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Optimal control for the quantum simulation of nuclear dynamics
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We propose a method for enacting the unitary time propagation of two interacting neutrons at leading order of
chiral effective-field theory by efficiently encoding the nuclear dynamics into a single multilevel quantum device.
The emulated output of the quantum simulation shows that, by applying a single gate that draws on the underlying
characteristics of the device, it is possible to observe multiple cycles of the nuclear dynamics before the onset
of decoherence. Owing to the signal’s longevity, we can then extract spectroscopic properties of the simulated
nuclear system. This allows us to validate the encoding of the nuclear Hamiltonian and the robustness of the
simulation in the presence of quantum-hardware noise by comparing the extracted spectroscopic information to
exact calculations. This work paves the way for transformative calculations of the dynamical properties of nuclei

on near-term quantum devices.
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I. INTRODUCTION

First proposed in the 1980s by Feynman [1], quantum com-
puters are theorized to be exponentially more efficient than
any classical algorithm for the simulation of many-particle
systems that are described by nonrelativistic quantum me-
chanics [2]. A rich and complex subclass of such systems are
atomic nuclei, whose constituents are protons and neutrons,
known together as nucleons. A comprehensive solution of the
many-nucleon problem remains an outstanding challenge. In
particular, the vast majority of dynamical processes—such as
nuclear reactions—for the most part remains out of reach even
in the age of exascale classical computing.

Nascent demonstrations using a minimal discrete gate set
[3] on superconducting quantum devices have shown promise
for simulating quantum systems [4-21]. However, limitations
in gate error rates and quantum-device noise undermine their
efficacy when simulating real-time (unitary) evolution [22].
Because of this, the solution of few-nucleon problems on
presently available quantum computing resources [18] has
been limited to studies based on variational quantum eigen-
solver methods [23] making use of schematic nuclear inter-
action models. The development of alternative, noise-resilient
protocols capable of producing an efficient mapping into the
quantum hardware of the interactions of microscopic systems
is therefore desirable to arrive at a faithful representation of
real-time many-body dynamics.

Single-qubit gates obtained by including information about
the full (multilevel) Hamiltonian of the quantum hardware
are well known to demonstrate high-fidelity operations in
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superconducting circuits [24]. Multilevel superconducting
devices have also been used to demonstrate sophisticated
encodings with numerically optimized pulse sequences that
have proven to be quite promising in the field of hardware-
efficient quantum error correction [25-27]. In this paper,
we use these insights into high-fidelity, hardware-efficient
quantum computation to propose a quantum simulation of
real-time neutron-neutron dynamics, where the propagation of
the system is enacted by a single dense multilevel (or qudit)
gate derived from the nuclear interaction at leading order (LO)
of chiral effective-field theory (EFT) [28,29]. This interaction
displays the main features of the nuclear force, including the
characteristic tensor component of the single-pion exchange
potential.

To implement the quantum simulation, we map the nu-
clear Hamiltonian onto a four-level superconducting qudit,
specifically a three-dimensional (3D) transmon architecture
[30]. We enact the two-neutron gate with an effective drive
computed by using the gradient ascent pulse engineering
(GRAPE) [31] algorithm. Using the open source quantum
optics toolbox (QUTIP) [32], we then simulate the output of the
quantum device in the presence of realistic quantum hardware
noise. We show that the simulated time-dependent probability
density is only slightly attenuated as a result of the noise,
thus revealing all pairwise eigenenergy differences as peaks in
the spectra obtained from its discrete Fourier transform. We
further demonstrate that, by propagating the third power of
the nuclear Hamiltonian, we can extract the absolute energy
eigenvalues of the simulated quantum system without the use
of quantum phase estimation.

