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Direct reconstruction of the quantum-master-equation dynamics of a trapped-ion qubit
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The physics of Markovian open quantum systems can be described by quantum master equations. These
are dynamical equations that incorporate the Hamiltonian and jump operators and generate the system’s time
evolution. Reconstructing the system’s Hamiltonian and its coupling to the environment from measurements
is important both for fundamental research and for performance evaluation of quantum machines. Here we
introduce a method that reconstructs the dynamical equation of open quantum systems, directly from a
set of expectation values of selected observables. We benchmark our technique both by a simulation and
experimentally, by measuring the dynamics of a trapped 88Sr+ ion qubit under spontaneous photon scattering.
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I. INTRODUCTION

The evolution of open quantum systems, which are coupled
to a memoryless bath, are described by the Lindblad master
equation, ρ̇(t ) = L[ρ(t )] [1,2], where ρ(t ) is the system’s
density operator and L is the Lindbladian. The equation
generates dynamics due to the system Hamiltonian and, also,
due to ”jump operators,” which encode the coupling between
the system and the environment.

At fixed times, the evolution of open quantum systems
can be represented by the process matrix, which maps initial
density matrices, ρ(0), to final density matrices, ρ(t ). The pro-
cess matrix can be experimentally reconstructed by quantum
process tomography [3,4]. Quantum process tomography is
often used for computing the process fidelity with respect to
some desired quantum process and identifying different error
channels [5–8], but it does not characterize the system time
dynamics.

In contrast, reconstruction of the quantum dynamical
equations, i.e., reconstruction of the Hamiltonian and jump
operators, allows for decomposition of the different physical
mechanisms responsible for the overall evolution. Thus, it
allows for prediction of the system state at any time. For
Markovian systems, the reconstruction of the full time dy-
namics serves as a better tool for analyzing and optimizing
systems.

Here we propose a method for reconstruction of the sys-
tem’s Lindblad master equation, under the evolution of a time-
independent Hamiltonian and different decoherence channels,
induced by spontaneous scattering of photons by a single
88Sr+ trapped ion qubit. We focus on three decoherence
channels: amplitude damping, depolarization, and depolar-
ization accompanied by a coherent rotation. Our measure-
ments provide a direct reconstruction of the optical Bloch
equations [9].

The dynamics of the trapped ion, after tracing over the
scattered photon degrees of freedom and eliminating the
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short-lived excited states, is reduced to the dynamics of a 5S 1
2

ground-state Zeeman-qubit coupled to a memoryless environ-
ment. We show that, combined with high-fidelity preparation
and measurement, the reconstruction error is dominated by
quantum projection noise.

Dynamical reconstructions have been considered theoret-
ically [10–15], with various assumptions on the allowed dy-
namics (e.g., closed systems, local dynamics). Furthermore,
there have been experimental demonstrations of a Hamil-
tonian reconstruction [16] and of an open-system dynami-
cal reconstruction [17]. In the latter, the reconstruction was
performed by piecing together a sequence of independent
quantum process tomographies.

II. METHOD

Here we directly optimize an estimated Lindbladian by
using a cost function that compares our measured data with
corresponding data that are numerically generated by our
estimation. The resulting reconstructed Lindbladian is then
optimal for all measured quantities at all measurement times.
Figure 1 shows an example of such a reconstruction, due
to a series of measurements on a single trapped-ion qubit.
The qubit is coherently rotated and coupled to a depolariz-
ing channel (further information below). The measured data
(filled symbols) of different observables are compared to their
expectation values predicted by the reconstructed Linbladian
(lines), showing a good fit.

The evolution of any quantum system coupled to a mem-
oryless environment is described by the Lindblad dynamical
equation,

ρ̇(t ) = −i[H, ρ(t )] +
N2−1∑
n=1

γnLn[ρ(t )] ≡ L[ρ(t )],

Ln[ρ(t )] = Lnρ(t )L†
n − 1

2
{L†

nLn, ρ(t )},
(1)

where H is the system Hamiltonian, the γn’s are decoherence
rates, Ln are the jump operators, and N = 2n is the dimension
of an n-qubit Hilbert space. Here, and in what follows, we
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FIG. 1. Experimental data and corresponding reconstruction of a
single trapped-ion qubit. The qubit is coherently rotated and coupled
to a depolarizing channel (further information below). The data
(filled symbols) are obtained by initializing the qubit in the |↑〉 state
and measuring it after various evolution times, t . The plot shows the
probability of measuring a +1 eigenvalue of the σx (red circles),
σy (green squares), and σz (blue diamonds) Pauli operators. The
corresponding values of the resulting reconstruction (respectively,
solid red, dashed green, and dotted blue curves) fit well to the
experimental data. Both coherent oscillations and incoherent decay
are observed.

