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We present a variational quantum circuit that produces the singular value decomposition of a bipartite pure
state. The proposed circuit, which we name quantum singular value decomposer or QSVD, is made of two
unitaries respectively acting on each part of the system. The key idea of the algorithm is to train this circuit
so that the final state displays exact output coincidence from both subsystems for every measurement in the
computational basis. Such circuit preserves entanglement between the parties and acts as a diagonalizer that
delivers the eigenvalues of the Schmidt decomposition. Our algorithm only requires measurements in one single
setting, in striking contrast to the 3n settings required by state tomography. Furthermore, the adjoints of the
unitaries making the circuit are used to create the eigenvectors of the decomposition up to a global phase. Some
further applications of QSVD are readily obtained. The proposed QSVD circuit allows us to construct a SWAP
between the two parties of the system without the need of any quantum gate communicating them. We also show
that a circuit made with QSVD and CNOTs acts as an encoder of information of the original state onto one of its
parties. This idea can be reversed and used to create random states with a precise entanglement structure.
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I. INTRODUCTION

Much progress has been made towards a better understand-
ing of bipartite and multipartite entanglement of quantum
systems in the last decades. Among the many figures of
merit that have been put forward to quantify entanglement,
the von Neumann entropy stands out as it finely reveals the
quantum correlations between subparts of the system. Yet,
the explicit computation of this entropy, as well as many
other bipartite measures of entanglement, relies on a clever
decomposition of the tensor that describes a two-party system.
On the experimental side, although entropies remain elusive
as no direct observable describes them in a straight way, a few
approaches have been proposed in ultracold atoms [1,2].

The fundamental mathematical tool to analyze bipartite
entanglement is the so-called Schmidt decomposition [3,4],
also named as singular value decomposition (SVD). Given the
knowledge of a bipartite state in its tensor form, the SVD casts
this tensor onto a simpler diagonal form, which unveils the
entanglement structure of the original state. In practice, the
SVD requires the knowledge of the coefficients of the state
and needs further computational effort to get the eigenvalues
and eigenvectors that fully characterize the state.

Two proposals have been put forward for diagonalizing
a matrix on a quantum computer. One of them relies on
exponentiation of the matrix and subsequent application of the
quantum phase estimation procedure [5]. The second proposal
[6] is a variational algorithm that seeks to directly diagonalize
a density matrix ρ by simultaneously acting on two copies
of the quantum state described by ρ. The cost function to be

minimized in this case quantifies how far the state is from
being diagonal in terms of purity. There also exist quantum
algorithms [7,8] that compute Rényi entropies, and from them,
the largest eigenvalues of reduced density matrices. Finally,
a different approach using a continuous-variable quantum
computer is considered in Ref. [9].

We will here present a quantum circuit that produces the
elements of the SVD of a pure bipartite state, that we will call
quantum singular value decomposer (QSVD). As we will see,
the circuit we propose is made of two unitaries, each acting
on a separate subpart of the system, that can be determined
in a variational way. The frequencies of the outputs of the
final state in the circuit deliver the eigenvalues of the de-
composition without further treatment. Also, the eigenvectors
of the decomposition can be recreated from direct action of
the adjoint of the unitaries that conform the system on trivial
states.

The key ingredient of the algorithm is to train the circuit
on exact coincidence of outputs. This is a subtle way to force
a diagonal form onto the state. It also provides an example
of a quantum circuit, which is not trained to minimize some
energy, but rather to achieve a precise relation between the
superposition terms in the state (other examples can be found
in Refs. [6,10–13]). We further verify the QSVD algorithm on
simulations.

A peculiar bonus of our approach is that the QSVD pro-
vides a means to perform a SWAP between parties without
ever having quantum communication between them. Another
one is that the QSVD can be turned into an encoder of
quantum information.
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Our proposal is a hybrid classical-quantum algorithm,
much in the spirit of recent developments in the field of
quantum computation for the noisy intermediate-scale quan-
tum (NISQ) era [14,15]. This means that the basic circuits
may be shallow (accuracy can be increased by increasing the
depth), and therefore amenable to implementation on near
term quantum computers without error correction.

II. CLASSICAL SINGULAR VALUE DECOMPOSITION

The singular value decomposition is a powerful mathemat-
ical technique, which is ubiquitously used to analyze tensors
with two indices. It simply says that any such tensor can be
cast onto a diagonal form using two unitary matrices that act
on each of its indices.