We structure this paper as follows: In Sec. II we describe
the neutron-neutron interaction. A review of the necessary
circuit quantum electrodynamics needed to implement the
nuclear simulation is presented in Sec. III. In Sec. IV, we
describe the mapping used to encode the nuclear degrees of
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FIG. 1. Schematic description of the leading-order nucleon-
nucleon interaction. The left diagram depicts a single pion exchange
while the middle and right diagrams depict a spin-independent and a
spin-dependent contact term, respectively.

freedom into a single four-level qudit. Finally, in Sec. V we
describe quantum device-level simulations from a Lindblad
master equation with realistic system noise, and we conclude
in Sec. VL.

II. SIMULATIONS OF NUCLEAR DYNAMICS

In modern nuclear theory, the description of nuclear prop-
erties and nuclear dynamics relies on an effective picture
where the underlying theory of quantum chromodynamics
(QCD) is translated into a systematically improvable ex-
pansion of the interactions between constituent nucleons by
means of chiral EFT [28,29]. The resulting nuclear force
presents a nontrivial dependence on the spins of the nucleon
pair. This dependence is manifest in two-nucleon systems, of
which only the proton-neutron pair forms a bound state—the
nucleus of deuterium or 2H—while both the proton-proton
and neutron-neutron pairs are unbound. At the same time,
it was empirically recognized from an early stage that the
force between two nucleons includes a tensor-like, spin-
dependent component [33-35]. The main interaction mecha-
nism at medium distance (&2 x 10~ m) [36] is the exchange
of a single pion, while at shorter distances one can effectively
recombine all the remaining processes (corresponding to the
exchange of multiple pions or heavier mesons) into a contact
force, depending on the relative spin state of the nucleons.
These characteristic features of the nucleon-nucleon interac-
tion are already captured by the leading order (LO) in the
chiral EFT expansion (see Fig. 1), where the Hamiltonian
H'© is given by the sum of two terms: A spin-independent
(SI) component Hg = T + Vg1, where T is the kinetic energy
of the nucleons and Vg a spin-independent portion of the
two-nucleon potential; and a spin-dependent (SD) component
of the interaction, Vsp, acting on the spin degrees of freedom.

In this paper, we devise a real-time propagation scheme for
the quantum simulation of two interacting nucleons. The evo-
lution with time ¢ of a generic state of the system |W) is given
by the formal solution of the time-dependent Schrodinger
equation for a time-independent Hamiltonian

|W(t)) = exp[—iH"Ot/h]|¥)
= exp[—i(T + Vs; + Vsp)t /]| W), (1)

where i = 4/—1 and 7 is the reduced Planck constant. In the
spirit of Feynman’s path integrals, the propagation time can
be broken up in a number of small intervals §¢, and Eq. (1)

can be well approximated by
exp[—iH"©81] ~ exp[—iHs8t /il exp[—iVspdt /Bl (2)

More explicitly, for the system of two neutrons considered
in this work, the SD interaction at a separation 7 = 7} — i can
be divided into a scalar and a tensor component as

Vso(F)=ADF) Y ogog + Y oa AL oh,  (3)
o B

where a(ff, o = x,y, z are Pauli matrices acting on the spin of
neutron k = 1, 2, and the functions A (7) and Afﬁ) (7) can be
obtained from the neutron-neutron interaction at LO of chiral
EFT in coordinate space. While the detailed expressions of
AD(#) and Afg (7) bear little relevance for the present general
discussion, their explicit functional form can be readily ob-
tained from, e.g., Ref. [37] or [38] and we provide an example
in Appendix A.

A further approximation of Eq. (2) can be obtained by
treating the neutrons as “frozen” in space for the duration of
the spin-dependent part of the propagation, reducing the two-
neutron problem to the description of two spins interacting
through the nuclear Hamiltonian of Eq. (3) at a fixed sepa-
ration. Under this approximation, the SI and SD components
of the propagator in Eq. (2) act exclusively on the spatial and
spin parts of the system, respectively. By projecting the state
|W(7)) onto a complete set of states |F, s152) = |[F) ® |s152),
normalized as (7, 5152/, s15%) = 8(F — X )3y, y,s,, the wave
function at an evolved time ¢ 4 §¢ can be written as

