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Noncontextuality inequalities are usually derived from the distinguishability properties of quantum states,
i.e., their orthogonality. Here, we show that antidistinguishability can also be used to derive noncontextuality
inequalities. The Yu-Oh 13-ray noncontextuality inequality can be rederived and generalized as an instance of our
antidistinguishability method. For some sets of states, the antidistinguishability method gives tighter bounds on
noncontextual models than just considering orthogonality, and the Hadamard states provide an example of this.
We also derive noncontextuality inequalities based on mutually unbiased bases and symmetric informationally
complete positive operator-valued measures. Antidistinguishability based inequalities were initially discovered
as overlap bounds for the reality of the quantum state. Our main contribution here is to show that they are also

noncontextuality inequalities.
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I. INTRODUCTION

Quantum contextuality has its origins in work of Bell [1]
and Kochen and Specker [2], where they proved a no-go
theorem ruling out deterministic hidden variable theories in
which the value assigned to an observable is independent
of how you measure it. In recent years, contextuality has
attracted increasing attention for its role in quantum informa-
tion processing advantages [3—10] and explaining the power
of quantum computation [7,11-19]. For these purposes, it is
useful to find new classes of noncontextuality inequalities and
to find the tightest possible bounds on them.

Noncontextuality inequalities are usually based on the
orthogonality properties of sets of quantum states, or, equiva-
lently, they are based on our ability to perfectly distinguish
sets of quantum states. A powerful method for deriving
bounds on noncontextuality inequalities from the orthogonal-
ity graphs of events has been developed by Cabello, Severini,
and Winter (CSW) [20,21]. A similar method, also exploring
our ability of perfectly distinguishing between objects, has
been applied to Bell inequalities to provide tighter bounds
[22].

In this paper, we show that the antidistinguishability prop-
erties [23]' of quantum states can also be used to derive
noncontextuality inequalities. Our method reproduces the in-
equality used in the Yu-Oh 13-ray proof of contextuality [24],
giving more intuition behind its structure and allowing us
to propose several generalizations. In some cases, when we
apply both the CSW method and our method to the same set
of states, we get a much tighter bound on the noncontextuality
inequality.

*Corresponding author: crsilva@chapman.edu
! Antidistinguishability also goes by the names PP incompatibility
[25] and conclusive exclusion of quantum states [51].
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The concept of antidistinguishability was proposed in [25],
and played a key role in the proof of the Pusey, Barrett, and
Rudolph (PBR) theorem [26]. The aim of the PBR theorem
was to address the question of whether the quantum state is a
state of reality, akin to a point in phase space for a classical
particle (known as the i-ontic view of quantum states), or
a state of knowledge, more akin to a probability distribution
over phase space (known as the i -epistemic view). The -
epistemic view has a lot of advantages, as many otherwise
puzzling phenomena, including the indistinguishability of
non-orthogonal quantum states and the no-cloning theorem,
are easily explained by the fact that the probability distribu-
tions representing nonorthogonal quantum states can overlap
in a Y¥r-epistemic model [23,27,28]. The PBR theorem showed
that, within a standard framework for realist models, known as
the ontological models framework [29], only -ontic models
are possible.

However, the PBR theorem is based on additional assump-
tions beyond the bare ontological models framework, and
these assumptions have attracted criticism [30-32]. Subse-
quently, there was an effort to determine what could be proved
about the reality of the quantum state without such additional
assumptions. It was shown that y-epistemic models exist in
all finite Hilbert space dimensions [33,34]. This led to the
definition of maximally -epistemic models [35-37]> and
the study of overlap bounds for probability distributions in
ontological models [38—42].

In order for the yr-epistemic explanations of quantum
phenomena to work, it is not enough that there is just some
amount of overlap of probability distributions, but the overlap
should be comparable to the degree of indistinguishability
of the quantum states. This was ruled out by showing that
it would imply that the ontological model is noncontextual

2Nonmaximally v -epistemic models were originally defined under
the name deficient models in [37].
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[23,35], which is ruled out by existing contextuality proofs.
Noncontextuality inequalities can then be used to bound the
degree of overlap in an ontological model, and one class of
overlap bounds is based on doing exactly this with CSW
inequalities [39].

However, another class of overlap inequalities was pro-
posed in the literature based on the antidistinguishability of
quantum states [38,40—42] and it was not obvious whether
these have anything to do with contextuality. Our main result
is to rederive these inequalities as noncontextuality inequal-
ities, which means that all the antidistinguishability overlap
bounds in the literature can now be reinterpreted as noncon-
textuality inequalities. We also rederive and generalize some
other noncontextuality inequalities that have appeared in the
literature [24,43] by showing that they are examples of the
antidistinguishability-based construction.

The rest of this paper is organized as follows. In Sec. II we
review the mathematical framework of contextuality scenarios
as developed in [44], slightly generalized to allow for both
measurements with a fully specified set of outcomes and those
with an underspecified set. This is the framework in which
we prove our results. In Sec. III, we give a definition of
antidistinguishability for contextuality scenarios that gener-
alizes the existing definition for quantum states. Section IV
contains our main results. It introduces the notions of strong
and weak pairwise antisets, which are sets of outcomes in
a contextuality scenario such that any pair of them together
with another outcome in a specified set is antidistinguish-
able. Our main result shows that there is a noncontextuality
inequality associated with any pairwise antiset. Section V
gives examples of pairwise antisets in quantum theory and
their associated noncontextuality inequalities, showing how
existing inequalities can be rederived and generalized in this
approach. The proof of our main results is given in Sec. VI
and Sec. VII concludes with a summary and outlook.

