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We consider a general family of quantum key distribution (QKD) protocols utilizing displaced thermal states
with discretized modulations. Separating the effects of the Gaussian channel and the non-Gaussian distribution,
we study the dependence of the secret key generation rate on the magnitude of modulations (the strength of
the modulated signal). We show that in the limit of a strong signal, QKD is impossible. In this case, from the
perspective of an efficient eavesdropper, the ensemble of transmitted states is effectively classical and the amount
of leaked information is limited only by the entropy of the distribution of transmitted states, while the mutual
information between the legitimate parties is also subject to such limiting factors as detection and reconciliation
efficiencies. We demonstrate that two regimes must be distinguished: weak and strong thermal noise. In the case
of strong noise, the security boundary is mostly determined by the weak-signal limit, for which we obtain an
explicit form of the condition where the secret key can be generated in the asymptotic limit. When the noise is
weak, however, QKD may become possible only when the signal strength exceeds some critical value.
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I. INTRODUCTION

The inherent asymmetry of three-way quantum commu-
nications is one of the drastic differences between classical
and quantum communications. A quantum state sent by one
party cannot be freely shared between the remaining two.
This circumstance is formalized by the famous no-cloning
theorem: an unknown quantum state cannot be cloned [1,2].
Indeed, if such a cloner existed, it would have to commute
with all operators acting on the cloned state, and hence,
its action would be independent of the cloned state. This
demonstrates that the no-cloning property has fundamental
roots similar to those of the Heisenberg uncertainty relation.
Consequently, gaining information about an unknown state
necessarily perturbs the state, as in the noise-disturbance
uncertainty relation [3]. Thus, roughly, sharing an unknown
quantum state between two parties is a “zero-sum game”: one
party can gain information about the state only at the expense
of another party.

This feature of quantum communications constitutes a
foundation for the quantum key distribution (QKD) [4–8],
aiming at the production by two parties of probabilistically
noninterceptable shared keys over authenticated channels. As
hinted at by the proof of the no-cloning theorem above, in
order to avoid direct cloning, states associated with noncom-
muting operators must be employed. QKD protocols leverage
this property by sending nonorthogonal noncoinciding states.
Subsequently, a shared key is recovered from apparently a
random preparation and observation data. Since, at this stage,
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the data held by communicating parties are classical, they
fall under the classical Shannon’s information framework, and
hence, the shared key can be recovered using an adaptation of
an error-correcting algorithm.

Initially, QKD was developed for discrete variables, such
as electron spin and photon polarization, but later the class
of physical systems enabling QKD was extended by incorpo-
rating continuous variables (CV-QKD), for instance, quadra-
tures of the electromagnetic field. Moreover, it was shown
in Ref. [9] that displaced thermal states can be used for
generating the secret key, thus dissociating QKD from the sole
nature of utilized states. Since displaced states can be regarded
as a result of quasiclassical driving of a cavity at thermal
equilibrium, this significantly relaxes the requirements for
state sources.

Bringing QKD to the realm of conventional sources
boosted the development of practical QKD infrastructures,
which potentially may significantly impact the field of secure
communications. The main success in realizing CV-QKD is
achieved in the optical and near-infrared spectral domains,
owing to the ready availability of highly coherent sources of
the electromagnetic field and the low magnitude of thermal
noise at room temperature [8].

To propagate QKD technologies farther down the electro-
magnetic spectrum one has to deal with several obstacles. The
main challenge appears to stem from thermal noise. With a
decreasing base frequency, ω, the noise magnitude increases
rapidly, ∼ exp(ωT /ω) with ωT = kBT/h̄, once ω < ωT . Here,
h̄ is the Planck constant, kB is the Boltzmann constant, and T
is the channel temperature. In Refs. [10] and [11], however, it
was shown that strong thermal noise does not prohibit QKD
but, rather, determines the family of protocols (in this case, it
is the direct reconciliation since it is more resistant to noise).
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Thus, further studies of QKD in the far-infrared and be-
low spectral regions are warranted, motivated, on the one
hand, by fundamental questions of the quantum-classical
interface and the physical origin of information [12] and,
on the other hand, by the demand to have matching tech-
nologies for emerging small-size high-bandwidth wireless
networks.

In the present paper, we address a question that naturally
arises in the context of low-frequency implementations of
QKD. The main results concerning the frequency dependence
of QKD were obtained within the framework of Gaussian
states, that is, when the Wigner function of quantum states is a
Gaussian function of field quadratures. Overall, this assump-
tion is not too restrictive since the Gaussian property is pre-
served in dynamics governed by the Hamiltonian’s quadratic
in the field creation and annihilation operators. Such dynamics
envelop a wide range of physical situations including linear
and squeezing systems. However, for a train of transmitted
states to submit to the formalism of Gaussian states, the
variations of the transmitted states must follow a Gaussian
distribution, in which case they essentially mimic thermal
noise. In practical implementations, however, various devi-
ations from a Gaussian distribution are unavoidable, which
calls into question the applicability of the results obtained
within the framework of Gaussian states.