(F, 15| W(r + 81))

~> / a3 (7| exp[—i(T 4 Ver)5t /1] |%)

515
X (s1852] exp[—iVSD(E)St/hﬂs’ls’z)(7c, s155|1W@). @)

That is, for an infinitesimal time step, one can first carry out
the propagation of the spin part of the wave function keeping
the position of the neutrons fixed by using only the SD part
of the interaction, and then perform the spatial propagation
through the SI component of the Hamiltonian. The present
framework opens the possibility for a classical-quantum co-
processing protocol in which the propagation of the spin states
is carried out by a quantum processor. For the time being
we focus on the propagation of the spin component of the
two-neutron system, that is, on the application of the short-
time propagator (s152| exp[—iVsp (¥ )8t /il|s}s,). Specifically,
we are interested in obtaining the probability of the occupation
of each of the four possible spin states at a time ¢, starting from

an initial state |s§0)s(20)); that is,

N s N 2
Py (B, 1) = | (s152] expl—iVsp (o)t /Al OOV, (5)

III. CIRCUIT QUANTUM ELECTRODYNAMICS

We implement the propagator of Eq. (5) by means of
a superconducting circuit quantum electrodynamic (cQED)
system [39], consisting of a transmon [40,41] coupled to the
resonant mode of a microwave cavity. In the strong, dispersive
regime the resonance frequencies of each mode are separated
by many linewidths and produce well-resolved single-photon
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FIG. 2. Schematic potential-energy diagram of a transmon su-
perconducting quantum device as a function of the change of the
magnetic flux (¢) of the Josephson junction. The first four energy
levels are labeled in terms of their Fock number on the left side of the
potential-energy well while the right side shows the correspondence
to two-neutron spin states in the independent spin basis.

frequency shifts [42]. In particular, we adopt a 3D transmon
architecture [30], since its long coherence times [43] and
nonlinearities make it amenable to numerically optimized
pulse sequences. The full Hamiltonian for a 3D transmon
coupled to a readout cavity is [44]

22
Hy = horalar + hogahag — E |:c0s((/3) + %} (6)

where wr, wg and &;, &}; (ar, ag) are respectively the bare
frequency and creation (annihilation) operators of the trans-
mon and readout, E; is the Josephson energy, and ¢ is the
phase across the junction. The phase operator is given by
the sum of the operators for each mode according to ¢ =
Zj Cszf,j(&}L' +aj), where @, ; and &}(&j) are the zero-
point fluctuations and the creation (annihilation) operators
of the jth mode, respectively. A schematic of the potential
energy of the transmon mode in terms of the flux is presented
in Fig. 2. Also shown in the figure is a schematic of the first
four energy levels of the transmon (labeled in terms of their
Fock number), which span the computational space for the
nuclear simulation of this paper.

We make a unitary transformation into the frames of both
the transmon and readout cavities to simplify the numerical
optimization and to clarify the relevant quantum hardware
interaction terms. Expanding the cosine to fourth order, we
get

@) 9T 120 OR 42,2
H;” = _FZ?aT ar — hi—ag ag

—hxakarakar + 06", @
where a7 (ag) corresponds to the anharmonicity of the trans-
mon (readout) and x is the dispersive interaction between
the transmon and readout. The dispersive interaction enables
a quantum nondemolition readout [39] that—when coupled
to a phase-preserving quantum limited amplifier, such as
a traveling-wave parametric amplifier [45]—enables high-
fidelity, single-shot discrimination for all four computational
states [46].

IV. HARDWARE EFFICIENT ENCODING

As shown in Fig. 2, we use the lowest four energy levels
of our superconducting quantum device to encode the spin-
dependent interaction between two neutrons. The processor
mapping is as follows: The |0) Fock state of our processor
corresponds to the uncoupled spin state of || | ). Likewise, |1),
|2), and |3) correspond, respectively, to the uncoupled spin
states [{ 1), [14), and |11). To implement a single time step
of the digital-time simulation we drive the transmon with a
customized control pulse sequence. The approach adopted to
obtain the optimal control is described in the following.

