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Squeezing and slowed quantum decoherence in the double-slit experiment
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We study the slowing of the decoherence effect in the double-slit experiment by considering an initially
correlated Gaussian state. The effects of the decoherence are included in a specific propagator which we use to
obtain the density matrix at the detection screen. We calculate the uncertainties in the position and momentum for
the density matrix as a function of the decoherence at the detection screen. We show that for a contractive initial
state and specific times of propagation the state at the detection screen is squeezed in position in comparison
with the standard Gaussian superposition. For this squeezed Gaussian superposition state, we observe that the
fringe visibility is more robust to the decoherence in comparison with the standard Gaussian superposition. Then,
we calculate the negativity of the Wigner function and study its behavior as a function of the decoherence and
correlation parameters at the detection screen. We observe that the negativity decreases more slowly for the
squeezed Gaussian superposition.
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I. INTRODUCTION

Decoherence is a process by which a quantum system
undergoes entangling interactions with its environment and
thus influences the statistics of future measurements on that
system. It is a quantum-mechanical effect in itself, distinct
from classical dissipation and stochastic fluctuations [1]. As
far as time evolution is concerned, quantum system decoher-
ence is characterized by a decoherence time much smaller
than the relaxation time that characterizes the system energy
loss. Decoherence is an ubiquitous phenomenon in quantum
systems and plays a fundamental rôle in conceptual founda-
tions of quantum-to-classical transitions as first put forward
by Zeh [2] 50 years ago. The concept was further elaborated
by Zurek [3–9] and has been applied to different systems
[10,11].

Interference phenomena are at the core of quantum me-
chanics and yet they are easily destroyed by an environ-
ment as well as interparticle interactions which have the
effect of hastening decoherence. In a double-slit experiment,
environmental degrees of freedom spawn decoherence by
continuously monitoring a quantum particle through scat-
tering. This results in partial which-path information and
reduction of visibility. Indeed, it has been observed that one
of the most dominant process for the loss of coherence in
the mesoscopic domain is the scattering by air molecules
[12]. Diffraction and interference with fullerenes have been
performed to study wave-particle duality and quantum-to-
classical transition of fullerenes [13–15] in the presence of
an environment. Moreover, a Kapitza-Dirac-Talbot-Lau in-
terferometer for large molecules was studied for C60, C70,
C60F36, and C60F48 in Ref. [16]. Moreover, autolocalization
due to emission of thermal radiation is also an obstacle to
the appearance of quantum effects in macroscopic objects.
Their numerous internal degrees of freedom store energy

that can be converted into thermal radiation and thus induce
decoherence.

Usually the environment is not directly controllable or
measurable, turning the decoherence which it may induce
into a serious limit for technological applications of quan-
tum effects. For instance, in quantum information processing
and quantum technology, decoherence is a hurdle that must
be restrained. In this sense, for instance, quantum error-
correction techniques are employed to stave off decoherence
and combat other errors using additional resources such as
measurement-based methods and ancillary qubits [17–20] as
well as decoherence-free subspaces [21].

Some other mechanisms have been envisaged to protect
quantum systems from decoherence. In Ref. [22], a scheme
was proposed and demonstrated to protect an entangled sys-
tem from decoherence based on the reversibility of weak
quantum measurements. Recently, the model of a protective
measurement of a qubit interacting with a spin environment
during the measurement process has been used to study pro-
tective quantum measurement in the presence of an environ-
ment and decoherence [23]. It has also been suggested that
decoherence effects may be reduced by squeezing the envi-
ronmental bath [24,25]. Instead of acting on environmental
degrees of freedom, it was argued that a reduction of decoher-
ence can be accomplished by acting on the state itself. In this
sense, it was shown that by squeezing a superposition state, it
undergoes reduced decoherence effects [26]. One of the most
sensitive instruments in physics is the Laser Interferometer
Gravitational-Wave Observatory (LIGO). In order to improve
the performance of one of the detectors, it was proposed to use
squeezed states of light into one of the paths of a detector to
make the detection of a small difference in the lengths of the
two arms of the interferometer easier. This has led to the best
broadband sensitivity to gravitational waves and has allowed
it to detect about 50% more events than before [27].
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In this contribution, we study the effect of the loss of
coherence in the double-slit experiment using a contractive
state (CS) as defined by Yuen in Ref. [28]. Squeezing is
accomplished through the time evolution of such a CS. It is
worthwhile recapitulating the notion of contractive states [29].
Let the position of a particle of mass m measured at t = 0
be X (0) = 〈X̂ (0)〉 with uncertainty (�X )2(0) = 〈X̂ 2(0)〉 −
〈X̂ (0)〉2. Repeating the position measurement after a time τ

with uncorrelated position and momentum yields the standard
quantum limit of free particle position �X (τ ) � √

h̄τ/m. In
such an estimation, the term τ/m(〈X̂ (0)P̂(0) + P̂(0)X̂ (0)〉 −
2〈X̂ (0)〉〈P̂(0)〉) ≡ 2τ/m �PX (0), which was assumed non-
negative, was dropped out. Bringing back such a term yields

(�X )2(τ ) = (�X )2(0) + τ 2

m2
(�P)2(0) + 2τ

m
�PX (0).