We consider the situation where the actual distribution
of displacements of displaced thermal states is discretized
[13], which clearly demonstrates deviations from the Gaus-
sian framework. It should be noted that QKD protocols with
discretized modulations of the displacement parameter had
previously attracted researchers’ attention [14–23]. The main
focus, however, was on protocols based on coherent states
encoding finite alphabets. This imposes strict requirements
on the quantum state source, which may be challenging to
meet at lower frequencies. In the present work, we consider
discretized modulations with an unrestricted distribution func-
tion and without assuming synchronized phases between the
source and the receiver. To describe the effect of thermal
noise, we revisit the standard theory of CV-QKD for Gaussian
states in such a way that distinguishes effects inherent to
Gaussian channels and those caused by the specific form of
the distribution of the displacements. To this end, we have
to abandon the convenient formalism of covariance matrices
and to keep the explicit operator form of relevant density
matrices.

The strongest manifestations of the departure of discretized
distributions from Gaussian is a nonmonotonous dependence
of the key generation rate on the intensity of the transmitted
state. Moreover, the rate vanishes in the limit of strong exci-
tations, making QKD impossible. Physically, this can be un-
derstood as follows. Different states obtained by sufficiently
strong displacement of thermal states are essentially orthogo-
nal to each other and, thus, can be associated with (practically)
commuting operators in the proof of the no-cloning theorem
above. As a result, large values of the quantization parameter
destroy the no-cloning character of the transmitted quantum
states, stripping the QKD of its fundamental background.
This suggests that, in the QKD context, the transition to the
classical regime emerges as an ensemble property rather than
one of individual states.

II. CV-QKD NETWORK WITH DISCRETIZED
MODULATIONS

QKD protocols and networks have been reviewed in a
number of publications [4–8,24]. Therefore, we limit our-
selves to setting up the problem of networks with discretized
modulations and defining the main notation without going into
detail.

A. Key generation rate

In one-way QKD networks, the key is recovered from two
strings of data held by the sender, A, and the receiver, B. On
the A side, the string �A = {ζ1, . . .} comprises the values of
the control parameters, while on the B side, �B = {κ1, . . .} is
populated by the results of observations. Assuming that there
are no quantum correlations within �A and �B, these strings
can be regarded as classical, resulting from a communication
with abundant information over a noisy channel. According
to Shannon’s theory, the length of a perfectly correlated
substring recoverable from �A and �B in the asymptotic limit
is proportional to mutual information,

I (A : B) =
∫

dζdκ �(ζ , κ ) ln

[
�(ζ , κ )

�0(ζ )�(κ )

]
, (1)

where �(ζ , κ ) is the joint distribution function of the con-
trolling parameters and the results of observations, and �0(ζ )
and �(κ ) are the respective marginal distributions. The base
of the logarithm in Eq. (1) determines the units for measuring
information. We adopt natural units (nat), which slightly
simplifies the derived formulas.

In one-way protocols, the distribution of outcomes of
the receiver’s measurements deterministically depends on the
transmitted state, so that the joint distribution has the form

�(ζ , κ ) = �K(κ|ζ )�0(ζ ), (2)

where �K(κ|ζ ) is the conditional probability of obtain-
ing κ while observing K for a system in a state obtained
with the controlling parameters set to ζ . In physical terms,
the conditional probability can be presented as �K(κ|ζ ) =
Tr[EK(κ )ρ(ζ )], where EK(κ ) is the respective spectral pro-
jector, and ρ(ζ ) is the density matrix of the full channel-
environment state at the final stage of a QKD transaction
starting from a state prepared with ζ . Since only the reduced
density matrix on the receiving side is relevant, we have
�K(κ|ζ ) = Tr[EK(κ )ρB(ζ )], where

ρB(ζ ) = TrE [ρ(ζ )], (3)

with traced-out environmental degrees of freedom.
Using Eq. (2) in Eq. (1), we obtain

I (A : B) = S(�K(κ|ζ )) − S(�K(κ|ζ )), (4)

where S[ f (κ )] = − ∫
dκ f (κ ) ln[ f (κ )] is Shannon’s entropy

of distribution f (x). An overline, as in Eq. (4), denotes
averaging with respect to the controlling parameter F (ζ ) =∫

dζF (ζ )�0(ζ ). For such averaging, we also use the standard
expectation symbol: EF (ζ ) = F (ζ ).

Applying an error correction kind of algorithm to �A

and �B, the communicating parties can “recover the original
message” or, more formally, construct a common shared string
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�K . When there is no noise of uncontrolled origin (untrusted
noise), �K will constitute a secret key. Thus, in this case,
the rate of generation of the secret key is simply R = I (A :
B). In the presence of untrusted noise, however, the actual
key must be constructed assuming that this noise is due to
eavesdropping. In this case, the key rate must be adjusted
to account for information intercepted by the eavesdropper,
which yields

R = I (A : B) − χE . (5)

Here, χE quantifies the amount of information accessible to
the third party for a given magnitude of untrusted noise. Since
�K is reconstructed from �A and �B rather than transmitted,
say, from A to B, either A or B can be regarded as the holder
of the “original message” and, respectively, either A or B
can initiate error correction. These scenarios are called direct
and reverse reconciliation, respectively [25,26]. In the present
paper, we limit ourselves to the case of direct reconciliation,
as it demonstrates stronger resilience to thermal noise. In
this case, the maximum information is limited from above by
the mutual quantum information between A and E (Holevo
bound), χE = χ (A : E ) with

χ (A : E ) = H (ρE (ζ )) − H (ρE (ζ )), (6)

where H (ρ) = −Tr[ρ ln(ρ)] is the von Neumann entropy of
the density matrix ρ and ρE (ζ ) = TrB[ρ(ζ )] is the density
matrix of the environment obtained by tracing out the receiver
degree of freedom.