For a single-mode transmon we can fully describe a time-
dependent drive in the frame of the transmon as [26]

A, = hei ()@} + ap) + iheg)@h —ap),  (8)
where Ez; (a;) creates (destroys) an excitation in the mode
and €;(¢) [ep(t)] is the in-phase (quadrature) time-dependent
coefficient. For a given digital-time step At we can then use
numerical optimization to find a particular control sequence
H.(1') that satisfies, within an acceptable error, the equality

exp (—%VgnAt) ~ T exp {—%/0 [1-7(54) + I-L(r’)]dr/},
9

where the left-hand side of the equation corresponds to the
desired short-time nuclear propagator (with the infinitesimal
time step 6¢ now replaced by the larger, finite Af). On the
right-hand side of Eq. (9), the notation 7 exp stands for a time-
ordered exponential, and t is the duration of the control pulse.

We solve the numerical optimization problem of Eq. (9)
by using QUTIP. Specifically, we employ the built-in prop-
agator function to create the short-time propagator U on
the left-hand side of the equation, which then becomes the
target unitary matrix Uy, for optimization using the opfi-
mize_pulse_unitary function. We use the SU fidelity, F =
Re(Tr (U, U T)/Tr(UtargUtLg)) to define the loss function for
optimize_pulse_unitary. We sample the pulse sequence at
32 giga-samples per second as we seek to leverage wide-
band control electronics that have shown great promise in
cQED systems [47]. We specifically choose the pulse dura-
tion to be 100 ns, which is relatively short compared with
the coherence time [30,43,48] of a superconducting qubit,
to minimize decoherence of the quantum states during the
drive. We also set the maximum drive strength to be 20 MHz
(corresponding to a 50 ns Rabi period), which can be attained
in experiments for various designs of superconducting qubits
[30,43,48]. To minimize numerical artifacts, we use six levels
in the 3D transmon during numerical optimization. We find
that, due to the transmon’s large anharmonicity, increasing or
decreasing the number of levels used in the optimization has
a negligible effect on the resulting output control sequence.
Including higher-order terms in the drift Hamiltonian has a
slight impact on the shape of the control sequence; however,
it seems to have negligible impact on the final simulations
of the time evolution. The initial guess control sequence is
a small-amplitude (<2 MHz) Gaussian drive for a duration of
100 ns. Given the complexity of the pulse sequence required
by the nuclear Hamiltonian, the optimization requires about
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FIG. 3. (a) Numerically optimized time-dependent drive in the
rotating frame of the ground-state energy transition of the transmon
device that at its completion enacts the short time propagator of
the nuclear Hamiltonian. (b) Discrete Fourier transform of panel
(a) showing the spectral components correspond to the underlying
energy transitions of the quantum device.

100 iterations to complete execution with an infidelity thresh-
old of less than 1074,

A typical result for the amplitudes of the control coeffi-
cients entering in Eq. (8) is shown in Fig. 3(a). The discrete
Fourier transform of this amplitude [shown in Fig. 3(b)]
highlights the underlying spectral features of the drive. One
can recognize peaks corresponding to the transitions between
states of the transmon. That is, the optimization procedure
finds the best time filter to enact the desired nuclear Hamil-
tonian by driving the different energy transitions of the 3D
transmon. Regardless of the initial conditions, when driven
with this control pulse, the system does not experience state
leakage out of the computational manifold. Shorter pulse se-
quences (smaller 7) are possible but require larger-amplitude
drives and the duration of the control pulse sequence is
strongly dependent on the maximally accepted drive ampli-
tude consistent with Ref. [49].