use h̄ = 1. We note that, similarly to Schrödinger’s equa-
tion, this is a linear equation, which can thus be denoted
by a single linear (super)operator, the Lindbladian L. This
trace-preserving, completely positive operation is then de-
scribed by 16n − 4n degrees of freedom; its exact form can
be found in Ref. [11].

Equation (1) is formally solved by exponentiation of the
Lindbladian,

ρ(t ) = T
[
e
∫ t

0 L(t ′ )dt ′]
ρ(t = 0), (2)

where T is the time-ordering operator. In this study we treat
time-independent systems, for which the time ordering can
be dropped and the integration is trivial. The operator L
contains all the information about the dynamics of the sys-
tem. Therefore, reconstructing the dynamics is equivalent to
obtaining L.

In principle, L can be reconstructed by taking the logarithm
of ρ(t ) at a fixed evolution time. However, this ”inverse”
reconstruction is unstable in the sense that small measurement
errors in ρ, which are inherent in any tomographic method,
can result in unbounded errors in the estimation of L, making
the problem ill conditioned [18,19].

Therefore, an alternative approach is required. Specifically
we consider a method where an estimated Lindbladian is
guessed out of the space of valid processes and iteratively
optimized. This is performed as follows; the experimental
system is prepared in well-defined initial states and measured
after multiple evolution times. These measurements are com-
pared to a calculation of the corresponding expectation values,
after evolution of the initial state given by Eq. (2). A suitable

Lindbladian is chosen by minimizing the difference between
the two results, evaluated for various initial states, evolution
times, and observables.

Specifically, we initialize the system to one of K fiducial
states, {|ψk〉}K

k=1, evolve it to time t (out of a sequence of times
in [0, T ]), and evaluate one of B observables, {Ob}B

b=1. The
measurement results are distributed according to

PL
b,k,t ( j) = 〈 jb|eLt [|ψk〉〈ψk|]| jb〉, (3)

with | jb〉 corresponding to the jth eigenvector of Ob such that∑
j PL

b,k,t ( j) = 1.
By performing M identical measurements and computing

the relative recurrence of the different outcomes we obtain a
probability distribution Pb,k,t ( j). In the presence of quantum
projection noise |Pb,k,t ( j) − PL

b,k,t ( j)| ∝ 1/
√

M.
The optimization then minimizes the sum of ”distances”

between the distribution, Pb,k,t ( j), and its reconstructed esti-
mate, P̂b,k,t ( j), via the cost function,

C =
√

1

N

∑
b,k,t

[d (P̂b,k,t , Pb,k,t )]2 + ε(L̂), (4)

where N is a normalization such that
∑

b,k,t 1 = N , P̂b,k,t ( j) is
inferred from the current estimation of L using Eq. (3), and
d (x, y) is a premetric [25].

In practice, we choose the Kullback-Leiblar divergence
as our premetric [20], as it has been shown numerically
to yield favorable results. That is, we set dKL(x, y) =∑ j=J

j=1 x( j) log x( j)
y( j) , where J is the number of possible out-

comes. For spin- 1
2 J = 2.

We have included a penalty function to Eq. (4), ε(L̂), which
is used to impose a priori constraints on the reconstruction.
Here we use it in order to penalize reconstructions with rates
that are faster than the sampling rate, i.e., excluding processes
which oscillate faster than the Nyquist frequency.

For a single qubit it is convenient to choose the Pauli
matrices as the measurement basis Ob = σb, with b = x, y, z,
and the fiducial states {|0〉, |1〉, |+〉 = |0〉+|1〉√

2
, |i〉 = |0〉+i|1〉√

2
}.

For a single qubit there are at most two measurement results,
so we can drop the j index. The resulting 12 time series
Pb,k,t are linearly independent and sufficient to reconstruct the
Lindbladian.