Let us briefly review how the SVD is computed. Consider
a bipartite pure state |ψ〉AB ∈ HA ⊗ HB,

|ψ〉AB =
dA∑

i=1

dB∑

j=1

ci j |ei〉A|e j〉B , (1)

where dA,B are the dimensions of the susbsystems Hilbert
spaces HA,B , {|ek〉A,B} are the computational-basis states in
HA,B , and the complex coefficients ci j obey a normalization
relation. This state can be written in its Schmidt form,

|ψ〉AB =
χ∑

i=1

λi |ui〉A|vi〉B , (2)

where χ is the Schmidt rank (i.e., the number of Schmidt
coefficients different from zero), which is always equal or
smaller than the minimum of dA and dB; λi are real positive
eigenvalues that can be sorted in decreasing order, and {|ui〉A}
and {|vi〉B} form a orthonormal basis for subsystems A and B,
respectively.

The analytical way to find the SVD of a given vector (1)
needs to start from the tensor ci j , then compute the reduced
density matrix for each subsystem, ρA = TrB|ψ〉AB〈ψ | and
ρB = TrA|ψ〉AB〈ψ |, and then perform two diagonalizations,
ρA = ∑χ

i=1 λ2
i |ui〉A〈ui| and ρB = ∑χ

i=1 λ2
i |vi〉B〈vi|. As a result,

the original vector can be cast in the basis of the eigenvectors
{|ui〉A} and {|vi〉B} of both diagonalizations that share the same
eigenvalues. The sign of each λi can be taken positive as a
phase can always be absorbed into either |ui〉A or |vi〉B.

Note that the Schmidt rank χ is in itself a first measure
of entanglement. Furthermore, the usefulness of the SVD
can be illustrated by computing the von Neumann entropy S
of this state for the A-B bipartition: S = −Tr(ρA log2 ρA) =
−Tr(ρB log2 ρB) = −∑χ

i=1 λ2
i log2 λ2

i . It also follows that all
Rényi entropies can be computed once the eigenvalues of the
SVD are known [16].

The classical construction of the SVD can only be used on
an actual quantum state after performing its full tomography.
Indeed, for a state made out of n qubits it is necessary to
perform measurements in 3n different settings (i.e., one for
each noncommuting combination of tensor products of Pauli
operators {σx, σy, σz}) to reconstruct the original tensor ci j

[17], and then perform all the computations sketched above.
Furthermore, the classical computation of the entropy to be
performed from the tensor describing the state may get out of

FIG. 1. Parametrized unitary transformations implementing the
quantum singular value decomposer (QSVD). Training is based on
demanding exact output coincidence for both parties and for every
measurement.

reach for large systems, since it scales exponentially with the
number of qubits.

III. CIRCUIT FOR QUANTUM SINGULAR
VALUE DECOMPOSER

Here we present a way to compute the eigenvalues and
obtain the physical eigenvectors of the SVD of a pure state
|ψ〉AB using a quantum circuit, that we will name QSVD
for quantum singular value decomposer. Our technique needs
copies of the original state.

The key idea of our method is to find a circuit that provides
the following transformation of the original state:

UA ⊗ VB |ψ〉AB =
χ∑

i=1

λi eiαi |ei〉A|ei〉B , (3)

where UA|ui〉A = eiβi |ei〉A and VB|vi〉B = eiγi |ei〉B, with αi =
βi + γi ∈ [0, 2π ); the i in the exponent is the imaginary unit.

The way to find the desired circuit emerges from the
following observation. Given that the new Schmidt bases for
the two subsystems are right away the computational-basis
vectors (up to individual global phases), each time we per-
form a measurement we should find exact output coincidence
between the respective observations in A and B (Fig. 1). Let us
consider the example of two subspaces of two qubits. Then,
if the result in the first subsystem turns out to be, e.g., 00,
the result in the second subsystem should also be 00. There
is always a pair of unitaries UA and VB achieving this exact
output coincidence, since they simply correspond to a change
of basis from the Schmidt eigenvectors.

