk(t ) = gk√
N

1 − e−γN t+i(ωk−ωeg)t

(ωk − ωeg + iγN )

N∑
j=1

ei(k0−k)·r j . (5.12)

This emission, from an extended (L > λ0) entangled ensem-
ble, is referred to as timed superradiance and the initial state
is called a timed Dicke state. Here, γN is the collective

3The results of Ref. [54] rely on Markovian approximation. Al-
though we confine ourselves to a superradiant emission into vacuum
modes, i.e., without the presence of a cavity, a stronger light-matter
coupling can be achieved for an ensemble in a cavity. In such a case,
i.e., when an ensemble of atoms collectively radiates into a cavity,
one needs to take care of the validity of the Markovian approximation
because, in a high-finesse cavity, evolution of the collective emission
becomes non-Markovian [58].
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(superradiant) decay rate, which can be much larger than the
decay rate of a single atom [56].

Â|ψ (t )〉 can be calculated similar to the spontaneous emis-
sion case, where now IA in Eq. (5.6) becomes

I (SR)
A (r, t ) =

N∑
j=1

eik0·r j

√
N

V

2π cr j
g(ωeg)Keg

× e−(iωeg+γN /2)r j/c �(ct − r j ). (5.13)

J (SR)
A (t ) = ∑

r I (SR)
A can also be calculated similarly, which

results in

J (SR)
A (t ) = JA(t, γN )

N∑
j=1

eik0·r j

√
N

, (5.14)

where JA(t, γN ) is the integral calculated for a single-
atom emission in Eq. (5.7), with �/2 → γN . We define the
last term of Eq. (5.14), a phase-coherence term, as ζ =∑N

j=1 eik0·r j /
√

N .
Similar to the spontaneous emission of a single atom,

Ŝ−Â|ψ (t )〉 = 0 and (〈ψ (t )|Ŝ+)† = Ŝ−|ψ (t )〉 yields

Ŝ−|ψ (t )〉 =
⎛
⎝ N∑

j=1

β j (t )

⎞
⎠|g〉|0〉 = e−γN t ζ |g〉|0〉. (5.15)

Therefore, the ensemble–wave-packet entanglement criterion
μHZ becomes

μ(SR)
HZ (t ) = e−2γN t |ζ |2 |JA(t, γN )|2, (5.16)

where JA(t, γN ) is given in Eq. (5.7) with �/2 → γN . Thus,
the time evolution of μ

(SR)
HZ (t ) is the same as in Fig. 3,

the single-atom spontaneous emission case, with replacement
γ → γN for the scaling of the time, implying a much more
rapid decay. We note that one cannot tell if a larger μHZ implies
a stronger entanglement or not, either in the wave-packet–
wave-packet entanglement or in the ensemble–wave-packet
entanglement. This is because, unlike logarithmic negativity
[59], such entanglement criteria are not demonstrated to be
employed as an entanglement measure.

VI. NONCLASSICALITY OF A WAVE PACKET

In this section, we introduce the nonclassicality of a WP.
We show that a wave packet possesses nonclassicality either
(a) when some of the constituent (k) modes are squeezed or
(b) when, e.g., two constituent modes k1 ↔ k2 are entangled.
Below, we first express the two methods used for the quan-
tification or observation of the single-mode nonclassicality
of a detected mode. Then, we apply these two methods for
introducing the nonclassicality of a wave packet.

We remind that the single-mode nonclassicality of a light
mode can be defined in two different ways:

(i) One may, e.g., for Gaussian states, examine the
noise matrix, i.e., Vi j = 〈ξ̂iξ̂ j + ξ̂ j ξ̂i〉/2 − 〈ξ̂i〉〈ξ̂ j〉 for the real
variables ξ (r) = [x1 , p1] or using the complex representa-
tion ξ (c) = [α1 , α∗

1 ] [60,61]. One can show that quadrature
squeezing, a single-mode nonclassicality, exists if |〈â2〉| >

〈â†â〉 [53], which derives from the eigenvalues of the noise
matrix.

(ii) Alternatively, one can also observe or quantify the
nonclassicality of a single-mode â via checking if it creates
two-mode entanglement at a BS output [62–64]. For instance,
the SPH criterion [43]—not only a necessary and sufficient
condition for Gaussian states, but also a criterion that works
well for superpositions of number states—can be used to
determine the two-mode entanglement at the BS output. This
approach may work better in witnessing the single-mode
nonclassicality for a wider range of nonclassical states (see
Fig. 2(c) in Ref. [65]).