A single-qubit process has an appealing geometric inter-
pretation on the well-known Bloch sphere, for which all pure
states reside on the sphere surface and all mixed states reside
within its volume. The system evolution is then a ”movie” in
which the Bloch sphere, which represents all initial system
states, continuously rotates and deforms.

Hamiltonian rotations map pure states onto pure states
and require three degrees of freedom: two for choosing the
rotation axis and one for the rotation angle. The jump oper-
ators can be decomposed to dilation and displacement of the
Bloch sphere. For dilation, three degrees of freedom specify
an orthogonal Cartesian system and three other degrees of
freedom specify squeezes along each orthogonal direction.
Displacement by a vector makes use of an additional three
degrees of freedom. In total, a single-qubit Lindblad equation
is determined by 12 parameters.
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FIG. 2. A benchmark of our reconstruction method through sim-
ulation. The reconstruction error, εr , as defined in Eq. (5), for a
varying number of repetitions per observable, M (log scale). Each
point corresponds to the average error due to 10 000 randomly
chosen independent simulated processes (blue). The shaded gray
background marks where 68% of the errors of the different processes
are. Inset: The infidelity, defined in Eqs. (4) and (6). Error bars
represent one standard deviation. Clearly the infidelity shows a
behavior similar to that of εr , validating its practical use as a stopping
criterion.

To benchmark our method we randomly choose 10 000
processes and simulate measurement results in the presence of
quantum projection noise. We then employ our reconstruction
method. The reconstruction error is evaluated as

εr = ‖Loriginal − Lestimate‖F, (5)

where Loriginal is the randomly chosen Lindbladian, and
Lestimate is its corresponding reconstructed Lindbladian, both
in their matrix form (see [11]), and ‖X‖F =

√
Tr(X †X ) is the

Frobenius operator norm [26].
Figure 2 shows the resulting reconstruction error of this

benchmark as a function of the repetitions per observable. As
expected the reconstruction error in Fig. 2 improves with an
increasing number of repetitions and reduction of quantum
projection noise.

Since experimentally the original Lindbladian is unknown,
the reconstruction error in Eq. (5) is not accessible and, there-
fore, cannot serve as a stopping criterion for the optimization
iterations. Therefore, we also use the numerical benchmark
to evaluate the infidelity of reconstruction after the numerical
search has concluded. We define the reconstruction infidelity
using the expression in Eq. (4), this time with the C2 metric,
i.e.,

dC2 (x, y) =
√√√√1

J

J∑
j=1

[x( j) − y( j)]2, (6)

defined on the probabilities x( j) and y( j). This metric is
helpful since, with it, the infidelity is simply the root mean
square of the differences between the reconstructed distribu-
tion and the measured Pb,k,t (e.g., the vertical distance between

the symbols and the solid lines in Fig. 1). As such, for an
ideal reconstruction the resulting infidelity is the root mean
square of the measurement noise. In the case of a spin- 1

2 with
quantum projection noise, the average infidelity is bounded by
0.5√

M
, where M is the number of repetitions per observable.

The inset in Fig. 2 shows the infidelity evaluated for the
reconstructions above. As shown, the average infidelity is
bounded by .5√

M
(solid black line), the maximal projection

noise due to M measurements. As the projection noise de-
creases, both the reconstruction error and the infidelity de-
crease as well, indicating that the infidelity is a valid stopping
criterion for the reconstruction iterations.

III. EXPERIMENTAL RESULTS

We demonstrated the reconstruction method on a single
88Sr+ ion, trapped in a linear Paul trap. We used the 5S 1

2

Zeeman manifold as the effective qubit states. Coherent
transitions between the two qubit levels are induced by a
radio-frequency field tuned to the Zeeman transition. The
fast-decaying 5P1

2
and long-lived 4D 5

2
manifolds are coupled

to the qubit states by 422- and 674-nm laser fields respectively.
These lasers allow for state preparation by optical pumping
and state measurement by state-dependent fluorescence. Due
to the 1:14 branching ratio probability of decay from the 5P1

2

level to the 4D 3
2

manifold, it is repumped by a 1092-nm laser
(for further information see [21] and [22]).