Note that the entanglement spectrum between A and B (i.e.,
the eigenvalues {λi} of the reduced density matrices ρA, ρB)
has not changed, nor has the von Neumann entropy. This
allows us to obtain an estimation of the Schmidt coefficients
{λi}, which will just be the observed, normalized probabilities
for each possible coincident outcome for the two subsystems,
obtained from repeated preparation of the state, application
of the QSVD, and measurement. In turn, these coefficients
provide several entanglement figures of merit, such as the von
Neumann entropy.
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Once the two unitaries UA and VB have been obtained, it is
now possible to reconstruct the vectors that would be needed
in the original SVD, up to a complex phase. They simply
correspond to

e−iβi |ui〉A = U †
A |ei〉A, e−iγi |vi〉B = V †

B |ei〉B, (4)

where |ei〉 can be created by just applying X gates onto the
initial |00 . . . 00〉 state at the beginning of the computation.
The algorithm has taken the original state to a very specific
form, the one of exact output coincidence, to determine the
unitaries, and then the adjoint of the same unitaries are used to
reconstruct the eigenvectors. The global phases {βi, γi} are ir-
relevant in the characterization of the individual eigenvectors,
but if one is interested in the relative phases between these
vectors in the original |ψ〉AB, then one may need to resort to
tomography.

The algorithm we have presented has some extra degrees
of freedom. For the sake of clarity we explicitly demanded
exact output coincidence. But this is not necessary in a strict
sense. It suffices that each unique output from subsystem A
is matched by some other unique output from subsystem B.
This means that there is freedom of permutation for, say,
output from B. Such a permutation is just another unitary on
the B side. However, freedom of permutation (i.e., alternative
training) must be avoided in two further applications of the
QSVD (SWAP without quantum communication and quantum
encoder), which we will present below. Freedom of phase, in
contrast, does not have any effect on them.

Another obvious comment of the algorithm is related to
the possibility of having partitions with different dimensions.
In such a case, the larger subsystem will have a number
of irrelevant elements in its basis that will never tick on
measurement.

IV. VARIATIONAL QUANTUM SINGULAR
VALUE DECOMPOSER

The key role of the exact output coincidence is the guide
to construct a quantum circuit to perform this task. Indeed, it
is possible to train a variational version of the QSVD that will
approximate the exact QSVD.

We first need to construct the two needed unitaries as a
quantum circuit made of entangling gates and single-qubit
rotations. This circuit is thus characterized by a set of classical
parameters. We may choose, for instance, the architecture
shown in Fig. 5, where all the free parameters correspond to
angles of rotation for single qubits �� and �� for subsystem A
and B respectively. The variational form of the QSVD reads
now

|ψ〉AB
QSVD−−−→ UA( ��) ⊗ VB( ��) |ψ〉AB

=
χ∑

i=1

λi eiαi |ei〉A|ei〉B . (5)

At the outset, random values for the parameters might be
used and the circuit does not issue states that show exact
output coincidence for all measurements. A figure of merit
for the wrong answer is simply the total amount of noncoin-
cidental measurement outcomes, which will be minimized. In
order to help accelerate convergence, different outcomes for

each subsystem may be penalized by their Hamming distance,
which is just the number of symbols that are different in
the binary representation of the two results. Thus, the cost
function C to be minimized simply is

C ≡
∑

j

dH
(
MA

j , MB
j

) ≡
∑

q

1 − 〈
σ

q,A
z σ

q,B
z

〉

2
, (6)

where dH denotes the Hamming distance and MA,B
j are the

results of the jth measurement in the computational basis for
A and B, respectively. Equivalently, it can also be defined
in terms of two-local σz Pauli operators, where the index q
runs over all the qubits in the smallest subsystem. We may
now apply machine learning techniques to find the optimal
parameters that provide exact output coincidence. Notice that
this cost function has a value of zero if and only if the singular
value decomposition is successfully completed. Note as well
that it is defined in terms of two-local observables and there-
fore, it does not suffer, for circuits of depth O(log n), from
the problem of exponentially vanishing gradients [18]. We
emphasize that there is no need to perform any tomography,
nor to involve any measurement of nontrivial observables.
This simplification is related to the fact that there is no need to
measure any relative phase. Therefore, the QSVD implies an
exponential reduction in the number of measurement settings
compared to state tomography, which requires 3n.