V. SIMULATED OUTPUT AND VALIDATION OF THE
QUANTUM DEVICE

We investigate the performance of our numerically opti-
mized pulse sequences by using a Markovian Lindblad master

equation,
2 hgw. o)+ ( ~Dla,) + ~Data,]
- = , —Dla —Dlaa ,
ot h QPU- £ T] r T¢ rarl |P
Hopy = 1‘754) + HA.(7), (10)

1
D[olp = dpo" — 5{6* b, p},

which is well suited for modeling the density matrix o of
driven-dissipative cQED systems [26,50-54]. We considered
two sources of noise: (i) energy relaxation and (ii) dephasing.
T is the transmon energy relaxation time, which, for these
simulations, we have assumed to be 30 ws, and Ty is the
transmon dephasing time, which is taken to be 50 ws. This
yields a total coherence time of 7, & 27 us, shorter than the
state of the art [26], giving us a conservative estimate of the
efficacy of our approach. Furthermore, we have assumed a
typical 3D transmon anharmonicity value of o7 = 200 MHz.
In an actual experiment, measurement noise would have to
be contented with; however, this noise mechanism does not
impact or spoil the quantum simulation and can be addressed
through statistical postprocessing [55-57].

In Fig. 4, we present (as solid lines and circles) the time-
dependent occupation probabilities of the two-neutron spin
states obtained from two different Lindblad master-equation
simulations. Specifically, the solid lines depict the solution
obtained from propagating the neutrons’ spin states by using
the exact spin-dependent term of the nuclear Hamiltonian
[Eq. (3)] with device noise terms scaled to the relevant nu-
clear interaction strengths. The circles represent the simulated
output probability distributions from the quantum device at
the culmination of a single pulse sequence (the intermediary
behavior during the application of the real-time propagation
gate is not shown) obtained with repeated applications of the
control sequence. As time progresses, the quantum device—
initially prepared in the || 1) state—evolves into an entangled
superposition of the four spin states. More interestingly, we
can observe multiple entire cycles of the dynamics before the
device reaches decoherence.

In the following, we show that the time dependence of the
occupation probabilities for each state encodes the eigenval-
ues of the spin-dependent term of the nuclear Hamiltonian
(Vsp). In general, any state |W(¢)) that results from the ap-
plication of the nuclear propagator can be decomposed into
the basis defined by the eigenvectors |¢;) of the corresponding
driving Hamiltonian (in this case Vsp o i) = Ajl$;)). Since the
latter is time independent, the expansion takes the form

W) = cje Mgy =3 e Mgy, (1)
J J

with coefficients c; = {¢;|W(¢)). Introducing the basis |£;) on
which device measurements are made, we can readily obtain
an expression for the time dependence of the probability of
measuring each state

[(&:1W (1))]?

2
i it/
E cibl e
J

= b, e (1)
Jjk
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FIG. 4. Occupation probabilities as a function of time. Colored circles depict the output probability as a function of simulation time step.
Each point is obtained by solving the Lindblad master equation and determining the overlap with the particular nuclear spin (Fock state) of
interest. The simulation includes dissipation and dephasing terms common in 3D transmon systems. Solid lines result from direct integration
of the interaction Hamiltonian and use dissipation and dephasing quantum device terms appropriately scaled to nuclear interaction strengths.
The collapse of the four probabilities at later times is a result of device decoherence.

where we have introduced the notation AAj, = A; — A for
the difference between any pair of eigenvalues and the overlap
b‘; = (&i|¢;). The consistency of the eigenvalue differences
extracted from the device’s signal with those computed an-
alytically can be used as a validation of the encoding of
the nuclear Hamiltonian and the quantum simulation of its
time evolution. This can be readily achieved by analyzing the
Fourier transform of the occupation probabilities.