The open memoryless dynamics is tailored by using the
S → P transition, which effectively acts as a Lindbladian
in the qubit subspace. For example, an amplitude damping
channel [Fig. 3(a)] is implemented by illuminating the ion
with a σ−-polarized 422-nm laser (green arrow). This induces
transitions from the |↑〉 qubit state to the 5P1

2 ,− 1
2

state, which
then quickly decays back to the qubit subspace, i.e., it opti-
cally pumps the qubit to the |↓〉 state. A depolarization chan-
nel [Fig. 3(b)] is implemented by illuminating the ion with
a π -polarized 422-nm laser, which cycles both qubit states
through the 5P1

2
manifold. As a result, the |↑〉 state decays to

the |↓〉 state, and vice versa. Using the above open quantum
channels and coherent qubit rotations we implemented three
dynamics: amplitude damping, depolarization, and depolar-
ization accompanied by coherent rotation. Figure 3 illustrates
the corresponding levels and couplings.

We reconstructed the ion-qubit dynamics using the meth-
ods above. We evaluated each Pb,k,t by averaging M = 625
measurements per observable. This bounds our projection
noise per data point by 0.5/

√
M, i.e., 0.02. The resulting infi-

delities are 0.008, 0.016, and 0.0096 for amplitude damping,
depolarization, and depolarization with coherent rotation of
the qubit, respectively.

Using the reconstruction of these three channels, we were
able to reconstruct the master equation behind the dynamics
we implemented. Using the reconstructed equations we can
graphically present these dynamics as movies of the Bloch
sphere evolving in time. The reconstructed movies are pro-
vided in the Supplemental Material [27]. Figure 4 shows
snapshots of the Bloch sphere evolution movie for the case
of amplitude damping. On the Bloch sphere this is seen as a
deflation towards the |↓〉 state, represented by the north pole,
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FIG. 3. Physical picture and corresponding two-level dynamics.
(a–c) Relevant level structure of the 88Sr+ ion, coupling fields,
and spontaneous decay channels, showing the 5S 1

2
qubit manifold

(two lower levels) and the short-lived 5P1
2

manifold (two upper
levels). D 3

2
and D 5

2
are not shown here since their contribution

is negligible. (d–f) The corresponding open dynamics induced on
the qubit manifold. (a, d) Amplitude damping. A σ−-polarized
422 -nm laser field (green arrow) optically pumps the |↑〉 state to
the |↓〉 state, generating a spontaneous decay effect (yellow line)
and a decoherence effect (purple line). (b, e) Depolarization channel.
A π -polarized 422-nm laser field (green arrows) excites both qubit
states with a π transition to the 5P1

2
manifold, which decay in

a Raman process (purple arrows), generating a decay to the fully
mixed state, or in a Rayleigh process (yellow arrows), which leaves
the state unchanged. (c, f) Depolarization channel, with coherent
rotation. A π -polarized 422-nm laser field excites both qubit states
to the 5P1

2
manifold in σ+ and σ− transitions (green arrows), which

decay in a Raman process (purple arrows), generating a dephasing,
or in a Rayleigh process (yellow arrows), generating decay to the
fully mixed state. In addition, we use a radio-frequency field (red
arrow), on-resonance with the qubit transition, to generate coherent
oscillations between the two qubit states.

FIG. 4. Snapshots of Bloch sphere reconstruction movie of am-
plitude damping (full movie provided in the Supplemental Material
[27]). The Bloch sphere is shown at four times, t = 0.2, 1, 3, and
9 μs. The snapshot order is top-left, top-right, bottom-left, bottom-
right. The sphere shrinks at the north pole, indicating that all initial
states relax to the |↓〉 state.

FIG. 5. Snapshots of the Bloch sphere reconstruction movie of
depolarization (full movie provided in the Supplemental Material
[27]). The Bloch sphere is shown at four times, t = 1, 6, 16, and
37 μs. Here the sphere shrinks at the origin, indicating that all initial
states relax to the fully mixed state.

as expected. The Bloch sphere does not rotate, indicating that
there is no unitary Hamiltonian dynamics involved.

The main jump operators we recover are |↓〉〈↑| and |↑〉〈↑|,
where the latter has a rate two times higher than the former due
to the corresponding Clebsch-Gordan coefficients. A direct
solution of the Lindblad equations shows that this results in a
dechorence rate which is 1.5 times higher than the population
decay rate. Our reconstruction recovers the ratio 1.55 ± 0.15.
On the Bloch sphere this is seen as an elongation in the ẑ
direction.