II. CONTEXTUALITY SCENARIOS

This section reviews a slightly generalized version of the
contextuality scenario framework developed in [44]. After
introducing the basic definitions, we review the concepts of
value functions in Sec. Il A and quantum models in Sec. 11 B.
These describe the possible noncontextual and quantum real-
izations of contextuality scenarios respectively. Section II C
reviews the concept of states on a contextuality scenario,
which describe the observable probabilities in noncontextual,
quantum, and more general models. The aim is to arrive at a
general framework for discussing noncontextuality inequali-
ties, which are inequalities satisfied by noncontextual states,
but not necessarily quantum or more general states.

Definition 1. A contextuality scenario € is a structure € =
(X, M, N') where

(i) X is a set of outcomes,

(i) M is a set of subsets of X such that if M, M € M
then M' ¢ M. An M € M is called a (measurement) context;

(iii) N is a set of subsets of X such that if M € M then
M g N andif NN € Nthen N’ ¢ N. AnN € N is called a
maximal partial (measurement) context.

Finally, a contextuality scenario is finite if X is a finite set.

(a) A classical contextuality scenario.

(b) A partial classical contextuality scenario.

FIG. 1. Examples of classical contextuality scenarios with five
outcomes.

The idea of a contextuality scenario is that you have a
system on which you can perform several different measure-
ments. X is the set of all possible measurement outcomes. A
context M € M is the full set of distinct outcomes that can
occur in some possible measurement. Note that the condition
that M contains no sets that are subsets of other sets in M
is not usually imposed in the literature, but is true of all the
interesting examples.

A maximal partial context N € A is a set of outcomes
that can occur as the outcome of some possible measurement,
but not necessarily the full set. We allow for the set of
outcomes of some measurements to be incompletely specified.
For example, a failure to detect the system at all could count
as an unspecified outcome. In this respect, our definition of
a contextuality scenario is slightly more general than that of
[44], which only has M.

Note that all the contextuality scenarios we use in this
paper are finite, so we will assume this going forward without
further comment.

A contextuality scenario with no maximal partial contexts
is a specific type of hypergraph, and, in general, a contextual-
ity scenario can be seen as is a generalization of a hypergraph
with two kinds of hyperedges.®> We can draw diagrams of them
by denoting contexts with solid lines and maximal partial
contexts with dashed lines, as in the following examples.

Example 1. A classical contextuality scenario has a finite
set X of outcomes, M = {X}, and N' = . A partial classical
contextuality scenario has a finite set X of outcomes, M = {4,
and N = {X}. In words, every set of outcomes can, and indeed
does, occur together in a single realization of a measurement.
These scenarios are depicted in Fig. 1.

Example 2. The Specker triangle [45] is the contextuality
scenario with X = {a, b, ¢}, M = {{a, b}, {b, c}, {c, a}}, and
N = @, as shown in Fig. 2.

Example 3. The following is an example of an antidis-
tinguishability scenario that we will make use of later.
It has both contexts and maximal partial contexts. Set
X ={ai, a2, a3,af,ay, a3}, M = {{at,ay,a7}}, and N =
{{a1, ai'}, {az, ay}, {as, a3 }}. This is shown in Fig. 3.

Example 4. A quantum contextuality scenario is con-
structed as follows. Let X be a set of pure states (unit vectors

3Instead of generalizing the concept of a hypergraph, we could
simply have considered a coloring process on the hyperedges of
such a hypergraph. Assigning different colours to different kinds of
hyperedges, we would end up drawing essentially the same graphs as
shown in Fig. 1.
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FIG. 2. The Specker triangle.

with vectors differing by a global phase identified) in a Hilbert
space H. A subset M C X is in M iff M is an orthonormal
basis. A subset N C X is in A iff the states it contains are
pairwise orthogonal, it is not a basis (i.e., it is incomplete),
and it is not a subset of any other M € M or N € N.

As an example, consider the six states
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Inspection of the orthogonality relations shows that the quan-
tum contextuality scenario generated by these states is the
antidistinguishability scenario of example 3.

A. Value functions

Definition 2. A value function v : X — {0, 1} on a con-
textuality scenario € = (X, M, \) is a function that assigns
a value O or 1 to every outcome such that

(1) Forevery M € M, v(a) = 1 for exactly one a € M.

(ii) Forevery N € N/, v(a) = 1 for at most one a@ € N.

The set of all value functions on € is denoted V.

Definition 3. For a contextuality scenario € = (X, M, N)
and an outcome a € X, an a-definite value function is a
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FIG. 3. An antidistinguishability scenario.

value function such that v(a) = 1. The set of a-definite value
functions is denoted V.