In Fig. 5, we display the sum of the squared magnitudes
of the discrete Fourier transforms of the simulated occupation
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FIG. 5. Energy spectra. The solid line is the Fourier transform
of the || 1) state (first Fock state) time-dependent probability distri-
bution for the exact neutron-neutron interaction propagator (without
noise). The spectral lines correspond to all possible eigenenergy
differences. The circles correspond to the discrete Fourier transform
of the || 1) state (first Fock state) time-dependent probability dis-
tribution for repeated application of the n-n interaction digital time
propagator (including realistic 3D transmon decoherence). Even with
decoherence, the pairwise eigenenergies differences are discernible
in the spectra.

probabilities (i.e., the power spectra) obtained with the system
prepared at # = O in the state || 1) (which has nonzero overlap
with all the eigenstates of the spin-dependent interaction
Hamiltonian). The solid line with circles was computed by
using the solution of the master equation (10), whereas the
plain solid line (without circles) is the corresponding result
obtained from the evolution of the exact Hamiltonian in the
absence of noise. In a system spanning d different states, as
long as the state |\W(z)) has some nonzero overlap with all
measurement states, we expect to see d(d — 1)/2 peaks in
the power spectra. The degeneracy in two of the eigenvalues
reduces the total number of peaks seen in the spectrum in
Fig. 5 to three (see Appendix A), corresponding to all the
distinct pairwise differences of the four eigenvalues of Vsp.
Comparing the locations of these spectral peaks (w;) with the
A ji provides a first validation of the quantum simulation.

The locations of the peaks in the discrete power spectra
yield a good initial estimate of the physical values of w;. How-
ever, in general such values are not contained in the discrete
set of Fourier frequencies. Therefore, we adjust our estimates
by fitting both power spectra and probabilities against their
exact analytical forms combined with correlated Gaussian
noise in the time domain described by a given covariance
matrix X. The details of this fitting procedure are described in
Appendix B. The results of this analysis are summarized in
Table I, where we compare the extracted w; values and exact
pairwise differences A j between the four eigenvalues of
VSD. As can be seen, the two sets of values are in fair agree-
ment. The error of order 10~2 associated with the extraction of
the physical values w; provides an estimate of the resolution
of our quantum simulation.

In the remainder of this section, we show that the abso-
lute eigenvalues 1y can be further extracted without the use
of quantum phase estimation. Towards this aim, we label
the eigenvalues from smallest (Ap) to largest (A3). Out of
the three AXj; combinations shown in Table I, the largest
value corresponds to the difference A3 — Ay = «. By carrying
out a second quantum simulation in which the real-time
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TABLE I. Summary of the differences AAj; of the eigenvalues
of the operator Vsp computed analytically and simulated with a noisy
time propagation of the spin states, as described in text. The errors
have been attributed by using the analysis described in detail in
Appendix B.

Al ji Exact (MeV) w; Simulated (MeV)
Ay 2.5254 W) 2.55(2)
AVET 3.3951 o 3.41(3)
Alyg 5.9205 ws 5.93(1)

propagation of the system is driven by the third power of
the nuclear interaction Hamiltonian, \753D, and again Fourier
transforming the output probability distributions, we can then
find a second set of eigenvalue differences. Such a propaga-
tion has the advantage of leaving the resulting eigenvectors
unchanged but yielding new eigenvalues 1;. The locations of
the new peaks are now found at the differences of the cubes
of the eigenvalues, with the largest value corresponding to
)% — Ag = B. As a result, we obtain a nonlinear system of
two equations with two unknown parameters, which presents
two possible solutions for the extremal pair of eigenvalues
(Ao, A3):

a B a?
A= —o 13
T2 V3 12 (13)
A3 = + Ag. (14)

Of the two remaining eigenvalues A, A, one will be degener-
ate, with three possible cases, A = Ag, L] = Ay, Or A, = A3,
yielding a total of six distinct combinations of eigenvalues.
For each combination, the nondegenerate A; (1,) eigenvalue
is obtained by solving for the trace of the nuclear interaction
Hamiltonian. Because in the specific case considered here
this matrix is traceless, we modify it by adding a constant
diagonal matrix so as to induce a nonzero value for the trace.
We note that, even though, in principle, the dimensions of
the Hamiltonian matrix could be large, the trace still scales
linearly with increasing matrix size. Only one out of the six
possible combinations of eigenvalues will closely reproduce
the set of AXj, and this criterion is used to determine the
correct eigenvalues. The absolute eigenvalues obtained from
this analysis are summarized in Table II. For the extremal
eigenvalues, we find overall good agreement between the
exact values and those obtained from the noisy simulation of

TABLE II. Summary of the eigenvalues of the operator Vsp
from exact analytic calculations and as extracted from the real-
time nuclear simulation. Errors have been obtained by propagating
the uncertainties reported in Table I, as well as those from the
propagation of V.