Figure 5 shows the results of the reconstructed master
equation in the depolariztion channel. Here we mainly recon-
struct the jump operator |↑〉〈↓|, and its conjugate [Fig. 3(e);
purple arrows], caused by Raman photon scattering. On the
Bloch sphere this is seen as a deflation of the sphere towards
the center, corresponding to the limit of a thermal state of an
infinite-temperature system.

We note that jump operators of the form |↑〉〈↑| and |↓〉〈↓|,
i.e., Rayleigh scattering operators, do not appear in the dy-
namics. This is because Rayleigh scattered photons [Fig. 3(b);
yellow arrows] do not contain information about the qubit
state in this case. Thus the deflation rate of the sphere in
the ẑ axis is faster than in the x̂ and ŷ directions, giving rise
to anisotropy in the depolarization process. Such Rayleigh
scattering, however, does contribute a coherent σz rotation due
to a Stark-shift effect [23,24].

So far we have only discussed purely nonunitary processes.
However, often decoherence occurs during Hamiltonian dy-
namics. As a simple demonstration, we use a σx drive. This is
implemented by turning on an on-resonance radio-frequency
field which coherently couples the two qubit states and, in the
absence of decoherence, generates Rabi oscillations between
them.
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FIG. 6. Snapshots of the Bloch sphere reconstruction movie of
depolarization while the qubit is coherently rotated (full movie
provided in the Supplemental Material [27]). The Bloch sphere is
shown at four times, t = 1, 11, 23, and 54 μs, along the system
evolution. Here the sphere shrinks at the origin while rotating around
the x̂ axis.

Figure 6 shows a depolarization channel while the qubit is
coherently rotated with a σx operator. Here the depolarization
channel is implemented by using a π polarization of the
422-nm laser field, generating both σ− and σ+ transitions.
This generates an anisotropic depolarization due to the jump
operators |↑〉〈↓| and |↓〉〈↓|, with the latter at twice the decay
rate, corresponding to the σ+ transition, and the jump opera-

tors |↓〉〈↑| and |↑〉〈↑|, with the latter at twice the decay rate,
corresponding to the σ− transition.

Due to the coherent rotation the Bloch sphere rotates
around the x̂ axis. This interchanges the |↑〉 and |↓〉 with the
|+i〉 and |−i〉 eigenstates of σy at the edges of the ŷ axis, lead-
ing to an equal decay rate of all four states. The σx eigenstates
decay at a faster rate, therefore the corresponding spheroid
becomes squeezed along the x̂ axis and gradually becomes
symmetric around it. Notably, the previous symmetry around
the ẑ axis is now broken.

IV. CONCLUSIONS

We have presented a general method of reconstructing
the Lindblad dynamical equation from sets of observables
over time. We used simulations in order to devise a stop-
ping criterion for the reconstruction method and verified
that the reconstruction error is small and comparable to the
measurement shot noise. Furthermore, we have demonstrated
our method on a trapped 88Sr+ ion qubit in three different
open quantum system dynamics channels, implemented using
spontaneous photon scattering. Our measurements constitute
a direct reconstruction of the optical Bloch equations [9].
Our method is applicable both for verification of engineered
dynamics and for investigation of unknown processes and
noise.

ACKNOWLEDGMENTS

This work was supported by the Crown Photonics Center,
the Israeli Science Foundation, the Israeli Ministry of Science
Technology and Space, and the Minerva Stiftung.

E.B.A. and Y.S. contributed equally to this work.

[1] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely
positive dynamical semigroups of Nlevel systems, J. Math.
Phys. 17, 821 (1976).

[2] G. Lindblad, On the generators of quantum dynamical semi-
groups, Commun. Math. Phys. 48, 119 (1976).

[3] I. L. Chuang and M. A. Nielsen, Prescription for experimental
determination of the dynamics of a quantum black box, J. Mod.
Opt. 44, 2455 (1997).

[4] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R.
Parekh, U. Chabaud, and E. Kashefi, Quantum certification and
benchmarking, arXiv:1910.06343.