The idea of a value function is that it is a deterministic
assignment of outcomes to every measurement. For every
context, one of the outcomes must occur because the context
contains the full set of possible outcomes of that measure-
ment, so the chosen outcome is assigned the value 1. For
partial contexts, one of the unspecified outcomes may be the
actual outcome of the measurement, so we only demand that
at most one outcome is assigned the value 1.

Value functions are noncontextual because they are defined
directly on X. A given a € X may occur in more than one
(maximal partial) context, as in the Specker triangle, but the
value assigned to the outcome is not allowed to depend on
which context is being measured.

Note that not all contextuality scenarios have value func-
tions. For example, in the Specker triangle, we would have to
assign value 1 to exactly one of each pair {a, b}, {b, c} and
{a, c}. By symmetry, we can start by assigning 1 to any of
the three outcomes, so let’s choose a. Then we must assign 0
to b because of the pair {a, b} and 0 to ¢ because of the pair
{a, c}. But then neither b nor c is assigned the value 1, which
contradicts the requirement that exactly one of the pair {b, c}
is assigned the value 1.

There are also quantum contextuality scenarios that have
no value functions. This is the content of the Bell-Kochen-
Specker theorem [1,2].

B. Quantum models

Definition 4. A quantum model of a contextuality scenario
¢ = (X, M, N) consists of

(1) A choice of Hilbert space H.

(i1) For every a € X, a projection operator P, onto a closed
subspace of H such that

—Forevery M € M, )" ., P, = I, where [ is the identity
operator.

—Forevery N e N,a,be Nanda # b, P,P, = 0.

A quantum model represents every context by a projective
quantum measurement and every maximal partial context by
a subset of the projectors in such a measurement.

Not all contextuality scenarios have a quantum model.
The Specker triangle is again an example. The context {a, b}
implies that P, + P, =1,so P, =1 — P,, and {a, c} that P, =
I — P,. Then, {b, c} implies that P, + P, = I, and substituting
the previous two equations into this gives P, = I /2, which is
not a projection operator.

Clearly, if we start with a quantum contextuality scenario
then it has a quantum model, i.e., the projectors onto the states
that define the model, but it also has other quantum models.
For example, applying a unitary transformation to all the states
preserves their orthogonality structure, so it gives us another
quantum model.

The Bell-Kochen-Specker theorem implies that there are
contextuality scenarios that have a quantum model, but no
value functions. However, whenever there is a value function
there is a quantum model.

Proposition 1. 1f a contextuality scenario € = (X, M, N)
has a value function then it also has a quantum model.
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Proof. Let H = Hy,, i.e., the Hilbert space with orthonor-
mal basis vectors labeled by the elements of V. For every
a € X, define the projector

Po=Y_ [v)(vl.

veV,

This defines a quantum model.

To see this, let M € M. Notice that the sets V, fora € M
are disjoint because each value function assigns value 1 to
exactly one element of M. They also cover the whole set V¢
because every value function assigns value 1 to some element

of M. Thus,
DP=)) )l

aeM aeM veV,

=> =1

veVe

Now let N € A and consider a, b € N, a # b. We have

PPy=" %" [o)(|w)(w| =0,

veV, wev,

because V, and V,, are disjoint. |

C. States

Definition 5. A state w : X — [0, 1] on a contextuality
scenario € = (X, M, N) is a function that assigns a proba-
bility to every outcome such that

(i) Forall M € M,
> w@) =1.

aeM

(ii) For all N € NV,

Zw(a) <.

aeN

The set of states on € is denoted S¢.

A state is an assignment of probabilities to outcomes that
is compatible with every (maximal partial) context having a
well-defined probability distribution. For the maximal partial
contexts, we only demand that the probabilities add up to
something less than or equal to 1 because it is possible to put
probability weight on the unspecified outcomes.

For a classical scenario, the states are exactly the probabil-
ity distributions on X and for a partial classical scenario, they
are the subnormalized probability distributions on X .

The Specker triangle has exactly one state: w(a) = w(b) =
w(c) = % which can be obtained by solving the equations
defining the state space.

There are also scenarios with no states, the sim-
plest being X = {al, ay, as, bl, bz, b3}, M= {{(ll, ap, (13},
{b1, by, b3}, {ay, b1}, {az, ba}, {as, b3}} and N = (. The first
two contexts require w(a;) + w(ay) + w(az) = 1 and w(b;) +
w(by) + w(b3) =1, so that

3
> lw(a)) + w(b))] = 2.

j=1

However, the last three contexts require w(a;) + w(b;) =1
for j =1, 2, 3, and hence

[w(a;) + w(b))] = 3,

3
=1

J

which is a contradiction.

We can represent a state by a vector in the space RX where,
for each a € X, w(a) is the component of the vector in the
direction corresponding to a. In this representation, the state
space is a convex polytope because it is defined by a finite set
of linear equations and inequalities and every component is
bounded between 0 and 1.

Definition 6. A Kochen-Specker (KS) noncontextual state
on a contextuality scenario € = (X, M, N) is a state @ such
that

w(@) =Y py(a),

veVe

where p, is a probability distribution on Vg, i.e., 0 < p, < 1
and ) .y pv=1.

The set of KS noncontextual states on € is denoted Cg. A
state w that is not contained in Cy is called a contextual state.