It must be noted that the fraction of recoverable message in
a noisy string reaches Shannon’s limit, I (A : B), only asymp-
totically, when the length of the transmitted messages, N , is
infinite, and the error correction algorithm is perfect. For finite
N and realistic algorithms, one needs to take into account
that the recoverable message is shorter than prescribed by
Shannon’s limit. In the analysis of QKD protocols, this cir-
cumstance is accounted for by introducing the reconciliation
efficiency λ, which renormalizes the mutual information, so
that the actual secret key generation rate is given instead by
R = λI (A : B) − χE . In turn, the reconciliation efficiency is
regarded as being determined by classical parameters and
postprocessing (see, e.g., [27–29]). We show below that there
are corrections of essentially quantum origin that modify the
key generation rate, so that the finite-N effect cannot be ac-
counted for by the reconciliation efficiency alone. Because of
this circumstance, we presume that the main limitations arise
due to the discrete character of the displacement parameter
and take λ = 1.

B. Transmitted states

In the present paper, we limit ourselves to the single-mode
approximation, which assumes that only one mode contributes
to QKD transactions. First, we describe a general model of
transmitted displaced single-mode states and establish general
relations between these states and the mutual information that
they can carry.

Displaced states are a particular case of Perelomov’s co-
herent states [30]. Let the sender’s source cavity subjected to

a semiclassical excitation be initially in the thermal state

ρ̃(0; ñ) = e−βa†
0a0

1 + ñ
, (7)

where β = ln(1 + ñ−1), ñ is the average population of the
cavity mode, and a†

0 and a0 are the cavity mode creating
and annihilating operators, respectively. The dynamics of the
driven cavity is described by Hint = a†

0E + a0E∗, where E
is the complex amplitude of the external classical field. The
evolution operator describing the action of the semiclassical
excitation is Glauber’s displacement operator DA, and thus,
we assume that the states leaving the cavity have the form

ρ̃A (̃ζ ; ñ) = DA (̃ζ )̃ρA(0; ñ)D†
A (̃ζ ), (8)

with

DA (̃ζ ) = exp(a†
0ζ̃ − a0ζ̃

∗). (9)

Here, ζ̃ depends on the magnitude and duration of the classical
driving field. Its relation with the displacement of transmitted
states is described below in the model of discretized modula-
tions.

The linear coupling between the channel mode and
the environment is described by the Hamiltonian He =
f (t )(a†

ea0 + a†
0ae), where ae and a†

e are the operators corre-
sponding to the external field. Let the initial states of the
channel and the external field be ρ̃c and ρe, respectively.
Then the result of such coupling is given by ρ = Sρ̃c ⊗ ρeS†,
where S is the evolution operator describing the action of
He. It is convenient to consider the external and the channel
modes on an equal footing and to introduce vector notations
a† · v ≡ v0a†

0 + vea†
e with complex v0 and ve. Then the action

of S can be represented as

S f (a† · v)S† = f [a† · (Ŝv)], (10)

where Ŝ is the scattering matrix relating the initial and final
operators (

a0(out)
ae(out)

)
= Ŝ

(
a0(in)
ae(in)

)
, (11)

with

Ŝ =
(

t r∗
−r t∗

)
. (12)

Thus, the linear coupling can be represented as mixing the
external and channel modes on a beam splitter characterized
by complex reflection and transmission coefficients, r and t ,
constrained by the unitarity condition |t |2 + |r|2 = 1.

Measurements of the channel field after such an interaction
are described by the effective channel density matrix obtained
by tracing the external degrees of freedom ρc = Tre[ρ]. If
the channel is initially in the displaced thermal state ρ̃c =
D (̃ζ )̃ρA(0; ñ)D†(̃ζ ), then ρc is also a displaced thermal state,

ρc = D(ζ )ρA(0)D†(ζ ), (13)

where ζ = e†
0 · (Ŝζ) with e†

0 = (1, 0) and ζ = (̃ζ , 0)T , so that
ζ = t ζ̃ , and

ρA(0) = Tre[Sρ̃A(0) ⊗ ρeS†]. (14)
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FIG. 1. Propagation of a quantum state in a QKD transaction.
Stage I: preparation of the quantum state. Stage II: effect of the
environment and model of information losses. Stage III: detection.

Let the ambient electromagnetic field be in a thermal state
characterized by the average population na. The beam splitter
turns the incoming state into the channel state (see Stage I in
Fig. 1)

ρA(ζ ; n) = Tra[S (r, t )ρA (̃ζ ; n0) ⊗ ρth(na)S†(r, t )], (15)

where S (r, t ) is an operator describing the transformation
induced by the beam splitter.