The convergence of the method depends on two distinct
elements. First, the potential convergence of a variational
QSVD to the exact QSVD is controlled by the Solovay-Kitaev
theorem [19]. Indeed, we are just looking for an approxima-
tion to a unitary using a complete set of gates. This means that
there exists a quantum circuit that approximates the desired
unitary with error δ, i.e., |Uexact − U ( ��)| < δ, with a number
of gates k that scales as k ∼ logc 1

δ
, with 1 � c < 4, for a fixed

number of qubits [20]. In other words, the error in the unitary
may potentially decrease exponentially with the depth of the
circuit, for a fixed number of qubits. This, in practice, will
depend on the circuit ansatz and the success of the optimiza-
tion procedure. The number of layers of the variational circuit
(see Fig. 5) has to increase polynomially with the system
size. Under these conditions, a classical search algorithm
needs only to explore a polynomial number of dimensions.
Finding the optimal parameters may nonetheless encounter
exponentially vanishing gradients [21] or local minima for
deep quantum circuits, that need to be circumvented using
appropriate optimization strategies [22–26].

Second, the QSVD samples from a multinomial distribu-
tion. As such, the additive error for each output probability
pi scales as

√
pi(1 − pi )/s, where s is the number of sam-

ples. The total number of measurements is related to the
error which is aimed at, which in turn will depend on the
Schmidt rank. We may then consider two different cases: (i)
the Schmidt rank increases polynomially with the number of
qubits, and (ii) the Schmidt rank increases exponentially with
the number of qubits. In the first case (i), only a poly(n)
number of measurements is needed to achieve a low relative
error, whereas in a worst-case scenario (ii), this number is
exponential if one is to estimate all eigenvalues with a low
relative error. The latter case follows naturally from the fact
that we are asking for an exponential amount of information.
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FIG. 2. Left: Von Neumann entropy computed from the variational form of QSVD vs. exact entropy, for random states (including a product
state and AME state) of six qubits and natural bipartition. As the number of layers increases, we observe convergence towards the exact entropy.
Right: Mean relative error in the estimation of the entropy vs. number of layers (error bars represent the standard deviation). The error decreases
exponentially with the depth of the circuit, as suggested by the Solovay-Kitaev theorem.

However, many physically relevant states, e.g., in condensed
matter systems, do not exhibit an exponentially large Schmidt
rank [27].

The variational approach to the QSVD can be verified
on a simulation. We have considered random states with
ci j = ai j + i bi j such that ai j and bi j are random real numbers
between −0.5 and 0.5, further restricted by a global normal-
ization. These states tend to have very large entanglement
[28]. We have simulated states with a total number of six
qubits and natural bipartition, disregarding the presence of
experimental noise and the impact of finite sampling. We
have analyzed 500 instances for the one- and two-layers case,
and 200 instances for the three-, four-, and five-layers case.
The mean number of optimization steps is of the order of a
few hundreds. Figure 2 left shows the entanglement entropy
computed from the trained QSVD circuit vs. the exact entropy.

As suggested by the Solovay-Kitaev theorem, we observe
fast convergence of results for every instance we have ana-
lyzed (Fig. 2, right). The variational circuit approaches the
exact result as we increase the number of layers, whatever the
entanglement is. This is related to the fact that small-depth
quantum circuits can develop large entanglement [29]. In this
respect, it is worth mentioning that we have also analyzed
absolute maximally entangled (AME) states [30], for which
the convergence of the variational QSVD is fast and faithful.
Simulations with a higher number of qubits should be carried
out in the future.

V. SWAP WITHOUT CONNECTING GATES

A peculiar spinoff of the QSVD circuit is the possibility
of performing a SWAP operation between parties A and B
without using any gate that connects both subsystems. This
is in contrast with the standard SWAP, where each pair of
swapped qubits would need a series of CNOT gates.

The idea is shown in Fig. 3. It is enough to apply the QSVD
to |ψ〉AB , then apply the adjoint U † and V † gates but acting on
the opposite subsystem. That is:

(V †
A ⊗ U †

B ) (UA ⊗ VB) |ψ〉AB = |ψ〉BA . (7)

The implementation of the adjoint unitaries only need classi-
cal communication between parties A and B, since each uni-
tary is characterized by a set of classical parameters. Notice as
well that none of the gates will ever cross the barrier between
the two systems.

The possibility of performing a SWAP without quantum
communication opens the possibility of swapping at long dis-
tances. Let us imagine Alice and Bob received their pieces of a
given common state. They can then measure their copies and
notify publicly their results. Without further communication
they can improve their variational QSVD. After a number of
iterations, they will observe exact coincidence. Both parties
can then communicate classically the characterization of their
respective unitaries, and run once more the QSVD adding
the adjoint exchanged gates at the end. They will then have
achieved a long-distance SWAP without quantum interac-
tion. Of course, standard SWAP is much more powerful as
it acts on a single copy of any unknown state. The price
to be paid is the need for entangling gates across the two
subsystems.