Viewed as a subset of RX, C¢ is also a convex polytope
because there are a finite number of value functions which
define its vertices.

If we observe probabilities in an experiment that agree
with a KS noncontextual state then we can imagine that
there is always a definite noncontextual outcome for each
measurement, and the observation of probabilities that differ
from O or 1 is just due to our ignorance of which value
function holds in each particular run of the experiment. On
the other hand, contextual states cannot be understood in this
way.

Definition 7. A quantum state on a contextuality scenario
¢ = (X, M, N) is a state w such that there exists a quantum
model and a density operator p on ‘H (the Hilbert state of the
model) for which

w(a) = Tr(P,p).

The set of quantum states on € is denoted Q¢.

The set of quantum states is the set of observable probabil-
ities for a contextuality scenario that is realized as a quantum
experiment. If we find a contextual quantum state then this
is a proof that quantum mechanics is contextual. The set of
quantum states is a compact convex set, but not necessarily a
polytope [46].

Definition 8. A state independent noncontextuality in-
equality for a contextuality scenario € = (X, M, N) is a
linear inequality of the form

> caw(@) < v, 3)

aeX

where c,, . € R, which is satisfied for all w € Cg.

A state dependent noncontextuality inequality is an in-
equality of the form of Eq. (3) that is satisfied for all ® € C¢
that also satisfy some additional set of constraints.

If, having derived a state independent noncontextuality

inequality, we find a state w such that Za ex Caw(a) > y., then
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FIG. 4. The Klyachko contextuality scenario.

this is a proof that w is contextual. The kind of additional con-
straints that might be imposed in a state dependent inequality
are things like w(a) = 0 for some specified outcome. In this
case, if we find a state such that Zan cqw(a) > v, that also
satisfies the additional constraints, then this is a proof that @
is contextual.

Note, the inequalities that we derive in this paper have ¢, €
{0, 1} for all a € X, but more general inequalities are possible.

The terminology state independent, or dependent, inequal-
ity that we have introduced here should be contrasted with
the notions of state independent or dependent proofs of con-
textuality, which are common in the literature [24]. In a state
independent proof, once a quantum model is fixed for a con-
textuality scenario, we find that ) _, c,w(a) is completely
independent of the quantum state w chosen so all quantum
states are contextual in that model. In a state dependent
proof, the value varies with w, so whether the inequality is
violated, and by how much it is violated, depends on the
state chosen. A state independent inequality can be the basis
of either a state independent or dependent proof, depending
on the details of the quantum model chosen, but a state
dependent inequality necessarily leads to a state dependent
proof, since the inequality does not hold for all choices of
state.

Example 5 (Klyachko inequality [47,48]). Con-
sider the Klyachko contextuality scenario € =
X, M,N) with X =1{0,1,2,3,4}, M=0 and N =
{{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 0}} as depicted in Fig. 4.
Then,

Za)(a) <2

aeX

is a state independent noncontextuality inequality.

To see this note that, for a KS noncontextual state of the
form w(a) = ZveV¢ pyv(a), we have

Dowa=) ) pua)

aeX aeX veVg

=Y Yy v

veVe aeX

< max [Z v(a)},

aeX

where the last line follows from convexity.

It is easy to see that, for any v € Vg, v(0) + v(1) + v(2) +
v(3) + v(4) < 2. By symmetry, we can start by assigning
v(0) = 1, which implies that v(1) = v(4) = 0. Then we could
assign v(2) = 1, which requires v(3) = 0, or v(3) = 1, which
requires v(2) = 0. Either way, we get an upper bound of 2 for
the sum.

Proposition 2. For any contextuality scenario €, Cg C
Q¢ C S¢. There exist contextuality scenarios in which both
inclusions are strict.

Proof. The inclusion of C¢ and Q¢ in S¢ is trivial, since
both are defined as subsets of states, so we only have to prove
Ce¢ C Q¢. Proposition 1 shows how to construct a quantum
model from the set of value functions. If we have a KS non-
contextual state of the form w(a) = Zvev¢ pyv(a) then we
can construct a density operator p = ZUE% pu|v){(v| on the
Hilbert space of the corresponding model. It is straightforward
to show that this yields the same probabilities.

For the strictness, consider a noncontextuality inequal-
ity Y ,cx caw(a) < y. and let y, be the largest value of

4ex Caw(a) obtainable from a quantum state. If y, > v,
and there exists a state with Zan cq,w(a) > y, then the
inclusions are strict. The Klyachko scenario and inequality are
an example of this. It can be shown that y, = V5>2=y.
for this scenario [20,21,49]. However, w(0) = w(1) = w(2) =
w(3) = w(4) = 1/2is a valid state and this has ) _, w(a) =
5/2 > /5. [ ]

III. ANTIDISTINGUISHABILITY

In this section, we review the concept of antidistin-
guishability, which was originally introduced under the name
PP incompatibility in [25] and rebranded as antidistin-
guishability in [23]. Although antidistinguishability is usu-
ally discussed for sets of quantum states, here we de-
fine it for sets of outcomes in a contextuality scenario.
In a quantum contextuality scenario, the outcomes, which
are elements of orthonormal bases, can also be regarded
as pure quantum states. Therefore, in a quantum con-
textuality scenario, antidistinguishability of outcomes and
of pure quantum states amounts to the same thing. In a
general contextuality scenario, where there need not be a
self-duality between states and measurement outcomes, this
would not be the case. Although the concept of antidistin-
guishability of states is more natural, antidistinguishability
of outcomes is what we need to prove noncontextuality in-
equalities.