Using the P representation for the density matrices, we can
rewrite this equation as

ρA(ζ ; n) = 1

π2n0na

∫
d2z0d2zae−|z0|2/n0−|za|2/na

× Tra[SD(v)|0〉〈0|D†(v)S†], (16)

where D(v) = exp(v · a† − v∗ · a) and v · a† = v0a†
0 + vaa†

a
with v0 = z0 + ζ and va = za. Taking into account that
SD(v)|0〉 = D(u)|0〉 with u = Ŝv, we obtain

ρA(ζ ; n) = 1

π2n0na

∫
d2z0d2zae−|z0|2/n0−|za|2/na

× D(u0)|0〉〈0|D†(u0). (17)

By changing the integration variables, Eq. (17) can be turned
into the canonical form, yielding

ζ = t ζ̃ , n = |t |2n0 + |r|2na. (18)

Thus, the modulation of the transmitted state for a given
outcome of the source of displaced thermal states can be
achieved by varying the complex transmission coefficient of
the beam splitter. The modulation of postsource states is
commonly used in experimental implementations of QKD.

If controls determining the value of t admit a finite number
of states, t takes values at a finite number of points inside the
unit circle on the complex plane. Multiplication by ζ̃ maps
these points into the complex ζ plane, resulting in discretized
modulations. In the present paper, we consider the effect of
the magnitude of ζ̃ or, more physically, of the strength of
the quasiclassical excitation, on the key generation rate. To
this end, we represent the modulation value as sζ , where s
is a scaling parameter. Figure 2 shows an example where the
discretized nature of the distribution becomes apparent with
increasing value of the scaling parameter. The figure shows
the case where the points are arranged on a lattice, which
makes the notion of a characteristic separation �ζ apparent.
This scale plays an important role in determining the security
boundary as discussed in Sec. IV A below.

Some results obtained below can be formulated for a gen-
eral observable K measured at the receiving end. Such a gen-
eralization may be of interest in the context of low-frequency
spectral domains, where a wide variety of methods to control
the electromagnetic field is available. In the present paper,
however, we limit ourselves to the case where quadratures are
measured. In this case, the conditional probability of obtaining
value κ is given by

�K(κ|ζ ) = Q(κ|ζ ) ≡ 1√
2πσ 2

exp

{
− 1

σ 2
[κ − 〈κζ 〉]2

}
,

(19)
where σ 2 = 2n + 1 and

〈κζ 〉 =
√

2 Re(tζeiθ ). (20)

The family of quadratures is parameterized by the phase
parameter θ and the argument of the channel transmission co-
efficient. A variety of protocols is based on the precise control

FIG. 2. (a) The unscaled (say, s = s0 = 1) distribution may appear as a sample of the Gaussian distribution. (b) With increasing scale (the
case corresponding to s = 8s0 is shown), the distribution reveals that it has an inherently discretized structure with the characteristic separation
�ζ (see analysis in Sec. IV A).
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over the quadrature phase provided by synchronizing the local
oscillator in the homodyne detection of the quadrature. Here,
we do not put any restrictions on the phase, thus allowing for
an unsynchronized local oscillator.

C. Physical model of the information loss

We model the information loss into the environment using
the model of Gaussian collective attacks. These attacks are
proven to be optimal for Gaussian protocols and are conjec-
tured to be optimal in general [31–33]. Within this model,
eavesdropping masks itself as thermal noise, so that the exter-
nal coupled state purifies the thermal state. More specifically,
the external field is initially prepared in a two-mode squeezed
vacuum state,

ρ
(0)
E = F (μ)|0〉〈0|F†(μ), (21)

where F (μ) is the two-mode squeezing operator. Denoting
the operators of the environment modes a2 and a3, we have

F (μ) = exp[μ(a†
2a†

3 − a2a3)]. (22)

Generally, the squeezing parameter can be complex. Its argu-
ment, however, can be absorbed into a2,3 without changing the
final results. Therefore, Eq. (22) presumes that the squeezing
parameter is a real number, which simplifies intermediate
formulas.

One of the squeezed modes is mixed with the channel
mode on a beam splitter, while the second mode is collected
together with the mode transmitted through the beam splitter
(see Stage II in Fig. 1), which constitutes ρE (ζ ) in Eq. (6). The
strength of the channel-environment coupling is quantified by
the reflection coefficient of the beam splitter, rE , which also
can be assumed real without loss of generality.

III. UNTRUSTED NOISE AND INFORMATION LEAKED
INTO THE ENVIRONMENT

One of the main objectives of a theory of QKD is to estab-
lish the amount of leaked information for a given (measured
during the communication session) amount of untrusted noise.
Based on this knowledge, the communicating parties decide
whether the secret key can be extracted (if mutual information
exceeds losses) or the results of the communication session
must be abandoned.