Yuen suggests that the quantum limit can be beaten via
some measurements of X̂ that leave the free mass in a state
(CS) such that �PX (0) is negative. In such case, �X (τ ) to
decrease for a certain time duration in contrast with the usual
free spreading of a wave packet. For instance, this can be
accomplished for squeezed states associated with X̂ and P̂.

We consider the effect of the loss of coherence in the
double-slit experiment in which the (Gaussian) state produced
in the source has a built-in correlation between position and
momentum. The superposition at the detection screen is a
non-Gaussian state which is known to be sensitive to the
decoherence. However, we observe that depending on the
initial correlation, the superposition can be less sensitive to the
decoherence. We proceed with our analysis by considering the
decoherence produced by air molecules scattering. Then, we
calculate the fringe visibility and the negativity of the Wigner
function at the detection screen as a function of the deco-
herence for different values of initial correlation. We show
that these quantum properties decrease as the environmental
interaction increases. On the other hand, we observe that the
decrease is slowed for a specific negative value of the initial
correlation which produces a squeezed Gaussian superposi-
tion state at the detection screen. One advantage of adopting
this framework is the use of a contractive state to effectively
create squeezing for the state arriving at the detection screen
in a double-slit experiment with matter particles (in contrast
with, say, the photonic coherent state of Ref. [26] that is
squeezed by direct action on it, prior to sending it through
a noisy channel).

This contribution is organized as follows: In Sec. II, we
obtain the analytical expression for the density matrix at the
detection screen for the double-slit experiment with corre-
lated Gaussian state and loss of coherence. We show the
relation between correlation and squeezing by calculating the
uncertainties in position and momentum as a function of the
coupling with the environment. Then, we study the behavior
of the relative intensity and the fringe visibility. In Sec. III,
we calculate the Wigner function at the detection screen and
study its behavior as a function of the initial correlation and
the coupling with the environment. We study the negativity
of the Wigner function as a function of the coupling with
the environment and observe that it decreases more slowly
for a squeezed Gaussian superposition at the detection screen

FIG. 1. Experimental setup. The source Sγ of opening width
σ0 produces a correlated and partially coherent wave packet of
coherence length l0. This wave packet propagates freely in a time t
from the source to the double slit. From the double slit to the detector
D, the particles propagate in a time T coupled with an environment
of coupling constant �.

than the standard Gaussian superposition. We draw some
concluding remarks in Sec. IV.

II. INTERFERENCE IN THE DOUBLE SLIT:
DECOHERENCE VERSUS CORRELATION

We consider the double-slit experiment modeled by an
initially correlated Gaussian state. The initial correlation is
represented by the dimensionless parameter γ that can assume
any value inside the interval −∞ < γ < ∞ [30,31]. At the
detection screen, this produces a particular superposition dis-
tinct from standard Gaussian uncorrelated wave packets. In
the position representation, such state is given by

ψ0(xi ) = 1√
σ0

√
π

exp

[
− x2

i

2σ 2
0

+ iγ x2
i

2σ 2
0

]
, (1)

which is equivalent to a squeezed state with complex squeez-
ing parameter [32–34]. Correlated states for a free particle
with γ < 0 were considered in Ref. [28] and named the
contractive state.

We assume that a correlated and partially coherent Gaus-
sian wave packet is produced in the source Sγ with aperture
σ0. Then, it propagates freely in a time t from the source to
the double slit with apertures of size β, where it is divided
into two Gaussian wave packets. From the double slit to the
detector D at the detection screen, the states propagate in
a time T coupled with the environment represented by the
parameter �. This is illustrated in Fig. 1.

We consider a paraxial propagation such that px � pz and
�pz � pz. In this case, the movement in the Oz direction can
be considered classical with z = vzt , where vz is the particle
velocity. Thus, the quantum effects are observed only in the
transversal Ox direction [35], for which the scattering constant
is given by � = (8/3h̄2)

√
2πM(kBT )3/2ρw2; see Eq. (3.73)

in Ref. [12]. Here, ρ is the total number density of the air, M
is the mass of the air molecule, w is the size of molecule of
the quantum system, kB is the Boltzmann constant, and T is
the temperature. The parameter γ guarantees that the initial
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state is correlated. In fact, for the state ψ0(xi ), we have for
the position-momentum correlation σ (0)

xp = (1/2)〈x̂ p̂ + p̂x̂〉 −
〈x̂〉〈p̂〉 = h̄γ /2, which is zero for γ = 0, e.g., the standard
Gaussian state.