062113-5
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We start this section by giving our general definition, then
explain how it reduces to the usual definition for quantum
contextuality scenarios, and then state a useful theorem from
[25] that characterizes antidistinguishability for sets of three
pure quantum states. We will use this to establish examples
of antidistinguishability-based noncontextuality inequalities
in Sec. V.

Definition 9. In a contextuality scenario € = (X, M, \),
a set of outcomes {ay, az, ..., a,} C X is antidistinguishable
if there exists outcomes af-, aé‘, R afl- € X such that

(i) There exists a context M € M with {af-, aj-, R aj-} -
M.

(i1) For each j € [n], there exists a context or a maximal
partial context N; such that {a;, aj*} C N;.

(iii) For each outcome a € M\{all, aj-, SN afl-} and each
aj, there exists a context or maximal partial context N such
that {a,a;} C N.

Example 3 is a simple example of a set of three antidistin-
guishable outcomes.

To understand this better, it is useful to look at how
definition 9 applies to the quantum case in more detail.

Example 6. A set {|a;), ..., |a,)}, n < d of states in C?
is antidistinguishable if there exists an orthonormal basis
{la)t, ..., la)"*, ..., lag)*} such that

(ajla;) =0, V j €n] (4)
and
(arlaj) =0,V jelnlkeln+1,d]. (5)

The idea of antidistinguishability for states is that if one
of the states |a,), ..., |a,) is prepared and you do not know
which then there exists a measurement that allows you to
definitively rule out one of the states. It should be contrasted
with distinguishability in which there exists a measurement
that allows you to tell exactly which state was prepared.
Antidistinguishability is weaker than distinguishability.

Equation 5 states that the vectors |a;) are in the subspace
spanned by |a;)* for k € [n]. This rules out the trivial case
where we choose all these |a;)* to be orthogonal to every
la;) for every j. This is also the reason for the third clause
in definition 9.

The following theorem from [25], provides a useful char-
acterization of antidistinguishability for sets of three pure
states, as it avoids the need to construct the antidistinguishing
measurement explicitly.

Theorem 1. Consider a set A = {|a,), |az), |as)} of three

states and let x; = [(a2]a3)|?, x2 = |(a1|az)|?, x3 = [{a1]az)|*.
Then, A is antidistinguishable iff

X1+x+x3 <1, (6)

(1 +x2 +x3 — 1)? > 4xyx0x;3. @)

The following corollary, as stated in [50], gives a simpler
sufficient condition for antidistinguishability that is easier to
check. It follows by substitution into Egs. (6) and (7).

Corollary 1. Consider a set A = {|a;), |ay), |az)} of three

states and let x; = [(az]a3)|?, x2 = [{a1]az)|?, x3 = [{ai|a2)|*.
Then, A is antidistinguishable if
X1, %0, %3 < 5. (3)

Additional criteria for antidistinguishability have been
proved for more general cases [51,52], but we shall not need
them here.

IV. NONCONTEXTUALITY INEQUALITIES FROM
ANTIDISTINGUISHABILITY

This section describes our main results. We can use the
concept of antidistinguishability to derive noncontextuality
inequalities based on pairwise antisets. These come in two
versions—strong and weak—which are used to derive state
independent and state dependent inequalities respectively.

The notion of a weak pairwise antiset, applied to states
rather than outcomes and not explicitly named, was used in
[38] to derive overlap bounds on the reality of the quantum
state. Other examples of this construction were given in
[40,42]. In light of our results, these bounds can now be
reinterpreted as state dependent noncontextuality inequalities.
The notion of a strong pairwise antiset allows us to show that
some of these inequalities are actually state independent.

After defining pairwise antisets and stating our main re-
sults, Sec. V gives examples of our construction for quantum
contextuality scenarios. The proof of our main results is given
in Sec. VL.

Definition 10. A strong pairwise antiset W in a contextu-
ality scenario € = (X, M, N) is a set of outcomes for which
there exists a context M € M such that, for every a, b € W
and ¢ € M, the triple {a, b, c} is antidistinguishable.

The context M is called a principal context for the pairwise
antiset W.

Definition 11. A weak pairwise antiset W in a contextu-
ality scenario € = (X, M, N) is a set of outcomes for which
there exists another outcome ¢ € X such that, for every a, b €
W, the triple {a, b, c} is antidistinguishable.

The outcome c is called a principal outcome for the pair-
wise antiset W.

We are now in a position to state our main results.

Theorem 2. Let W be a pairwise antiset in a contextuality
scenario € = (X, M, N). If W is strong then any state w € C¢
satisfies

Z w(a) < 1. 9)

acW

If W is weak then any w € C¢ that also satisfies w(c) = 1 for
a principal outcome c satisfies Eq. (9).

V. EXAMPLES

Before proving Theorem 2, here are some interesting ex-
amples of pairwise antisets that occur in quantum contextu-
ality scenarios and the noncontextuality inequalities that arise
from them.