A. Emergence of untrusted noise

Coupling channel modes with the environment in a purified
thermal state affects the channel mode in the same way as
coupling with a thermal state. Indeed, when evaluating the
partial trace over the eavesdropper’s modes in Eq. (3), one
needs to take into account that the displacement direction of
the channel state is orthogonal to the plane of squeezing. Thus,
tracing out the mode, which is not mixed with the state in the
channel, yields

ρB(ζ ) =
∑
m2

〈m2|S (θ )ρA(ζ ; n) ⊗ ρ̃thS†(θ )|m2〉, (23)

where ρ̃th is an effective thermal state,

ρ̃th = 1

cosh2(μ)

∑
m3

tanh2m3 (μ)|m3〉〈m3|. (24)

Thus, from the channel perspective, efficient eavesdrop-
ping is indistinguishable from coupling with a thermal
state ρth(sinh2(μ)). If all environment states are of uncon-
trolled origin, then on the receiving side we have ρB(ζ ) =
ρth(tEζ , nt2

E + nE ), where

nE = r2
E sinh2(μ) (25)

is the magnitude of untrusted noise and we have taken into ac-
count that the parameters describing the strength of coupling
with the environment, tE and rE , can be chosen real.

Importantly, this implies the reverse: any untrusted noise
must be regarded as stemming from the information loss to an
efficient eavesdropper.

B. Information loss

When A announces its data, the amount of leaked infor-
mation is limited by the Holevo bound χ (A : E ). Since we
do not assume the Gaussian form of �0(ζ ), it is convenient
to rewrite the environment density matrix in a form distin-
guishing non-Gaussian modulations and propagation in the
Gaussian channel,

ρE (ζ ) = D2(−rζ )̃ρED†
2 (−rζ ), (26)

where

ρ̃E = TrA[S (θ )ρth(n) ⊗ ρF (μ)S†(θ )] (27)

is the density matrix of a two-mode squeezed vacuum mixed
with a thermal state. This density matrix is independent of
the modulation parameter, and due to invariance of the von
Neumann entropy with respect to unitary transformations of
the density matrix, we immediately obtain

H (ρE (ζ )) = H (̃ρE ). (28)

While ρ̃E is a Gaussian state and, therefore, is completely
characterized by its covariance matrix, in order to find ρE (ζ ),
it is convenient to have an explicit form of ρ̃E in an oper-
ator form. It can be recovered from the covariance matrix.
We find it constructive, however, to perform the calculation
using the representation in terms of creation and annihilation
operators and to demonstrate the emergence of the phase-
space representation. It can be done, for example, as follows.
Using the P representation for ρth in Eq. (27), it can be
rewritten as ρ̃E = F (μt )̂ρEF†(μt ), where μt is defined by
τt ≡ tanh(μt ) = t tanh(μ) and

ρ̂E = 1

π n̄

∫
dαe−|α|2/n̄D2(αc)D3(αs)

× |0〉〈0| ⊗ ρ
(3)
th (n̄E )D†

3 (αs)D†
2 (αc),

(29)

with αc = rα cosh(μt ) and αs = −rα∗ sinh(μt ). In this ex-
pression, ρ

(3)
th (nE ) = Z−1

E exp (−βE a†
3a3) is a thermal state

characterized by the same average number of particles nE =
r2 sinh2(μ) as the magnitude of untrusted noise. Using the P
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representation again turns Eq. (29) into

ρ̂E = 1

π2nrnE

∫
dz e−|z2|2/nr−|z3+τt z∗

2 |2/nE

× D(z)|0〉〈0|D†(z), (30)

where we have introduced nr = r2n cosh2(μt ) = r2n/(1 −
τ 2

t ), dz = dz2dz3, and

D(z) = exp(z2a†
2 + z3a†

3 − H.c.). (31)

A connection with the phase-space formalism is then estab-
lished through Williamson’s theorem [34], which guarantees
that any Gaussian state can be presented as a transformation
of a direct product of thermal states. In terms of the represen-
tation of the density matrix given by Eq. (30), this means that
the form −|z2|2/nr − |z3 + τt z∗

2|2/nE can be diagonalized by
proper transformations. To this end, it is convenient to rewrite
the argument in Eq. (31) as

z · a† − z∗ · a = (z z∗) Ĵ

(
a
a†

)
, (32)

where Ĵ = ( 0 1̂
−̂1 0), with 1̂ being the 2 × 2 identity matrix,

is a symplectic form consistent with the commutation rela-
tions C − CT = Ĵ , where C = ( a

a† ) ⊗ ( a
a† ). It can be seen that

transformations of the creation and annihilation operators
preserving the commutation relations induce “symplectic or-
thogonal” transformations of z1,2. Indeed, the transformation
of operators a → b according to

R̂

(
a
a†

)
=

(
b
b†

)
(33)

induces the transformation z → w:

−(z z∗) ĴR̂Ĵ = (w w∗). (34)

For example, two-mode squeezing described by the operator
F (γ ) yields

w2 = z2 cosh(γ ) − z∗
3 sinh(γ ),

w3 = z3 cosh(γ ) − z∗
2 sinh(γ ). (35)

It turns out that two-mode squeezing is the only transforma-
tion needed for diagonalization of the form in the exponential
term in Eq. (30), so that

ρ̂E = F (γ )ρ (2)
th (n2) ⊗ ρ

(3)
th (n3)F†(γ ), (36)

where

tanh(2γ ) = 2τt

Y + 2
, (37)

with Y = X + τ 2
t − 1, X = nr/nE , and

n2,3 = 2nE√
Y 2 + 4X ± Y

. (38)

Collecting these results, we obtain the averaged environ-
ment density matrix (up to a ζ -independent unitary transfor-
mation) ρE = ∫

dζ�0(ζ )ρE (ζ ), where

ρE (ζ ) = D(z(ζ ))ρ (2)
th (n2) ⊗ ρ

(3)
th (n3)D†(z(ζ )), (39)

with z2(ζ ) = −sζ rE cosh(μ + γ ) and z3(ζ ) =
sζ ∗rE sinh(μ + γ ).