We introduce the decoherence effects as follows. First, we
consider that the correlated Gaussian state propagates freely
from the source to the double slit in a time t and from the
double slit it propagates a small time interval T → 0. This
procedure enables us to obtain the wave function immediately
after the double slit. Then, the corresponding wave function
for the propagation through the slit 1 is given by

ψ1(x, t, T → 0) = 1√
Bγ

√
π

exp

[
− (x + Dγ /2)2

2B2
γ

]

× exp

(
imx2

2h̄Rγ

+ iμγ

)
, (2)

where

B2
γ (t, T → 0) = β2b2

γ

β2 + b2
γ

, bγ (t ) = σ0

τ0
[t2 + (γ t + τ0)2]

1
2 ,

(3)

Rγ (t, T → 0) = t2 + (γ t + τ0)2

t (1 + γ 2) + γ τ0
, Dγ (t ) = d

b2
γ

β2 + b2
γ

,

(4)

μγ (t, T → 0) = −1

2
arctan

(
t

τ0 − γ t

)
, and τ0 = mσ 2

0

h̄
.

(5)

Here, the parameter Bγ (t, T → 0) is the beam width for the
propagation through one slit and bγ (t ) is the beam width for
the free propagation. As we can observe from the expression
of bγ (t ), the propagation from the source to the double slit
produces a minimum in the beam width for a negative value
of γ and a specific value of t . This contributes to produce
a squeezed superposition state at the detection screen as we
will obtain later on. Rγ (t, T → 0) is the radius of curvature
of the wave fronts for the propagation through one slit, which
is the same for the free propagation, Dγ (t, T → 0) is the
separation between the wave packets produced in the double
slit and μγ (t, T → 0) is the matter wave Gouy phase for the
propagation through one slit [35]. τ0 = mσ 2

0 /h̄ is one intrinsic
timescale which essentially corresponds to the time during
which a distance of the order of the wave-packet extension
is traversed with a speed corresponding to the dispersion in
velocity [36].

The wave function ψ2(x, t, T → 0) corresponding to the
propagation by slit 2 is obtained by substituting d with −d
in ψ1(x, t, T → 0). Thus, by the superposition principle, the
corresponding wave function and the density matrix immedi-
ately after the double slit are respectively given by

ψslit (x, t, T → 0) = ψ1(x, t, T → 0) + ψ2(x, t, T → 0),
(6)

and

ρ0(x0, x′
0, t ) = ψslit (x0, t, T → 0)ψ∗

slit (x
′
0, t, T → 0). (7)

A similar procedure was adopted in Ref. [14] to study the
quantum-to-classical transition in the double-slit experiment.

The density matrix for the propagation from the double
slit to the detection screen including the coupling with the
environment is given by [15]

ρ(x, x′, T ) =
∫∫

dx0dx′
0K (x, x′, T ; x0, x′

0, t )ρ0(x0, x′
0), (8)

where

K (x, x′, T ; x0, x′
0, t )

= m

2π h̄T
exp

{
im

2h̄T

[
(x − x0)2 − (x′ − x′

0)2
]}

× exp

{
− (x0 − x′

0)2

2�(T )2
− �T

3

× [(x − x′)2 + (x − x′)(x0 − x′
0)]

}
(9)

and

�(T ) = �0√
1 + 2�T

3 �2
0

. (10)

Here, K (x, x′, T ; x0, x′
0, t ) is the quantum propagator for a

particle interacting with the environment, ρ0(x0, x′
0, t ) is the

density matrix at the double slit, T is the propagation time
from the double slit to the detection screen during which
the particle is coupled with the environment, �(T ) is the
time-dependent transverse coherence length, and �0 is the
transverse coherence length at the source, which is the same
at the double slit �0 = �(t ) since the first propagation is
free from environmental effects. The environmental coupling
constant �, which can be called the rate of localization, is
associated with events of decoherence such as air molecules
scattering and possible photon emission from the decay of the
excited states [15].

After some algebraic manipulations, we obtain

ρ(x, x′, t, T )

= Ne[−A(x−x′ )2−B(x2+x′2 )+iD(x2−x′2 )]

×{eF [e[C(x+x′ )+iE (x−x′ )] + e[−C(x+x′ )−iE (x−x′ )]]

+ eI[e[G(x−x′ )+iH(x+x′ )] + e[−G(x−x′ )−iH(x+x′ )]]}, (11)

where the time-dependent parameters N (t, T ), A(t, T ),
B(t, T ), C(t, T ), D(t, T ), E (t, T ), F (t, T ), G(t, T ), H(t, T ),
and I (t, T ) are displayed in the Appendix. Here, N (t, T )
is the normalization constant, A(t, T ) is inversely pro-
portional to the coherence length L(t, T ) = 1/

√
8A(t, T ),

B(t, T ) is inversely proportional to the beam width W (t, T ) =
1/

√
8B(t, T ), and the other parameters are related to the

intensity, visibility, and uncertainties in the position and mo-
mentum as we shall see in the next sections. The parameters
F (t, T ) and I (t, T ) ensure the conservation of the trace of the
density matrix at all times.

A. Correlation and squeezing

In this subsection, we calculate the uncertainties in the
position and momentum for the correlated Gaussian state of
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FIG. 2. The generalized quadratures X̂1 and X̂2 defined in terms
of x̂ and p̂ by a rotation angle θ in the phase space.