Both approaches can be used in defining the nonclassicality
of a wave packet. We first use method (i) to examine states (a)
and (b), expressed in the first paragraph of the present section.
In the second part of the section, we also mention briefly about
the use of method (ii).

A. Method (i): Examining the noise matrix

Analogous to a single-mode (SM) state, we can define the
noise matrix of a wave packet as[

1
2 + 〈Â†Â〉 〈Â2〉
〈Â2〉∗ 1

2 + 〈Â†Â〉
]

(6.1)

in the complex representation, and as[〈X̂ 2〉 − 〈X̂ 〉2 〈X̂ P̂ + P̂X̂ 〉/2 − 〈X̂ 〉〈P̂〉
〈X̂ P̂ + P̂X̂ 〉/2 − 〈X̂ 〉〈P̂〉 〈P̂2〉 − 〈P̂〉2

]
(6.2)

in real variables. Similar to the SM case [53], λsm = 1/2 +
〈Â†Â〉 − |〈Â2〉| determines the minimum noise (maximum
squeezing) in the quadratures X̂φ = (Â†

φ + Âφ )/
√

2 with Âφ =
eiφÂ. Here, φ is chosen along the min noise direction.

1. Method (i-a): Constituent modes of a wave packet are squeezed

As an example, we first examine the nonclassicality of a
wave packet, for which some of the modes are squeezed, but
the modes are all separable.

Only two modes are squeezed. For simplicity, as a warmup,
first we assume that only two modes of the wave packet are in
a squeezed vacuum state, i.e., |ψ〉 = |ξ1〉k1 |ξ2〉k2 |0〉k2 |0〉k4 · · · ,
and other modes are in a vacuum state.4 Here, ξi are squeezed
vacuum states. In such a case, only four terms do not vanish
in 〈Â2〉:

〈ψ |Â2|ψ〉 = 〈ξ1|〈ξ2|
∑

r

∑
r′

[
eik1·(r+r′ )â2

k1
+ eik2·(r+r′ )â2

k2

+ 2ei(k1·r+k2·r′ )âk1 âk2

] |ξ1〉|ξ2〉. (6.3)

We remark that, here, k1 and k2 are not variables, but they re-
fer to two modes which are squeezed. The expectation values
can be calculated by transforming the annihilation operators
as âi(ξi ) = Ciâi − Siâ

†
i , where Ci ≡ cosh ri and Si ≡ sinh ri,

with ri the squeezing parameters [17] ξi = rieiθi . We set the
squeezing angles θi = 0 for simplicity.

4Actually, this is equivalent to assuming that all other modes are in
a coherent state, because only the noise operators δâi determine the
nonclassicality features. D̂(αi ) displacement of each state does not
alter the nonclassicality features [60] for Gaussian states.
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In Eq. (6.3), only â2
ki

terms survive and we obtain

〈ψ |Â2|ψ〉 = −
∑

r

∑
r′

(eik1·(r+r′ )S1C1 + eik2·(r+r′ )S2C2).

(6.4)
Similarly, 〈ψ |Â†Â|ψ〉 yields

〈ψ |Â†Â|ψ〉 =
∑

r

∑
r′

(
eik1·(r+r′ )S2

1 + eik2·(r+r′ )S2
2

)
. (6.5)

One can note that

∑
r,r′

eiki ·(r+r′ ) =
∑
r,r′

eiki ·(r−r′ ) =
∣∣∣∣∑

r

eiki ·r
∣∣∣∣
2

=
(∑

r

sin(ki · r)

)2

+
(∑

r

cos(ki · r)

)2

.