FIG. 3. Example of the Wigner distribution of the environment
density matrix traced over one of the degrees of freedom, ρ

(red)
E =

Tr2[̃ρE ], in the case of (a) weak and (b) strong modulations. For the
sake of illustration, the distribution of ζ ’s is assumed to be uniform
over points ±1 ± i of the complex plane.

IV. KEY GENERATION RATE

A. Strong modulation limit

The limit of strong modulations, when the magnitude
of ζ exceeds characteristic scales describing the channel
and environment modes, is the simplest since, in this limit,
quantum correlations in the environment between individual
transactions become negligible. Figure 3(a) shows the partial
Wigner distribution of the environment density matrix in the
case where the modulation parameter is strong, s 
 1, so
that the fluctuations of the displacement parameter exceed
the width of the Gaussian states s�ζ 
 max(n2, n3), where
n2,3 are given by Eq. (38) and �ζ is the magnitude of
a “typical” separation between points in the ζ plane. The
multimodal character of the Wigner distribution in Fig. 3(b) is
the principal feature of the environment density matrix when
the magnitude of discretized modulations becomes too strong.
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A formal manifestation of this observation is vanishing
commutators of individual terms with ζ �= ζ ′ in ρE ,

[ρE (ζ ), ρE (ζ ′)] ∝ e−(z(ζ )−z(ζ ′ ))∗·̂n−1·(z(ζ )−z(ζ ′ )), (40)

where n̂ = diag(n2, n3). Based on this, the perturbation the-
ory can be used for an analysis of the spectrum of ρE

with the characteristic decay of small terms ∝ e−s2/s2
0 with

s−2
0 ∝ �ζ r2

E (n−1
2 cosh2(μ + γ ) + n−1

3 sinh2(μ + γ )) as s →
∞. The precise form of s0 depends on the mutual arrangement
of eigenvalues of individual terms in ρE . For example, when
�0(ζ ) = 1/M, where M is the total number of values of mod-
ulations, all eigenvalues of �0(ζ )ρE (ζ ) are M-fold degenerate
and s2

0 may acquire a factor depending on the details of how
ζ is distributed in the complex plane. As will be apparent
from the following, however, the exact asymptotic form of the
Holevo bound may be of rather minor importance. Therefore,
in the present paper, we limit ourselves to the zeroth order
of the perturbation theory, when the overlap between the
eigenstates of ρE (ζ ) and ρE (ζ ′) for ζ �= ζ ′ is completely
neglected.

In this case, the commutator above vanishes and the envi-
ronment density matrix reduces to the direct sum of individual
ρE (ζ )’s. Taking into account that H (

⊕
n ρn) = ∑

n H (ρn) for
any set of commuting operators ρn, and H (aρ) = −a ln(a) +
aH (ρ) for a real number a and normalized ρ, we obtain

H (ρE ) = S(�0(ζ )) + H (ρE (ζ )). (41)

Thus, in the limit of strong modulations, the Holevo bound
saturates at the entropy of the distribution of the modulation
parameter. Since this entropy limits the amount of transmitted
information, we conclude that in the limit of strong modula-
tions the rate of generation of the secure key is vanishing and
the QKD is impossible.

At practically the same time, the limit reached by I (A :
B) is strictly smaller than S(�0(ζ )). On the one hand, it is
limited by the reduced reconciliation efficiency of finite-size
messages and the reduced detection efficiency. On the other
hand, it depends on the details of how the modulation param-
eter enters the propagator Q(κ|ζ ). For example, as shown in
Eq. (19), the homodyne detection of quadratures depends on
the value of modulation through 〈κζ 〉 = √

2 Re(tζeiθ ). Then,
in the limit of strong modulations, the mutual information
asymptotically tends to the entropy of distribution of this
parameter, I (A : B) = S(�0(〈κζ 〉)). Up to scaling, the distri-
bution of 〈κζ 〉 has the same form as that of the projection of
the distribution of ζ onto the line passing through the origin
of the complex plane at the angle determined by the angular
parameter of the quadrature and the phase of the effective
transmission coefficient t . If the distribution of ζ has a cluster
form, after such projection the clusters may overlap, yielding
a distribution with a smaller entropy.

From the QKD perspective, the consequence of mis-
matched asymptotics of I (A : B) and χ (A : E ) is that in the
limit of strong modulations there is a sharp security boundary:
there is a maximal magnitude, beyond which QKD is impos-
sible.