Eq. (1) in order to verify the presence of the squeezing. The
variances in the position and momentum for the dimensionless
operators x̂ and p̂ are given by [30]

〈(�x̂)2〉 = 1

2
; 〈(�p̂)2〉 = (1 + γ 2)

2
, (12)

which show that in terms of these conventional operators the
correlated Gaussian state is not squeezed. On the other hand,
in terms of the generalized quadratures X̂1 and X̂2, which are
defined in terms of x̂ and p̂ through a rotation in the phase
space by an angle θ (as illustrated in Fig. 2), this state presents
squeezing as we will show below.

The new operators X̂1 and X̂2 are related with the old
operators x̂ and p̂ by the equations

X̂1 = cos(θ )x̂ + sin(θ ) p̂ (13)

and

X̂2 = − sin(θ )x̂ + cos(θ ) p̂. (14)

The variances of the new operators calculated in relation to
the correlated Gaussian state are

〈(�X̂1)2〉 = 〈X̂1
2〉 − 〈X̂1〉2

= 1
2 [1 + γ sin(2θ ) + γ 2 sin2(θ )], (15)

and

〈(�X̂2)2〉 = 〈X̂2
2〉 − 〈X̂2〉2

= 1
2 [1 − γ sin(2θ ) + γ 2 cos2(θ )]. (16)

In Figs. 3(a) and 3(b), we show, respectively, the variances
of the operators X̂1 and X̂2 as a function of the rotation
angle θ for the initially correlated Gaussian state of Eq. (1).
The solid lines correspond to the variances for γ = −1.0
(which represents a contractive state) and the dash-dotted
lines correspond to the variances for γ = 0 (the standard
Gaussian state). We can observe that for some intervals of
θ the contractive state is squeezed on the quadrature X̂1
and spread on the quadrature X̂2 in comparison with the
standard Gaussian state. As we will see next, the time evo-
lution and the superposition at the double-slit play the role
of a rotation, producing a squeezed Gaussian superposition
state for γ < 0 in comparison with the standard Gaussian
superposition at the detection screen.

FIG. 3. (a) Variance of the operator X̂1 and (b) of the operator
X̂2, as a function of the rotation angle θ . The solid lines correspond
to the variance for a contractive Gaussian state with correlation
(γ = −1.0) and the dash-dotted lines are the variances of a standard
Gaussian state with correlation (γ = 0). The contractive Gaussian
state is squeezed for some intervals of θ .

Now, we study the behavior of the uncertainties for the
superposition state at the detection screen in the double-slit
experiment. In terms of the density matrix at the detection
screen, the uncertainties in the position 〈(�x̂)2〉 and momen-
tum 〈(�k̂)2〉 can be calculated, respectively, as

〈(�x̂)2〉 = 〈x̂2〉 − 〈x̂〉2 = Tr(x̂2ρ̂ ) − [Tr(x̂ρ̂)]2

=
√

2πNeF

4B5/2

[
(C2 + B)eC

2/2B

+ eI−F (B − H2)e−H2/2B]
(17)

and

〈(�k̂)2〉 = 〈k̂2〉 − 〈k̂〉2 = Tr(k̂2ρ̂ ) − [Tr(k̂ρ̂ )]2

=
√

2π N̄eF̃

4B̃5/2

[
(C̃2 + B̃)eC̃

2/2B̃

+ eĨ−F̃ (B̃ − H̃2)e−H̃2/2B̃]
, (18)

with

N̄ =
√

π (2A + B)

4AB + 2B2 + 2D2
Ñ, B̃ = B

8AB + 4B2 + 4D2
,

(19)

C̃ = EB + CD
4AB + 2B2 + 2D2

, H̃ = BG − DH
4AB + 2B2 + 2D2

,

(20)

F̃=B2F + (4FA + C2 − E2)B + 2D2F − 2CDE + 2AC2

4AB + 2B2 + 2D2
,

(21)

and

Ĩ=2B2I + (4IA + G2−H2)B+2D2I − 2DGH − 2AH2

4AB + 2B2 + 2D2
,

(22)
where Tr means the trace operator.

In Fig. 4, we show the uncertainties in the position and
momentum as a function of the coupling constant for the
state at the detection screen. We consider the diffraction of
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FIG. 4. (a) Uncertainty in the position 〈(�x̂)2〉 and (b) in the
momentum 〈(�k̂)2〉 as a function of the environmental coupling
constant � at the detection screen for t = 0.1τ0. (c) Uncertainty
in the position and (d) in the momentum as a function of the
environmental coupling constant � at the detection screen for t =
0.3τ0. We consider different values of the correlation and normalize
every plot by the standard Gaussian superposition state γ = 0. We
can observe that for the propagation time t = 0.1τ0 there is a range
of values of correlation −1.1 � γ � −0.1 for which the state at
the detection screen is squeezed in position and for γ = −0.1 the
state is squeezed in momentum. For the propagation time t = 0.3τ0

the range of values of correlation for which the state is squeezed
in position is −3.2 � γ � −0.1 and for which it is squeezed in
momentum is −0.6 � γ � −0.1.