A. Strong pairwise antisets

In this section, we give examples of strong pairwise anti-
sets and state independent inequalities.

Example 7 (The Yu-Oh inequality). As a first example, we
re-derive a noncontextuality inequality first given in [24] using

062113-6



NONCONTEXTUALITY INEQUALITIES FROM ...

PHYSICAL REVIEW A 101, 062113 (2020)

Theorem 2. Consider the following four vectors in C3:

-1
1 1
lar) = —=|1]. laa)=—7| 1 |
| V3 1 ’ V3 1
1 1 1
laz) = —=| —=1|. las)=—4| 1 (10)
3 A 1 4 NG B
These form a strong pairwise antiset with principal basis
1 0 0
let) =10), le2d=|1], lea)=]0]. Y
0 0 1

The triple {|cy), |a1), |a;)} was shown to be antidistin-
guishable in Example 4. The other triples {|c;), |ax), |an)}
for k # m are antidistinguishable because they have the same
inner products so they satisfy the conditions of Theorem 1.
Theorem 2 thus implies the noncontextuality inequality

4
Zw(aj) <1 (12)
j=1

However, the four states |a;) satisfy

im-)(aw—fl
. J J _3 ’
j=1

where [ is the identity operator. This implies that for any
quantum state w, the quantum predictions are

4 4
Za)(a.j) ==>1. (13)
j=1 3

In [24], the inequality of Eq. (12) was derived by applying
an exhaustive search over noncontextual assignments to the
orthogonality graph of 13 rays in C3 (see [53] for more
details). Here we only used seven rays, but the other rays used
in [24] are just the elements of the orthonormal bases that are
required to antidistinguish the triples used in our argument.
Rederiving the inequality using Theorem 2 shows that it was
based on antidistinguishability all along, and this allows us to
easily generalize the example.

Example 8 (Hadamard states). The Yu-Oh construction
can t;e generalized as follows. Consider the following vectors
in C*:

_1X1
_lxz
1 _IX3

lax) = — , (14)
V)
_1Xd

where x = (x1,...,x;) is a binary vector in {0, 1}". This
means that, ignoring normalization for the moment, the com-
ponents of |a,) are all either +1 or —1 and as we run through
the possible vectors x we get all possible combinations of
+1 components. There are 2¢ such vectors. These vectors are
called Hadamard states because they can be thought of as

the possible columns of Hadamard matrices. In addition, let
{10, 1), ..., |d — 1)} be the standard orthonormal basis for
C4, which we will use as the principal basis (in the sense of
def. 10).

Now, obviously, not all triples {|j), |ax), |ay)} are antidis-
tinguishable because some pairs |a,), |ay) only differ by a
phase, i.e., |ay) = —|ay). In this case, |(ay|ay)|? = 1 and so
Eq. (6) of Theorem 1 is not satisfied. We can eliminate such
cases by only considering binary vectors x that begin with a 0.
Denote this set Bg and the set of binary strings that begin with
alby B‘f. Both sets contain 2¢~! vectors.

Restricting to Bg, the triples {|j), |ax), lay)} satisfy the
conditions of Theorem 1 for x # x" and so Theorem 2 implies
that noncontextual states satisfy

Za)(ax) <1. (15)

d
xeBj

Since the vectors in B‘f represent the same set of rays, we
can run the same argument and obtain

Y wla) < L. (16)

xeB{

Adding the two inequalities gives

Z w(ay) < 2. (17)

xe{0,1}4

Although it is not necessary to add the inequalities like this, it
is a bit cleaner to work with the full set of vectors of size 2¢
rather than two sets of size 247!,

For the quantum probabilities we note that

Z Iax)(ax| :dl Z (_1)Xj+xk.

xe{0,1)4 ik xe{0,1)

For j = k, each term in the sum is +1, so the diagonal com-
ponents are all 2¢ /d. For j # k, the off-diagonal components
are all O because there are as many vectors in which x; = x;
as there are in which x; # x; so there are an equal number of
+1’s and —1’s in the sum.

Thus, we have

d

2
> ladlad = =1,

xe{0,1)4

so the probabilities for any quantum state w are

2d
Y wla) ==, (18)

xe{0,1}¢ d

This is larger than 2 whenever d > 3, which yields another
state independent contextuality proof.

Hadamard states, combined with the Frankl-Rodl theorem
[54], have previously been used to prove noncontextuality
inequalities and to bound quantum information protocols
[55-57]. From a modern perspective, this amounts to consid-
ering the orthogonality properties of Hadamard states instead
of their antidistinguishability, and applying the CSW formal-
ism [20,21]. From this, we find that there exists an € > 0 such

062113-7



MATTHEW LEIFER AND CRISTHIANO DUARTE

PHYSICAL REVIEW A 101, 062113 (2020)

that
> wla) <2 -e), (19)

xe{0,1}¢

for every w € C¢. While this also proves contextuality for suf-
ficiently large d, the bound is a lot larger than that of Eq. (17),
which shows the benefit of considering antidistinguishability.