[5] M. Riebe, K. Kim, P. Schindler, T. Monz, P. O. Schmidt, T. K.
Korber, W. Hansel, H. Haffner, C. F. Roos, and R. Blatt, Process
Tomography of Ion Trap Quantum Gates, Phys. Rev. Lett. 97,
220407 (2006).

[6] A. Shabani, R. L. Kosut, M. Mohseni, H. Rabitz, M. A. Broome,
M. P. Almeida, A. Fedrizzi, and A. G. White, Efficient Measure-
ment of Quantum Dynamics via Compressive Sensing, Phys.
Rev. Lett. 106, 100401 (2011).

[7] A. V. Rodionov, A. Veitia, R. Barends, J. Kelly, D. Sank, J.
Wenner, J. M. Martinis, R. L. Kosut, and A. N. Korotkov,

Compressed sensing quantum process tomography for super-
conducting quantum gates, Phys. Rev. B 90, 144504 (2014).

[8] N. Navon, N. Akerman, S. Kotler, Y. Glickman, and R. Ozeri,
Quantum process tomography of a Mølmer-Srensen interaction,
Phys. Rev. A 90, 010103(R) (2014).

[9] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-
Photon Interactions: Basic Processes and Applications (Wiley,
New York, 1992).

[10] V. Buzek, Reconstruction of Liouvillian superoperators, Phys.
Rev. A 58, 1723 (1998).

[11] N. Boulant, T. F. Havel, M. A. Pravia, and D. G. Cory, Ro-
bust method for estimating the Lindblad operators of a dis-
sipative quantum process from measurements of the density
operator at multiple time points, Phys. Rev. A 67, 042322
(2003).

[12] C. Di Franco, M. Paternostro, and M. S. Kim, Hamiltonian
Tomography in an Access-Limited Setting without State Initial-
ization, Phys. Rev. Lett. 102, 187203 (2009).

[13] J. Zhang and M. Sarovar, Quantum Hamiltonian Identification
from Measurement Time Traces, Phys. Rev. Lett. 113, 080401
(2014).

062305-5

https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1080/09500349708231894
https://doi.org/10.1080/09500349708231894
https://doi.org/10.1080/09500349708231894
https://doi.org/10.1080/09500349708231894
http://arxiv.org/abs/arXiv:1910.06343
https://doi.org/10.1103/PhysRevLett.97.220407
https://doi.org/10.1103/PhysRevLett.97.220407
https://doi.org/10.1103/PhysRevLett.97.220407
https://doi.org/10.1103/PhysRevLett.97.220407
https://doi.org/10.1103/PhysRevLett.106.100401
https://doi.org/10.1103/PhysRevLett.106.100401
https://doi.org/10.1103/PhysRevLett.106.100401
https://doi.org/10.1103/PhysRevLett.106.100401
https://doi.org/10.1103/PhysRevB.90.144504
https://doi.org/10.1103/PhysRevB.90.144504
https://doi.org/10.1103/PhysRevB.90.144504
https://doi.org/10.1103/PhysRevB.90.144504
https://doi.org/10.1103/PhysRevA.90.010103
https://doi.org/10.1103/PhysRevA.90.010103
https://doi.org/10.1103/PhysRevA.90.010103
https://doi.org/10.1103/PhysRevA.90.010103
https://doi.org/10.1103/PhysRevA.58.1723
https://doi.org/10.1103/PhysRevA.58.1723
https://doi.org/10.1103/PhysRevA.58.1723
https://doi.org/10.1103/PhysRevA.58.1723
https://doi.org/10.1103/PhysRevA.67.042322
https://doi.org/10.1103/PhysRevA.67.042322
https://doi.org/10.1103/PhysRevA.67.042322
https://doi.org/10.1103/PhysRevA.67.042322
https://doi.org/10.1103/PhysRevLett.102.187203
https://doi.org/10.1103/PhysRevLett.102.187203
https://doi.org/10.1103/PhysRevLett.102.187203
https://doi.org/10.1103/PhysRevLett.102.187203
https://doi.org/10.1103/PhysRevLett.113.080401
https://doi.org/10.1103/PhysRevLett.113.080401
https://doi.org/10.1103/PhysRevLett.113.080401
https://doi.org/10.1103/PhysRevLett.113.080401


BEN AV, SHAPIRA, AKERMAN, AND OZERI PHYSICAL REVIEW A 101, 062305 (2020)

[14] E. Bairey, I. Arad, and N. H. Lindner, Learning a Local Hamil-
tonian from Local Measurements, Phys. Rev. Lett. 122, 020504
(2019).