fullerene molecules in the double slit and the decoherence
effect produced by air molecules scattering. We adopt the
following parameters: fullerene mass m = 1.2 × 10−24 kg,
molecular size w = 7 Å, width of the initial wave packet σ0 =
7.8 nm, initial transverse coherence length �0 = 50 nm, slit
width β = 7.8 nm, slit separation d = 125 nm, propagation
time from the double slit to the screen T = 2.0τ0, mass of the
air molecule M = 5.0 × 10−26 kg, and the environment tem-
perature T = 300 K. Parameters of this order of magnitude
were previously used in experiments with fullerene molecules
in Ref. [37]. We use different values for the correlation
parameter which are displayed in the plots by different line
styles. Every plot is normalized by the standard Gaussian
superposition state, i.e., the case γ = 0. In Figs. 4(a) and
4(b), we consider the propagation time from the source to
the double slit equal to t = 0.1τ0 and in Figs. 4(c) and
4(d) we consider t = 0.3τ0. As we can observe in the plots
above, depending on the propagation time there is a range of
negative values of γ that produces a state at the detection
screen with uncertainty in position and momentum smaller
than the uncertainty of the standard Gaussian superposition
state. Therefore, depending on the propagation times t and T ,

negative values of γ can produce a squeezed superposition
state at the detection screen in comparison with the standard
Gaussian superposition. However, positive values of γ pro-
duce no squeezing.

B. Fringe visibility

Here, we study the effect of the squeezing in the rela-
tive intensity and in the fringe visibility. We consider the
diffraction of fullerene molecules in the double slit and the
decoherence effect produced by air molecules scattering, and
we use the same parameters adopted before. Then, we suppose
that it is possible to prepare contractive states of fullerene
molecules as reported in the current literature. In the context
of atom optics, such states can be experimentally realized by
interacting atoms with standing light wave in order to create
a square potential for the atoms as suggested in Ref. [38].
This procedure creates a quantum lens for the atoms which
operates in a way similar to that of ordinary lens for a light
beam [38]. The effect of such a quantum lens for cesium
atoms was theoretically studied by one of us in Ref. [39].
In this study, the position momentum correlations for a fo-
cusing atom beam were calculated, showing that they can be
positive or negative, if the atoms propagate to or from the
focus, respectively. Since the focal distance depends on the
atom-field interaction parameters, we can vary the negative
values of the correlations by controlling these parameters.
Then, it is pertinent to ask if the same procedure can be
used to produce contractive states of macromolecules such
as fullerene, i.e., states with negative position momentum
correlations. The answer is positive because it was shown
previously that fullerene molecules can interact with electric
as well as magnetic fields due to its polarizability [40]. Such
interaction can be used to focus a beam of fullerene molecules.
Also, in Ref. [41] standing light waves were used to diffract
fullerene molecules. Therefore, a similar scheme of Ref. [41]
can be used to create a square potential for fullerene molecules
and produce contractive states for them.

From Eq. (11), the intensity and the visibility at the detec-
tion screen, respectively, reads

ρ(x = x′, t, T ) = 2NeF exp(−2Bx2)[cosh(2Cx)

+ e(I−F ) cos(2Hx)] (23)

and

V = e(I−F )

cosh(2Cx)
, (24)

where the parameters N (t, T ), B(t, T ), C(t, T ), F (t, T ),
H(t, T ), and I (t, T ) are displayed in the Appendix.

As we observed previously, by considering set values of
parameters for the fullerene molecules, the double-slit setup,
and propagation times, there is a range of values of the pa-
rameter γ for which the superpositions at the detection screen
will be squeezed. However, for the sake of simplicity, we
carry on our analysis for the case in which t = 0.1τ0 and γ =
−1.0. In Fig. 5, we plot the relative intensity and the fringe
visibility at the detection screen as a function of the position
x for the decoherence parameter � = 3.0 × 1020 m−2 s−1.
In the dash-dotted line, we consider the standard Gaussian
superposition with γ = 0, and in the solid line, we consider
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FIG. 5. (a) Relative intensity and (b) fringe visibility as a func-
tion of the detector position for different values of decoherence
� and correlation γ at the detection screen. As we can observe,
the squeezed Gaussian superposition at the detection screen which
corresponds to γ = −1.0 partially protects these quantum properties
from decoherence.

the squeezed Gaussian superposition with γ = −1.0. As we
can observe, the relative intensity and the fringe visibility are
more robust for the squeezed Gaussian superposition than the
standard Gaussian one. Therefore, these results show that we
can partially protect the quantum system from decoherence
by squeezing the state. Here, the squeezing can be produced in
the detection screen by considering a initially correlated Gaus-
sian state with a negative correlation parameter γ . In the next
section, we will show by the negativity of the Wigner function
that the squeezed Gaussian superposition partially inhibits the
decoherence effect in comparison with the standard Gaussian
superposition.