(6.6)

We remark that in the evaluation of 〈Â2〉, in Eq. (6.3), we
consider only the two modes k1, k2 among the summation,
or ω integral, over an infinite number of modes. As could
be anticipated, the contribution of the two modes remains
only infinitesimal. Hence, a |∑r eiki ·r|2 summation, when
converted to integration | ∫ d3reiki ·r/V |2, vanishes. Still, we
can account for the infinitesimal contributions (squeezing) of
the two modes to the nonclassicality of the wave packet as
follows. The sin(ki · r) summation in Eq. (6.6) gives exactly
zero, since it is zero at r = 0 and symmetric or periodic terms
cancel each other. In the cos(ki · r) summation, however, the
central term at r = 0, cos(0) = 1, does not vanish. Hence,
following our

∑
r definition in Sec. III, Eq. (6.6) becomes

∣∣∣∣∑
r

eki ·r
∣∣∣∣
2

= (r)3

V
, (6.7)

which is dimensionless and becomes zero in a standard con-
tinuous integration, i.e., (r)3/V → 0.

When we include this infinitesimal contribution to the
noise of our wave packet, we obtain

λsm = 1

2
+ 〈Â†Â〉 − |〈Â2〉|

= 1

2
+ (r)3

V

[(
S2

1 − S1C1
) + (

S2
2 − S2C2

)]
, (6.8)

which is always less than 1/2 since S2
i − SiCi < 0 and be-

comes more negative as ri increases.
Many modes are squeezed. We are aware that introducing

the contribution from a single nonzero point, (r)3 around
r = 0, leaves an ambiguity. However, we conduct this treat-
ment because we do need it unavoidably in case (i-b), below.
In order to leave the ambiguity, now, we also present the
same treatment for a continuous distribution of the squeezing
to many modes. We use the experience we obtained in our
treatment with two modes.

When |ξk〉 is a continuous function of k modes, we obtain

〈ψ |Â2|ψ〉 = 〈0|
∑
r,r′

∑
k,k′

eik·(r+r′ )δk,k′ â2
k(ξk ) |0〉. (6.9)

We know from Eq. (6.3) that âkâk′ does not contribute. So,
〈ψ |Â2|ψ〉 becomes

〈ψ |Â2|ψ〉 =
∑
r,r′

∑
k

eik·(r±r′ )(−SkCk ), (6.10)

where Sk ≡ sinh rk and Ck ≡ cosh rk, and rk, the squeezing
parameter for the k mode, is a continuous function of k.

If we consider a simple function, e.g., were SkCk does not
have any poles anywhere in the complex k plane, then the k
integration in Eq. (6.10) vanishes unless r1 = r2, which leads
to a single r summation

〈ψ |Â2|ψ〉 =
∑

r

∑
k

(−SkCk ) = − V

(2π )3

∫
d3kSkCk,

(6.11)

where
∑

r = 1 (see Sec. III) and
∑

k → V
(2π )3

∫
d3k as usual

[17]. 〈Â†Â〉 can be calculated similarly as

〈ψ |Â2|ψ〉 = V

(2π )3

∫
d3k S2

k, (6.12)

which gives a finite squeezing (reduction in noise)

λsm = 1

2
+ 〈ψ |Â†Â|ψ〉 − |〈ψ |Â2|ψ〉|

= 1

2
+ V

(2π )3

∫
d3k

(
S2

k − SkCk
)

(6.13)

for the wave packet. We note that (S2
k − SkCk ) < 0 and we

remind that Sk ≡ sinh rk and Ck ≡ cosh rk.

2. Method (i-b): Entanglement of two constituent modes

We raise the following question. Does the entanglement
between two constituent modes, letting them again be k1 and
k2, contribute to the nonclassicality of the wave packet?

We consider a state where there is no squeezing in the
modes, but only the two modes k1 and k2 are entangled via
a two-mode squeezing operator Ê = eβâ†

1 â†
2−β∗â1â2 ,

|ψent〉 = |β〉k1,k2 |0〉k3 |0〉k4 · · · . (6.14)

The reason we consider the entanglement due to the Ê operator
is that it creates “pure entanglement” between the k1 and k2

modes. That is, it does create single-mode nonclassicality in
the modes (see Sec. II.5.(iii) in Ref. [53] and also Ref. [64]).