In [39], one of the authors of the present paper used the
noncontextuality inequality of Eq. (19) to derive an overlap
bound constraining y-epistemic models. It was subsequently
pointed out by Maroney [58] and Branciard [40] that the over-
lap bound could be tightened along the lines of Eq. (17) using
antidistinguishability. The innovation here is to recognize that
Eq. (17) is also a noncontextuality inequality.

The next example was also proposed as an overlap bound
in [38], which we can now recognize as a noncontextuality
inequality.

Example 9 (Mutually unbiased basis (MUB)). Two ortho
normal bases {|ej)}?=1 and {|fj)}j.’=1 in C¢ are mutually
unbiased if |(e;| fi) |> = 1/d for all j and k. When d is a prime
power, then d 4 1 mutually unbiased bases are known to exist
[59]. Let {|a i)} be the set of all vectors that appear in one of
these basis, where j runs over the choice of basis from 1 to
d + 1 and k runs over the vectors within a basis from 1 to d.
We remove one basis, say {|ax) }Z:I , to be our principal basis,
so there are d? vectors left in the set.

We have [(ajilajw)l* = 8;y8u + (1 —8;;)1 and, ford >
4, corollary 1 implies that {|a), |ajx), |ajr)} is antidistin-
guishable whenever j'k’ is distinct from j”k” and j', j” # 1.
Thus, we have a strong pairwise antiset so Theorem 2 implies
that

d+1 d

Y wlan)

j=1 k=1

d
- ol <1, (20)
k=1

for any state w € C¢. In fact, since {alk}zzl is a context, we
have ZZ:  w(ay) = 1 for any state w, so we have

d+1 d

DD ) <2 @1

j=1 k=1
Since {|a i) }z:l is an orthonormal basis, we have

d+1 d

D> lapdapl = @+ DI,

j=1 k=1
so the quantum probabilities are

d+1 d

DY wlap)=d+1, (22)

j=1 k=1

for any quantum state w € Q¢. This violates Eq. (21) ford >
3, but recall that the antidistinguishability conditions only
hold for d > 4, so this is a contextuality proof for prime power
d >4

B. Weak pairwise antisets

In this section, we give examples of state dependent non-
contextuality inequalities arising from weak pairwise antisets.

The following simple example is due to Owen Maroney
[58].

Example 10 (Maroney states). Consider the
vectors in C?:

following

1 2,
laj) = Elm + \/;IJ), (23)

where j runs from 1 to d — 1 and we denote the standard
orthonormal basis vectors as |0}, |1), ..., |d — 1). We also set
lc) = 10).

Using Theorem 1, we can easily check that {|c), |a;), |ax)}
is antidistinguishable for j # k, so we have a weak pairwise
antiset W = {|a ]-)}‘]tl1 and principal outcome |c). Theorem 2
then gives

d—1
Y w@) <1 (24)
j=1

for any noncontextual state @ such that w(c) = 1.

The quantum state @ corresponding to the vector |c) = |0)
obviously satisfies w(c) =1 and it has w(a;) = |(aj|c)|2 =
1/3 for all j so we get

- d—1
Zw(aj) =— (25)
j=1

This proves that w is contextual in this scenario for d > 5.
Example 11 (Symmetric informationally complete positive
operator-valued measures). A SIC POVM, or SIC for short,

is a set of semipositive operators {E j}‘}2 yonC 4 that satisfy

dz
ZEj =1, (26)
j=1

and are of the form E; = $|aj)(aj| where

1

- 27
d+1 7)

{ajla)
for j # k. SICs are conjectured to exist in all finite Hilbert
space dimensions. They have been shown to exist in all
dimensions up to d = 151 and in several larger dimensions
up to d = 844 [60].

For a SIC, let |c) = |a;) and W = {|aj)}‘;2=2. Corollary
1 implies that, for d > 3, the triples {|c), |a;), |ax)} are all
antidistinguishable for j # k and j, kK # 1 so we have a weak
pairwise antiset. Thus, Theorem 2 implies that

d2
Y w(a) | —wl@) <1, (28)
j=1

for any noncontextual state w such that w(c) = 1.
Since ¢ = a;, we obviously also have w(a;) = 1, so

d2
D wla) <2, 29)
j=1

for any noncontextual state w such that w(c) = 1.
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Now consider any quantum state w. From Eq. (26), we have

dZ
> laj)a; = dl,
j=1

so the quantum predictions are
d2
> o)) =d. (30)
j=1

If we also have w(c) = 1, which is the case for the quantum
state corresponding to |a;) for example, then this state is
contextual for d > 3.

For d = 3, the inequality of Eq. (29) was derived as a
state independent contextuality inequality in [43] based on a
special relationship between MUBs and SICs that only occurs
in that dimension. They considered the orthogonality graph
of 21 vectors in C? consisting of the vectors that appear in
a SIC and those that appear in a related set of four MUBs.
From our perspective, the special relationship is that, ind = 3,
MUBs can be chosen that antidistinguish each of the triples
{lc), laj), lax)} used in our proof.

Our generalization follows from the fact that these an-
tidistinguishability relations still hold in higher dimensions,
but the antidistinguishing measurements are no longer nec-
essarily MUBs. Unfortunately, our generalization is only a
state dependent inequality, as we did not find a way of
generating a principal context from a SIC. This indicates
that other methods of generating noncontextuality inequalities
from antidistinguishability might exist.