III. NEGATIVITY OF THE WIGNER FUNCTION

The phase-space description of quantum mechanics
through Wigner functions [42] has become an important tool
for studying quantum properties [43]. It was pointed out that
the volume of its negative part can be used as an indicator
of nonclassicality [44]. In Ref. [45], the measurement of the
Wigner function was performed in a double-slit experiment
for an ensemble of helium atoms. Now, it is known that
the Wigner function can be measured in different system
configurations [46] as well as calculated for arbitrary quan-
tum systems [47]. Reference [26] compared the effects of
the decoherence in the squeezed and nonsqueezed coherent
state superpositions (CSS). By exploiting the negativity of
the Wigner function, it was observed that a squeezed CSS
is more robust to the decoherence than standard CSS’s. That
decoherence reduction was proved by generating a squeezed
optical version of CSS and following the behavior of the
Wigner function oscillations under photon loss.

In this section, we study the negativity of the Wigner
function as a function of the decoherence parameter for the
state at the detection screen. We consider different values
of the initial correlation parameter and we observe that for
the case of squeezed Gaussian superposition state the volume
of the negative part of the Wigner function decreases more
slowly with decoherence when compared with the standard
Gaussian superposition. On the other hand, for a superposition

state spread in position, that volume decreases more quickly
when compared with the standard Gaussian superposition.

The Wigner function for a mixed state is given by [42,48]

W (x, k) ≡ 1

2π

∫
ρ

(
x − x̃

2
, x + x̃

2

)
eikx̃dx̃, (25)

where k is the wave number associated with the momentum
p = h̄k. For the density matrix Eq. (11), we obtain the follow-
ing result:

W (x, k) = W1(x, k) + W2(x, k) + 2Ñ exp
( − 2Bx2 + I

)
× exp

[
− (k − 2xD)2

4A + 2B

]
exp

[ G2

4A + 2B

]

× cos

[
2Hx − (k − 2Dx)G

2A + B

]
, (26)

where

W1(x, k) = Ñ exp
(

− 2Bx2 − 2Cx + F
)

× exp

[
− (k + E − 2xD)2

4A + 2B

]
, (27)

W2(x, k) = Ñ exp
(

− 2Bx2 + 2Cx + F
)

× exp

[
− (k − E − 2xD)2

4A + 2B

]
, (28)

and

Ñ = N√
π (4A + 2B)

. (29)

The result expressed in Eq. (26) is composed by the Wigner
functions corresponding to the propagation through the slits
W1(x, k) and W2(x, k) as well as an interference term.

In Fig. 6, we consider the same parameters for fullerene
molecules, with double-slit setup and propagation times as be-
fore, and we show the plot of the Wigner function as a function
of the position x and the wave number k for different values
of the decoherence and correlation parameters. In Figs. 6(a)
and 6(b), we consider the initial correlation γ = 0 which
produces a standard Gaussian superposition at the detection
screen. Then we change the decoherence parameter from
� = 0 to � = 3.0 × 1020 m−2 s−1 and we observe that the
negative part of the Wigner function disappears. In Figs. 6(c)
and 6(d), we consider the initial correlation γ = −1.0 which
produces a squeezed Gaussian superposition in comparison
with the Gaussian one at the detection screen. Now, when
we change the decoherence parameter from � = 0 to � =
3.0 × 1020 m−2 s−1 the negative part of the Wigner function
diminishes but it does not disappear; i.e., the decoherence
effect is partially inhibited. In Figs. 6(e) and 6(f), we con-
sider the initial correlation γ = 1.0 which produces at the
detection screen a spread Gaussian superposition in compar-
ison with the standard Gaussian one. For this case, when
we change the decoherence parameter from � = 0 to � =
3.0 × 1020 m−2 s−1, the negativity of the Wigner function
disappears more quickly than in the two last cases. Therefore,
the squeezed Gaussian superposition at the detection screen
preserves the negativity of the Wigner function more than any
other Gaussian superposition.
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FIG. 6. Wigner function as a function of the position x and the
wave number k at the detection screen for different values of decoher-
ence � and correlation parameter γ . (a) For γ = 0 and � = 0, (b) for
γ = 0 and � = 3.0 × 1020 m−2 s−1, (c) for γ = −1.0 and � = 0,
(d) for γ = −1.0 and � = 3.0 × 1020 m−2 s−1, (e) for γ = 1.0 and
� = 0, and (f) for γ = 1.0 and � = 3.0 × 1020 m−2 s−1. The panels
(a) and (b) show the decoherence effect on the standard Gaussian
superposition (γ = 0), panels (c) and (d) show the decoherence
effect on the squeezed Gaussian superposition γ = −1.0, and panels
(e) and (f) show the decoherence effect on the spread Gaussian
superposition γ = 1.0.