Eigenvalue Exact (MeV) Simulated (MeV)
Ao.1 —2.329 —-2.3(2)
A2 1.066 0.9(6)
A3 3.592 3.6(2)

the system evolution. The error arising from the estimation of
the peak positions compounds for the case of A,.

VI. CONCLUSION

We presented a single-gate approach based on efficient
quantum-hardware mapping for realizing the real-time evo-
lution of the spin states of two interacting neutrons on a
four-level superconducting qudit. The interaction Hamiltonian
for the nuclear spins is obtained from the neutron-neutron
interaction at leading order of chiral effective-field theory by
fixing the relative position of the neutrons and retaining only
the spin-dependent components of the resulting potential. The
single, multilevel gate required for the faithful encoding of
the nuclear short-time propagator onto the quantum device is
obtained by numerical optimization, by leveraging the well-
known device Hamiltonian of 3D transmons.

To investigate the performance of our approach, we used a
Markovian Lindblad master equation to model the output of
the quantum device—initially prepared in the || 1) state and
then driven by the numerically optimized pulse (gate)—in the
presence of realistic quantum-hardware noise. The resulting
simulated output occupation probability shows that, with the
progression of time, the quantum device evolves into an
entangled superposition of the four spin states, and that the
signal is only slightly attenuated as a result of the noise.

Finally, we showed that thanks to the longevity of the
signal enabled by our single-gate approach to real-time propa-
gation, one can then compute the Fourier transform of the oc-
cupation probability and extract information about the energy
spectrum of the simulated nuclear system, which is one of the
fundamental properties one is interested in describing when
solving any many-body problem. Specifically, we related the
characteristic peak structure of the computed power spectral
density to the pairwise differences of the eigenenergies of
the adopted interaction Hamiltonian for the nuclear spins. We
then demonstrated, by additionally carrying out the real-time
propagation of the third power of the nuclear Hamiltonian,
that we can extract the absolute energy eigenvalues of the
simulated quantum system without the use of quantum phase
estimation.

In the present application, we confined our study to a sys-
tem of two neutrons at fixed relative position, thus disregard-
ing the evolution of their spatial wave function. More in gen-
eral, the real-time propagation scheme introduced in Sec. II
opens the possibility for a classical-quantum co-processing
protocol in which the propagation of the spin states is carried
out by a quantum processor while the spatial propagation is
performed with classical computing. Such a protocol would
provide a pathway to addressing the exponentially growing
number of spin configurations with increasing number of
nucleons, which is currently a major computational bottleneck
in simulating real-time evolution with quantum Monte Carlo
methods.

Finally, we note that optimal control as presented in this
work can be readily applied to a wide range of real-time
quantum simulations and is not restricted to nuclear physics
problems. Therefore, this work opens a meaningful pathway
for enabling transformative quantum simulations during the
noisy intermediate scale quantum hardware era.
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APPENDIX A

Following the notation of Ref. [38], the explicit form of
the functions A!)(7 ) and Aff?g (7) appearing in the expression
of the SD neutron-neutron interaction at LO of chiral EFT in
coordinate space [see Eq. (3)] are given by

ADF) = Ci8g,(F) — Yo (r)(1 — e*<r/R°>4), (A1)
Ay = T (3758 =8 ) (1 =™ 0"). (A2)
’ r

Similarly, the spin-independent part of the interaction can be
written as Vsi(7 ) = Cydg, (7 ). In the above expressions,
3R, (F) =

exp(—r/Ro) (A3)

'3/ 4)R8
is a regulated Dirac §(7) function, C; and C, are constants
that are typically fit to reproduce some experimental quantity
(such as, e.g., the s-wave nucleon-nucleon phase shifts), and

_m [ g4\ exp(—mr)
o=z (ag) e
and
Tn<r>=(1+ +%)Yn<r> (AS)
Mzr  mir

are functions entering the definition of the one-pion exchange
potential where g,, fr, and m, are respectively the axial-
vector coupling constant, the pion decay constant, and the
pion mass.