VI. PROOF OF THEOREM 2

Proof. Let w be an arbitrary state in C¢. Mathematically:

(@)=Y p.v(a) (31)

‘UEV@

In this case, given whichever W pairwise antiset in € we

have
dw@=)Y" pw

aeW aeW veVe
=Y o) _vl@<maxy v, (32
veVe aeW ¢ aeW

where the inequality follows from convexity. Equation (32)
shows that if we prove that ) _y, v(a) is upper bounded by 1
then the result follows.

To do this, we break the proof into two parts. First we
will assume that the pairwise antiset we are summing over in
Eq. (9) is strong and we will prove the theorem. Next, with the
aid of w(c) = 1 for principal outcomes, the reasoning used in
the first part carries over to the case of a weak pairwise antiset.

(a) Let W be a strong pairwise antiset in €. We will show
that, for all v € Vi, there exists at most one a € W with
v(a) = 1 and therefore

Y o v@ <, (33)
aeW

for all v € V.

For the purposes of contradiction, suppose there are two
distinct a, @’ € W, with v(a) = 1 = v(a’). As W is a strong
pairwise antiset there must be a ¢ in the principal context M
with v(c) = 1. In this case

(i) There exists {at, a'*, ¢t} C M’ € M;

(i) {a, a*}, {d@’, @'} and {c, c*} belong to (possibly differ-
ent) contexts, and

(iii) for allx € M’ — {a*, a'*, ¢1}, we also have that {a, x},
{d’, x} and {c, x} belong to (possibly different) contexts.

Item (ii) implies that v(at) = v(@™t) = v(ct) = 0. On the
other hand, as N is a context, there must be at least one
x € N — {at, a"*, ¢'} with v(x) = 1, this in turn implies that
v(a) = 0, which is a contradiction.

(b) Now, assume that W is a weak pairwise antiset. In this
case, consider a noncontextual state w obeying w(c) = 1 for
some principal outcome ¢ € X. This means that

I=w()= )Y po@) =) p, (34)

veVe veV,

and therefore,

Z Pv = 0. (35)

UEVQ‘ —Ve

In other words, we end up having

Y w@=Y > pu@=>Y pw@. (36)

aeW veVe aeW veV, aeW

which simply means we are focusing on those value functions
where v(c) = 1.

In these circumstances, there also exists at mostone a € W
with v(a) = 1, forall v € V. It suffices to go through the same
argument we gave in part (a) of the proof. ]

VII. CONCLUSIONS

In this paper, we have shown that the antidistinguishability
properties of sets of quantum states, and more abstractly
outcomes in a contextuality scenario, can be used to derive
noncontextuality inequalities. Our method can be used to red-
erive some known inequalities, such as the Yu-Oh inequality
[24], in a simple way that uncovers the previously hidden
antidistinguishability structure of the proof. It can also be used
to generalize known inequalities to higher dimensions, such
as in the Hadamard and SIC examples, and derive different
classes of noncontextuality inequalities, such as the example
based on MUBs. In some cases, we get much tighter bounds
on the inequalities than we would get from considering the
distinguishability properties alone, such as in the Hadamard
example. Our method is not necessarily the only way of
deriving noncontextuality inequalities from antidistinguisha-
bility, and we think there is much to be gained from consider-
ing antidistinguishability structures further, particularly given
their role in some recently proposed quantum information
protocols [50,61].

In principle, our noncontextuality inequalities could be
made robust to noise and tested experimentally using the tech-
niques described in [62,63]. However, in order to do so, one
would have to experimentally test that the antidistinguishabil-
ities used in the proofs hold approximately in the laboratory.
This would involve constructing the bases that antidistinguish
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the states in our pairwise antisets, increasing the number of
vectors needed to establish the proof. It would then essentially
reduce to a proof based on the orthogonality properties of the
states. From a theoretical point of view, one of the virtues of
our method is that you do not have to explicitly construct
the antidistinguishing measurements, so we can derive our
inequalities using a smaller number of vectors than would
be needed in methods based on orthogonality. This advantage
would be lost in the experimental tests.

Thus, we think the main use of our method will be in
theoretical work, where contextuality inequalities can be used
to prove things about quantum computation and quantum
information protocols. As an example of this, the amount
of memory needed to classically simulate stabilizer quan-
tum computations was recently bounded using contextuality
proofs based on antidistinguishability [16]. We expect that
having a general method of constructing inequalities based on
antidistinguishability could be used to prove similar and more
general results for other classes of quantum computation.

Our work also has implications for thinking about overlap
bounds on the reality of the quantum state. One known class
of bounds is based on CSW noncontextuality inequalities,
but the other class—based on antidistinguishability—did not
previously have a known connection to contextuality. In this
paper, we have shown that this second class of bounds are also

noncontextuality inequalities. It has been shown that a maxi-
mally yr-epistemic model (one in which the quantum and clas-
sical overlaps are equal) must be noncontextual [23,35], which
explains why contextuality proofs provide overlap bounds.
However, the converse is not necessarily true. This indicates
that better overlap bounds than those currently known might
be obtainable by considering the constraints on maximally
Y-epistemic models that are not implied by noncontextuality.
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