In Fig. 7, we again compare the effect of the decoher-
ence on the squeezed Gaussian superposition at the detection
screen with the standard and spread Gaussian superpositions.
As before, we consider fullerene molecules and the same
set values of parameters. We exhibit the cross section of the
Wigner function as a function of k. From Figs. 7(a) and 7(b),
we can observe that the negativity of the Wigner function for
the standard Gaussian superposition is bigger than the one for
the squeezed Gaussian superposition when the decoherence
effect is negligible, i.e., for � = 0. But, when we consider a
decoherence effect of � = 3.0 × 1020 m−2 s−1, the negativity
of the Wigner function for the squeezed Gaussian superposi-
tion become bigger than the standard Gaussian one. On the
other hand, from Figs. 7(c) and 7(d), we can observe that the
negativity of the Wigner function for the standard Gaussian
superposition is bigger than the one for the spread Gaussian
superposition when the decoherence effect is included. The
results presented in Fig. 7 are similar to the results obtained in
Fig. 3 of Ref. [26] by comparing the decoherence effect on the
superposition of the coherent states (CSS) and on the squeezed
CSS. Here, the correlation of the initial state is responsible for
producing a squeezed superposition at the detection screen,

FIG. 7. Wigner function cross section as a function of the wave
number k for the state at the detection screen. In panels (a) and (c),
there are not decoherence effects (� = 0), and in panels (b) and (d),
there are some (� = 3.0 × 1020 m−2 s−1). The solid lines correspond
to γ = −1.0, which produces a squeezed Gaussian superposition,
the dotted lines correspond to γ = 1.0, which produces a spread
Gaussian superposition, and the dash-dotted lines correspond to γ =
0, which produces a standard Gaussian superposition.

whereas for the state of Ref. [26] the squeezing is performed
on the superposition itself.

The negativity of the Wigner function has been used to
quantify the nonclassicality of a given state. This negativity is
obtained by calculating the double of the volume of the nega-
tive part of the Wigner function. Such volume was defined as
[44]

δ =
∫∫

[|W (x, k)| − W (x, k)]dxdk

=
∫∫

|W (x, k)|dxdk − 1. (30)

Unfortunately, an analytical result to the equation above is
difficult to obtain because of the absolute value of the cosine
oscillation. Therefore, we must do a numerical integration of
Eq. (30). We consider the same parameters used before for the
fullerene molecules and we numerically integrate the equation
above as function of �. We show the plot of the negativity
of the Wigner function as a function of the decoherence
parameter in Fig. 8. We consider three values of the initial
correlation which produce different superposition states at
the detection screen, i.e., the standard Gaussian superposition
(γ = 0), the squeezed Gaussian superposition (γ = −1.0),
and the spread Gaussian superposition (γ = 1.0). As we
can observe the volume of the negative part of the Wigner
function (also known as negativity of the Wigner function)
decreases while the decoherence effect � increases, which is
a signature of the quantum to classical transition. On the other
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FIG. 8. Negativity of the Wigner function for the state at the
detection screen as a function of the decoherence effect �. The dash-
dotted line corresponds to the standard Gaussian superposition (γ =
0), the solid line corresponds to the squeezed Gaussian superposition
γ = −1.0, and the dotted line corresponds to the spread Gaussian
superposition γ = 1.0. For the squeezed Gaussian superposition, the
decoherence effect is decreased while for the spread superposition it
is increased in comparison with the standard Gaussian superposition.

hand, the squeezed Gaussian superposition partially inhibits
such transition in comparison with the standard Gaussian
superposition. In contrast, the spread Gaussian superposition
accelerates such a transition. Therefore, it can be easier to
observe quantum phenomenon in the macroscopic world, such
as interference in the double-slit with macro molecules, if a
contractive Gaussian state of macromolecules is prepared in
the source. Again, we obtain a result similar to that obtained
in Ref. [26], as we can see by comparing our Fig. 8 with the
Fig. 4 from Ref. [26].

From now on, we shall discuss how squeezing decreases
decoherence. As discussed in Ref. [12], the state immediately
after the double slit can be written as ψ (x, t, T → 0)|E0〉 =

1√
2
[ψ1(x, t, T → 0) + ψ2(x′, t, T → 0)]|E0〉, where |E0〉

stands for the environmental state. By the linearity of the
Schrodinger equation, the usual von Neumann evolution
produces 1√

2
[ψ1(x, t, T )|Ex〉 + ψ2(x′, t, T )|Ex′ 〉]. Therefore,

the relative states created in the double slit become entangled
with the environmental states |Ex〉 and |Ex′ 〉 that encode
partial which-path information about the position of the
fullerene particle. Then, the coherence between ψ1(x, t, T )
and ψ2(x′, t, T ) become a shared property of the global
system environment. In this case, the reduced density matrix
of the system is given by [12]

ρ(x, x′, t, T ) = 1
2 [ψ1(x, t, T )ψ∗

1 (x′, t, T )

+ψ2(x, t, T )ψ∗
2 (x′, t, T )

+ψ1(x, t, T )ψ∗
2 (x′, t, T )〈Ex|Ex′ 〉

+ψ2(x, t, T )ψ∗
1 (x′, t, T )〈Ex′ |Ex〉]. (31)

As we can see, the interference terms depend on the
overlap between the relative environment states which
means that the environment monitors the system. It was

FIG. 9. Coherence length L(t, T ) = 1/
√

8A(t, T ) at the detec-
tion screen as a function of the decoherence parameter � for the same
set value of data used before and for two values of the correlation
parameter γ .

also shown in Ref. [12] that such overlap is given by
〈Ex(t )|Ex′ 〉 α e−�|x−x′|2T , which decreases with the relative
coherence distance |x − x′| between different positions x and
x′ of the system. Larger |x − x′| make it easier for the en-
vironment to distinguish between these two position states.
On the other hand, if these positions are close enough, which
can be obtained by squeezing the superposition state, the
environment will not distinguish between these two points as
much. This is gross modo the reason why the squeezing slows
decoherence effects.