The spin eigenvalue decomposition of this Hamiltonian can
be computed exactly for all values of the internuclear sepa-
ration r, and yields three distinct eigenvalues: —3a, a — 4b,
and a + 2b, where a = AD(F) and b = T, (r)(1 — e~ /R,
The last eigenvalue (a + 2b) is associated with two degenerate

eigenstates.
In this work, we choose ||1) as the initial state
of the system. Letting 7=r((1—x*)"?cos¢e, +

(1 = x®)2sin ¢é, +xe;), the overlaps of the initial
state with the eigenstates of the nuclear interaction
Hamiltonian are

1

—3q) = ——,

(1 = 3a) 7

(Ll — 36y =~

=~
1 /1 —x2
(I Ma+2b), = E‘/m,
xe® [1—x2

(I Ma+2b), =

VA TET

The nuclear Hamiltonian is rotationally invariant. As a
result of this, the spectra of our frozen system are independent
of the direction 7. Rather than trivially choosing 7 to lie along
the z axis, which would have resulted in only two of the four
states mixing during the evolution, here we choose 7 to point
in a random direction, allowing us to explore more general
cases that one may encounter in an actual implementation
of this Hamiltonian on a quantum processing unit (QPU).
The results presented in this work were obtained with x =
0.382, ¢ = 2.71 rad and r = 3.5 fm. We used a time step of
0.30 MeV~.

APPENDIX B

The analysis of the uncertainty in the peak positions of the
Fourier transform of the time evolution of the probability of
finding the two neutrons in a given spin state begins with
the assumption that time-correlated Gaussian noise be suffi-
ciently descriptive to give us a better extraction of the peak
locations. The probability of measuring state m at time ¢ is
parametrized as

gnt,w)=d, + de_j cos(w jtdy, j sin(w;t), (B1)

J

where the set w are the locations of the peaks in the power
spectra. The real coefficients d,,,, d,, ;, and d~m, ;j are constrained
by using generalized least squares with covariance matrix X,
leaving the peak frequencies @ and the parameters needed to
construct X as the only free parameters to adjust. In the exact
evolution, d,, can be related to the coefficients in Eq. (12), and
similar relationships exist for d, ; and dy, j- In the frequency
domain, the power spectra at the frequencies f; of the discrete
Fourier transform are

2

Eu(fj, @) = +(FXTF");;,  (B2)

Zijgm(tjv (t))
k

where F j; is the discrete Fourier transform matrix and the
Gaussian noise has been marginalized over analytically. We
parametrize the covariance matrix as

5 _G=k?
Yk =0 Kminjke 2° ,

(B3)

where [ is the correlation length of our time-domain “noise,”
o is a parameter we fit that describes the overall scale of the
system noise, and «, linearly interpolates between x, = 1 to
k, = y with n being the number of time steps in the fit, while
y is fit to account for dissipation. The off-diagonal kernel

exp[— <j2—112c)2 ] is a simplistic way to account for the noise being
time dependent (i.e., dephasing at time ¢#; is going to depend
on state of system at earlier times, similar for infidelity). In
practice, the specific details of X have little impact on final
predictions for @ once there are enough degrees of freedom.
Finally, we constrain the peak frequencies by maximizing the
likelihood of the F;,, assuming a Gaussian likelihood function
with Gaussian priors on the frequencies @. The priors are
centered around the initial peak estimates from the discrete
Fourier transform with a lo width set by the difference
between adjacent frequencies.
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