It should be noted that, in the consideration above, the
quadrature phase parameter θ is not presumed to be controlled
by communicating parties. Such control can be achieved by

synchronizing the local oscillator in the homogeneous detec-
tion of quadratures. On the one hand, this provides a means
to ensure the certain orientation of the distribution �0(ζ ) in
the complex plane, thus minimizing the loss of information
due to its projection on the real axis. On the other hand,
due to the effect of the phase acquired during propagation,
accounted for by the argument of the effective transmission
coefficient t , such synchronization is a nontrivial task and
poses a challenge for practical implementations of CV-QKD.
Therefore, it is noteworthy that the analysis above confirms
that such synchronization, while beneficial, is not strictly
required [35]. Random variations of θ can be taken into
consideration while optimizing particular implementations
and accounted for in the estimate of the mutual information
between the communicating parties.

We take this circumstance into account by limiting our-
selves in the following numerical evaluations to distributions
tζeiθ confined to the real axis. This does not significantly
impact the generality, while it simplifies the discussion.

Because the physical origin of the vanishing key generation
rate is the effective emergence of the classical ensemble of
states due to the weak overlap of individual density matrices
in the limit of strong variation, it affects all protocols based
on displaced coherent states, including those with a Gaussian
distribution of the displacing parameter. Because of the finite
length of the sequence of transmitted quantum states, a signal
of sufficiently strong amplitude will “separate” individual
states, leading to a collapsing key generation rate. It must be
noted that this kind of finite-length effect cannot be accounted
for by reconciliation efficiency, which quantifies the error cor-
rection algorithm and renormalizes the mutual information.
Moreover, a high efficiency (yielding λ > 0.95) is reached in
the limit of a high signal-to-noise ratio [27–29], thus making
the estimate of the protocol performance vulnerable with
respect to the effect of emergence of classical ensembles when
the length of the sequence of transmitted quantum states is
relatively small.

B. Weak modulation limit

In the opposite limit of weak modulations (small s), both
the mutual information and the Holevo bound vanish in a
thresholdless manner and their Taylor expansions start with
terms quadratic in s. Thus, in this limit,

R = s2C, (42)

where

C = d2

ds2
[I (A : B) − χ (A : E )]. (43)

The key can be generated if C > 0.
It follows straightforwardly from Eq. (19) that

d2

ds2
I (A : B) = 2

σ 2
E[〈κ (ζ )〉 − 〈κ (ζ )〉]2. (44)

It should be noted that, in this limit, the nonideal reconcilia-
tion efficiency leads to the simple renormalization 〈κ (ζ )〉 →√

λ〈κ (ζ )〉, which can be considered rescaling of the displace-
ment parameter or the phase mismatch [see Eq. (20)].
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The Holevo bound is determined by the eigenvalues of ρE .
When s = 0, they are given by the product of eigenvalues of
ρ

(2,3)
th in Eq. (39). Since ρ

(2,3)
th are diagonal in the product of

Fock bases, it is convenient to introduce a “vector” notation
for the basis states |l〉 ≡ |l2, l3〉, so that ρ

(l)
E (0), the eigenvalues

at s = 0, can be expressed in terms of the average number of
thermal photons n2,3 as

ρ
(l)
E (0) = e−β2l2−β3l3

(1 + n2)(1 + n3)
, (45)

where β2,3 = ln(1 + 1/n2,3).
Since we are interested only in the variation of the eigen-

values, we can use the same approach as for the Feynman-
Hellmann theorem. The first order is given by ∂ρ

(l)
E /∂s|s=0 =

〈l|∂ρE (0)/∂s|l〉, while at second order we have

∂2ρ
(l)
E

∂s2

∣∣∣∣
s=0

= 〈l|∂2ρE (0)/∂s2|l〉

+ 2
∑
m �=l

〈l|∂ρE (0)/∂s|m〉〈m|∂ρE (0)/∂s|l〉
ρ

(l)
2,3(0) − ρ

(m)
2,3 (0)

,

(46)

where l = (l2, l3) and m = (m2, m3).
Introducing sV (ζ ) = z(ζ ) · a† − z∗(ζ ) · a, these expres-

sions can be rewritten in a more explicit form:

∂

∂s
ρ

(l)
E

∣∣∣∣
s=0

= 〈l|[V (ζ ), ρE (0)
]|l〉,

∂2

∂s2
ρ

(l)
E

∣∣∣∣
s=0

= 〈l|(V2(ζ )ρE (0) + ρE (0)V2(ζ ))|l〉

− 2〈l|V (ζ )ρE (0)V (ζ )|l〉. (47)

Because of invariance of the von Neumann entropy with
respect to unitary transformations of the density matrix, we
can set ζ = 0 without any loss of generality, which yields

∂2

∂s2
χ (A : E )

∣∣∣∣
s=0

=
∑

l

∂2

∂s2
ρ

(l)
E (0) ln

[
ρ

(l)
E (0)

]
. (48)

Using Eq. (47) in this expression, we obtain

∂2

∂s2
χ (A : E )

∣∣∣∣
s=0

= 2|ζ |2r2
E [β2 cosh2(μ + γ ) + β3 sinh2(μ + γ )]. (49)

Together with Eq. (44), this expression gives an explicit
condition whether the QKD is possible in the limit of weak
modulations.

We conclude our consideration of the limiting cases by
noting that they imply that the key generation rate is a
nonmonotonous function of the signal strength. Thus, the
implementation of a QKD protocol based on discretized mod-
ulations must include a solution of the respective optimization
problem which takes into account the characteristics of the
communication channel and the magnitude of untrusted noise.