We can also understand why the squeezing slows decoher-
ence effects through the behavior of the coherence length,
which measures the characteristic distance over which the
system can exhibit spatial interference effects. In Fig. 9, we
show the coherence length L(t, T ) = 1/

√
8A(t, T ) at the

detection screen as a function of the decoherence parameter �

for the same set value of data used before and for two values of
the correlation parameter. As we can observe for the squeezed
superposition state γ = −1.0, the coherence length decreases
more slowly than that for the standard Gaussian superposi-
tion. The system-environment entanglement delocalizes local
phase relations between spatially separated wave-function
components, leading to a decrease of the spatial coherence
length. Therefore, squeezing partially avoids local phase de-
localization and slows the decoherence effect.

IV. CONCLUSIONS

We studied a way to partially protect quantum properties
against decoherence in the matter waves double-slit experi-
ment. We considered that a partially coherent source produces
a Gaussian wave packet initially correlated in position and in
momentum. We observed that such state is squeezed for some
intervals of a rotation angle in the phase space. We included
the effect of coupling with an environment produced by air
molecule scattering and calculated the density matrix. Then,
we calculated the uncertainties in the position and momentum
and we observed that for a contractive state the superposition
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state at the detection screen is squeezed in position in compar-
ison with the standard Gaussian superposition. We considered
fullerene molecules and we observed that for the squeezed
Gaussian superposition state, the relative intensity and the
fringe visibility is more robust to the decoherence effect than
for the standard Gaussian superposition. We also observed
by the negativity of the Wigner function that the quantum to
classical transition induced by the decoherence is slowed for
the squeezed Gaussian superposition state in comparison with
every kind of Gaussian superposition. Therefore, superposi-
tion of correlated Gaussian states can be useful for quantum
applications since such states can partially protect quantum
properties from decoherence. For instance, it could be easier
to observe quantum interference in a double-slit experiment
with large molecules if a contractive Gaussian state is pre-
pared in the source. Also, it has been shown that quantum
non-Gaussian is an important characteristic to consider for
secure quantum communication since the no-cloning bound
decreases with quantum non-Gaussian [49]. Then, based on
the results above, the decoherence effect in a secure quan-
tum communication with quantum non-Gaussian states could
be slowed by considering squeezed quantum non-Gaussian
states. Another interesting possible application is to consider
the same mechanism of protection against decoherence in a
triple-slit experiment. It has been recently claimed that triple-
slit experiment is helpful in quantum computing since it offers
the chance to create three-dimensional quantum bits, which
may help scale up quantum computers to useful size [50].
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APPENDIX: DENSITY MATRIX PARAMETERS

Here we displayed the density matrix parameters of
Eq. (11) at the detection screen:

N = m

2α̃
√

πBγ h̄Ta
, (A1)

α̃ = m√
2BBγ h̄Ta

[
exp

( C2

2B + F
)

+ exp

(
− H2

2B + I
)]

,

(A2)

a =
(

1

2�2
+ 1

2B2
γ

)2

+ m2

4h̄2

(
1

Rγ

+ 1

T

)2

− 1

4�4
, (A3)

A = m2

8a�2 h̄2T 2
+ m2�

12ah̄2

(
1

Rγ

+ 1

T

)
− �2T 2

36aB2
γ

+ �T

3
,

(A4)

B = m2

8aB2
γ h̄2T 2

, C = − m2Dγ

8ah̄2Rγ T B2
γ

− m2Dγ

8ah̄2T 2B2
γ

,

(A5)

D = m�

12aB2
γ h̄

− m3

8ah̄3Rγ T 2
− m3

8ah̄3T 3
+ m

2h̄T
, (A6)

E = mDγ

4a�2h̄T B2
γ

+ mDγ

8ah̄T B4
γ

+ m�T Dγ

12ah̄Rγ B2
γ

+ m�Dγ

12ah̄B2
γ

,

(A7)

F = D2
γ

8a�2B4
γ

+ D2
γ

16aB6
γ

− D2
γ

4B2
γ

, (A8)

G = �T Dγ

12aB4
γ

− m2Dγ

8ah̄2Rγ T B2
γ

− m2Dγ

8ah̄2T 2B2
γ

, (A9)

H = mDγ

8aB4
γ h̄T

, and I = D2
γ

16aB6
γ

− D2
γ

4B2
γ

. (A10)
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