FIG. 3. Application of the QSVD followed by the adjoint U †

and V † gates acting on opposite subsystems, mediated by classical
communication (CC) of the optimal parameters, allows us to perform
a long-distance SWAP operation without the need of any quantum
communication between subsystems.

062310-4



QUANTUM SINGULAR VALUE DECOMPOSER PHYSICAL REVIEW A 101, 062310 (2020)

FIG. 4. Further use of CNOT gates makes QSVD an encoder of
the original quantum state |ψ〉AB onto one of its parts |φ〉B.

VI. QUANTUM SINGULAR VALUE DECOMPOSER
AS A QUANTUM ENCODER

The QSVD algorithm has a further spinoff. Let us consider
for the sake of simplicity a system of n qubits where we apply
the QSVD algorithm to a given bipartition. If we consider
the final state of the circuit, the exact coincidence of the
parties can be used to set to |0〉 all the qubits of, e.g., party
A. It is only needed to apply a CNOT between each pair
of coincident qubits controlled at A and targeted to B, as
illustrated in Fig. 4. The QSVD plus a series of CNOTs
corresponds to a quantum encoder designed to compress the
initial state onto (CNOT1 . . .CNOTn/2) (UA ⊗ VB) |ψ〉AB =
|00 . . . 0〉A |φ〉B , where |φ〉B = ∑χ

i=1 λi eiαi |ei〉B . All the in-
formation of the original state has been packed into one
subsystem. The circuit being unitary, this encoding can be
exactly decoded back onto the total system.

The same idea can be reversed. Let us imagine that we
are interested in creating a random state that displays a
very precise entanglement structure. The procedure would
be to first manage to create the following superposition on
a subsystem |ψ〉A = ∑

i λi eiαi |ei〉A. Then a series of CNOTs
connecting each qubit to an ancilla would lead to |ψ〉AB =∑

i λi eiαi |ei〉A|ei〉B. Finally, the state can be randomized by
taking arbitrary unitaries on A and B.

VII. CONCLUSIONS

We have presented a quantum algorithm, QSVD, that pro-
vides Schmidt eigenvalues and eigenvectors of any bipartite
pure state, given many copies of it. Its key idea can be traced
to demand exact output coincidence on any measurement of
the two parties that make the system.

The QSVD can be used to analyze the entanglement, which
is present in the result of some algorithm. For instance, if a
variational quantum circuit is trained to minimize the energy
of, e.g., the Ising model, the final result can be run with the
addition of the variational form of QSVD. The results would
then allow us to check the logarithmic growth of the entropy
at criticality.

The QSVD seems to be a natural structure to achieve
a number of quantum tasks. Here we have analyzed the
possibility to achieve a SWAP operation without any gate that
connects qubits from both sides of the state. We have also
shown that QSVD plus a series of CNOTs is tantamount to
a quantum encoder.

FIG. 5. Architecture of the variational circuit employed in the
QSVD. Several layers of gates are applied in a consecutive manner in
order to improve accuracy, and the circuit always ends with a final set
of single-qubit rotations prior to measurement. The notation stands
for R(θα,β,γ ) ≡ Rz(θα )Rx(θβ )Rz(θγ ). If the number of qubits is odd
in a given subsystem, then an extra CZ between the first and last qubit
of the subsystem is added after each complete rotation.
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APPENDIX: VARIATIONAL ANSATZ
AND OPTIMIZATION PROCEDURE

The basic unit cell or layer of the variational ansatz em-
ployed in the simulations is shown in Fig. 5. These layers
are used as buildings blocks to construct deeper circuits, by
consecutively applying the architecture of the single layer,
followed by a final set of single-qubit rotations. The number
of layers on a circuit controls the accuracy of the estimation,
as previously discussed.

One layer has depth 8 (10 if the number of qubits of a
subsystem is odd), so the depth of the circuit as a function of
the number l of layers is 8l + 3 (10l + 3). The total number of
one-qubit gates is 6ln + 3n, where n is the number of qubits,
and that of two-qubit gates is ln (ln + 2l). Therefore, depth
and number of gates are efficient in both the number of qubits
and the number of layers.

The classical method employed in the optimization loop
was L-BFGS-B, which is gradient based and involves esti-
mation of the inverse Hessian matrix. We utilized the im-
plemented version of the open-source PYTHON package SCIPY

OPTIMIZE [31].
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