[15] E. Bairey, C. Guo, D. Poletti, N. H. Lindner and I. Arad,
Learning the dynamics of open quantum systems from local
measurements, New J. Phys. 22, 032001 (2020).

[16] L. E. de Clercq, R. Oswald, C. Flühmann, B. Keitch, D.
Kienzler, H.-Y. Lo, M. Marinelli, D. Nadlinger, V. Negnevitsky,
and J. P. Home, Estimation of a general time-dependent Hamil-
tonian for a single qubit, Nat. Commun. 7, 11218 (2016).

[17] M. Howard, J. Twamley, C. Wittmann, T. Gaebe, F. Jelezko,
and J. Wrachtrup, Quantum process tomography and Linblad
estimation of a solid-state qubit, New J. Phys. 8, 33 (2006).

[18] P. J. Rousseeuw and A. M. Leroy, Robust Regression and
Outlier Detection (Wiley, New York, 1987).

[19] A. Tarantola, Inverse Problem Theory (Elsevier Science, Ams-
terdam, 1987).

[20] S. Kullback and R. A. Leibler, On information and sufficiency,
Ann. Math. Stat. 22, 79 (1951).

[21] N. Akerman, Y. Glickman, S. Kotler, A. Keselman, and R.
Ozeri, Quantum control of 88Sr+ in a miniature linear Paul trap,
Appl. Phys. B 107, 4 (2012).

[22] N. Akerman, Ph.D. thesis, Weizmann Institute of Science, 2012.
[23] N. Akerman, S. Kotler, Y. Glickman, and R. Ozeri, Reversal

of Photon-Scattering Errors in Atomic Qubits, Phys. Rev. Lett.
109, 103601 (2012).

[24] Y. Glickman, S. Kotler, N. Akerman, and R. Ozeri, Emergence
of a measurement basis in atom-photon scattering, Science 339,
1187 (2013).

[25] A premetric is a generalization of a distance function. It satisfies
d (x, y) � 0 and d (x, y) = 0 iff x = 7. That is, it is in general not
symmetric and does not satisfy the triangle inequality.

[26] A norm between matrices that is invariant under a change of
basis. For diagonalizable matrices it is equal to

√∑
i λ

2
i , where

the λi’s are the eigenvalues.
[27] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.101.062305 for Bloch sphere evolution re-
construction movies.

062305-6

https://doi.org/10.1103/PhysRevLett.122.020504
https://doi.org/10.1103/PhysRevLett.122.020504
https://doi.org/10.1103/PhysRevLett.122.020504
https://doi.org/10.1103/PhysRevLett.122.020504
https://doi.org/10.1088/1367-2630/ab73cd
https://doi.org/10.1088/1367-2630/ab73cd
https://doi.org/10.1088/1367-2630/ab73cd
https://doi.org/10.1088/1367-2630/ab73cd
https://doi.org/10.1038/ncomms11218
https://doi.org/10.1038/ncomms11218
https://doi.org/10.1038/ncomms11218
https://doi.org/10.1038/ncomms11218
https://doi.org/10.1088/1367-2630/8/3/033
https://doi.org/10.1088/1367-2630/8/3/033
https://doi.org/10.1088/1367-2630/8/3/033
https://doi.org/10.1088/1367-2630/8/3/033
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1007/s00340-011-4807-6
https://doi.org/10.1007/s00340-011-4807-6
https://doi.org/10.1007/s00340-011-4807-6
https://doi.org/10.1007/s00340-011-4807-6
https://doi.org/10.1103/PhysRevLett.109.103601
https://doi.org/10.1103/PhysRevLett.109.103601
https://doi.org/10.1103/PhysRevLett.109.103601
https://doi.org/10.1103/PhysRevLett.109.103601
https://doi.org/10.1126/science.1229650
https://doi.org/10.1126/science.1229650
https://doi.org/10.1126/science.1229650
https://doi.org/10.1126/science.1229650
http://link.aps.org/supplemental/10.1103/PhysRevA.101.062305