V. WEAK AND STRONG NOISE REGIMES

To investigate the dependence of the security boundary
given by C = 0 on the parameters of the environment and

FIG. 4. The security boundary C(rE , ω) = 0 [see Eq. (43)] up
to the midinfrared region (the shortest wavelength is 4.7 μm) for a
fixed effective temperature of the environment: (1) T = 100 K; (2)
T = 300 K; (3) T = 500 K. The regions above and below the curve
correspond to insecure and secure regimes, respectively. Dashed
vertical lines A and B mark the frequencies, for which the magnitude
dependence of the key generation rate is plotted in Figs. 5(a) and
5(b), respectively.

coupling with it, we assume that the effective temperature of
the environment is fixed. In Fig. 4, we plot C(rE , μ, ω) = 0,
the phase diagram separating secure and insecure regimes,
with the imposed constraint r2

E sinh2(μ) = const, as a func-
tion of the coupling with the environment and the carrier
frequency (energy) of the quantum states. It demonstrates that
at low frequencies, the security boundary obtained in the weak
modulation limit correctly distinguishes secure and insecure
regimes even when the modulation is not necessarily weak.
The signal dependencies of the key generation rate presented
in Fig. 5(a) show that the sign of R does not change with the
magnitude of displacement.

The security boundary defined as C = 0 predicts that with
increasing frequency the maximal coupling with the environ-
ment permitting generation of the key eventually starts to
decrease, signifying that the condition C = 0 is no longer
applicable when the number of thermal photons at the energy
of transmitted states becomes smaller than 1. This observation
is confirmed by comparing the security boundary found as
C = 0 with the numerically obtained security boundary pre-
sented in Fig. 6.

It should be noted, however, that the condition C = 0
correctly predicts the security of protocols utilizing weak
states even in this case. To illustrate this circumstance, we
show in Fig. 5(b) the signal dependence of the key generation
rate in the case where the thermal noise is small. It shows that
for systems that are in different regions according to the weak
signal and a precise condition, there is a critical magnitude
of the signal below which QKD is impossible. Taking into
account the effect of the nonideal reconciliation efficiency
and nonoptimal distribution of the displacement parameter
discussed in the previous section, this means that, in the weak
noise regime, protocols based on discretized modulations may
permit the key generation only when the signal magnitude
is within a certain range. A detailed investigation of the
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FIG. 5. Numerical evaluation of the signal dependence of the
key generation rate at the frequencies marked in Fig. 4: (A) ω =
2 × 1013 Hz and r2

E = 0.01 and (B) ω = 3 × 1014 Hz and r2
E = 0.22.

critical strength requires a more refined approach and will be
presented elsewhere.

On the contrary, in the strong noise regime, which is of
the most interest from the perspective of low-frequency im-
plementations of QKD, the emergence of the lower threshold

FIG. 6. Security boundary on the (rE , ω) plane for T = 300 K.
The solid line represents the security boundary based on the weak
signal approximation and the dotted line shows the security bound-
ary obtained by a numerical simulation of QKD transactions with
discretized modulations.

appears to be a rather marginal effect and the security of QKD
can be investigated using the weak-signal approximation.

VI. CONCLUSION

In anticipation of the appearance of implementations of
QKD protocols in the spectral domain below the midinfrared,
we have considered a general problem of QKD protocols
based on displaced thermal states with a discretized distri-
bution of the displacement parameter. We have investigated
specific features of such protocols distinguishing them from
well-studied protocols utilizing Gaussian states. We devel-
oped a basic formalism separating the effects of the Gaussian
channel and non-Gaussian modulations. With the help of this
formalism, we have studied the effect of the magnitude of
the quasiclassical driving field on the source of displaced
quantum states.

The main important feature, specific for protocols with
discretized modulations, is the impossibility of generating a
secret key, in the limit of the strong quasiclassical field. The
physical origin of such a collapse of QKD is the weak overlap
of the density matrices of individual states, which makes the
transmitted sequence of quantum states essentially classical.
In this limit, information available to the eavesdropper is
limited only by the entropy of the distribution of the displace-
ment parameter, which, in turn, limits from above the mutual
information between legitimate communicating parties.

Since the emergence of the classical ensemble is due to
lacunae in the factual filling of the complex plane by the
values of the displacement parameter used for preparation of
transmitted states, it becomes a limiting factor whenever the
number of transmitted states is too small, even if they are
sampled from the Gaussian distribution. This is a manifesta-
tion of possible quantum correlations between the transmitted
states and the environment (eavesdropper). This indicates that
accounting for the finite-length effect by the reconciliation
efficiency may not be enough to estimate correctly the key
generation rate.

The numerical investigation of the signal strength depen-
dence of the key generation rate revealed that two operating
regimes must be distinguished: strong and weak noise. The
strong noise regime is relevant when the number of thermal
photons is large and is of the most importance for low-
frequency QKD implementations. In this case, the security
boundary is determined by the weak signal limit and we have
found its explicit form.

The weak noise regime corresponds to a small number of
thermal photons. Numerical simulations showed that in this
regime a low-signal threshold may appear, so that the secret
key can be generated only when the signal is sufficiently
strong (but not too strong because of the transition to the
classical ensemble discussed above).
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