We can transform the âi(β ) operators as

â1(β ) = Câ1 + Sâ†
2, (6.15)

â2(β ) = Câ2 + Sâ†
1, (6.16)

instead of working with the entangled state |β〉k1,k2 . Here, C ≡
cosh r and S ≡ sinh r, where r determines the degree of the
entanglement.
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In this case, only the âk1 (β )âk2 (β ) and âk2 (β )âk1 (β ) terms
contribute with CS in the calculation of 〈Â2〉 and only
â†

k1,2
(β )âk1,2 (β ) terms contribute with S2 in the calculation of

〈Â†Â〉. Thus, we find

〈Â2〉β = 2
(r)3

V
CS, (6.17)

〈Â†Â〉β = 2
(r)3

V
S2, (6.18)

which creates an infinitesimal squeezing in the wave packet as

〈(X̂φ )2〉 = λsm = 1

2
+ 〈Â†Â〉 − |〈Â2〉|

= 1

2
+ 2

(r)3

V
(S2 − SC), (6.19)

which is always less than the standard quantum limit 1/2. So,
it creates a squeezed uncertainty wave packet.

B. Method (ii): Wave-packet nonclassicality via
entanglement at a beam-splitter output

It is a known fact that the single-mode nonclassicality
criterion 〈â†â〉 < |〈â2〉|, so 〈Â†Â〉 < |〈Â2〉|, works well for
quadrature-squeezed-like (and Gaussian-like) states. For more
general states, such a nonclassicality criterion fails. In these
cases, a BS can help us very much. When a nonclassical state
is input to a BS, mixed with vacuum or a coherent state, it
generates two-mode entanglement at the BS output. Hence,
we can also decide that a wave packet is nonclassical if it
produces wave-packet–wave-packet entanglement at the BS
output. The BS transformation for a wave packet is given in
Ref. [66].

It is well experienced that the SPH, two-mode entangle-
ment, criterion [43] is able to reveal the two-mode entangle-
ment in some states other than the Gaussian ones, e.g., some
superpositions of two-mode Fock states. Hence, determining
the wave-packet nonclassicality via BS provides us the advan-
tage of being able to detect some of the non-Gaussian states,
e.g., superposed number states, using the strength (enhanced
generality) of the SPH criterion.5

For instance, use of a BS can resolve the single-
mode nonclassicality of a superradiant-phase single-mode
state (see Fig. 2(c) in Ref. [65]), whose nature is ex-
tremely different from the Gaussian-like states. It is a
straightforward process to develop the same method (see
Sec. II.b in Ref. [65]), with â → Â, also for wave-packet
nonclassicality.

5The SPH criterion is a strong one since it is invariant under
intramode rotations [53], i.e., â1,2 = eiφ1,2 â1,2.

Even though the SPH criterion [43] is a strong one which
is able to determine also some of the other states, in Sec. III.3
of Ref. [53] we developed an SPH-like (strong, invariant) cri-
terion for number-phase-squeezed-like states. This criterion
is invariant under the rotations in the number-phase (n-�)
plane. Although SPH is a strong criterion, it is defined with
quadrature variables, while the other criterion is defined with
n̂ and �̂ operators.

VII. SUMMARY

Developments in the current technology necessitate en-
tanglement or nonclassicality criteria for broadband emitting
sources, e.g., spasers [11,12,40]. Current mode-based criteria
can still be used for the broadband states. However, they detect
or measure the entanglement only associated with the two
carrier frequencies. We introduce criteria and measures for the
“total” entanglement of two wave packets. That is, the newly
introduced criteria can measure the entanglement among all
of the modes of the two wave packets. We also develop a
“total” nonclassicality for a wave packet, which accounts for
the nonclassicality of a wave packet both due to squeezing
of the constituent modes and entanglement present among
the constituent modes. In analogy with wave-packet–wave-
packet entanglement and wave-packet nonclassicality, we also
introduce criteria for ensemble–wave-packet entanglement.
All the criteria and measures we introduce can also be used
for measurements with near-field detectors [39].

The criteria we develop here can find applications in
various media, for more productive utilization of broad-
band sources. Quantification of the continuous-variable en-
tanglement between two counterpropagating plasmons, e.g.,
in nanosized interconnects for quantum computers utilizing
our current infrastructures [29], or a collection of quantum
emitters radiating into a plasmon mode [67], or the non-
classicality of a nanolaser emission [11,12], can employ the
criteria developed here. Moreover, quantification or detection
of continuous-variable entanglement between the center-of-
mass coordinates of two matter waves, e.g., obtained via
molecular dissociation methods [5], or the entanglement of
a wave packet with a recoiled matter wave (motional degree
of freedom), and nonclassicality of a matter wave itself, can
employ the presented criteria.
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