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Decoherence of quantum systems from entanglement with an unmonitored environment is, to date, the
most compelling explanation of the emergence of a classical picture from a quantum world. While it is well
understood for a single Lindblad operator, the role in the einselection process of a complex system-environment
interaction remains to be clarified. In this paper, we analyze an open quantum dynamics inspired by cavity
QED experiments with two noncommuting Lindblad operators modeling decoherence in the number basis and
dissipative decoherence in the coherent-state basis. We study and solve exactly the problem using quantum
trajectories and phase-space techniques. The einselection optimization problem, which we consider to be about
finding states that minimize the variation of some entanglement witness at a given energy, is studied numerically.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
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I. INTRODUCTION

The strangeness of the quantum world comes from the
principle of superposition and the existence of entanglement.
Explaining the absence of those characteristic features in the
classical world is the key point of the quantum-to-classical
transition problem. The fairly recent theoretical and experi-
mental progress have largely reshaped our understanding of
the emergence of a classical world from quantum theory
alone. Indeed, decoherence theory [1] has greatly clarified
how quantum coherence is apparently lost for an observer
through the entanglement of the system with a large unmon-
itored environment. At the same time, the interaction with
the environment allows one to understand the emergence of
specific classical pointer states, a process called einselection.

However, in the case of complex environments, the physics
of decoherence can be much more involved. It is then neces-
sary to consider the structure of the environment. A recent ap-
proach exploring this path, called quantum Darwinism [2,3],
considers an environment composed of elementary fragments
accessing a partial information about the system. While a
lot of insight was originally model based [4–8], it has been
proved that some basic assumptions of the quantum Darwin-
ism approach, such as the existence of a common objective
observable, come directly from the theoretical framework of
quantum theory [9–11].

Another possible source of complexity comes from the
possibility that the environment can measure different observ-
ables of the system. Formally, the effective dynamics of the
system will be described by many Lindblad operators which
may be noncommuting. When right eigenvectors of a Lind-
blad operator exist, which correspond to exact pointer states,
we say that the operator describes a decoherence channel.
Noncommuting Lindblad operators will give rise to what we
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call incompatible decoherence channels [12–15]. Interesting
physical effects come from the subtle interplay between those
incompatible channels. For instance, the physics of a quantum
magnetic impurity in a magnetic medium can be modeled as
an open quantum system problem in which the environment
probes all three Pauli matrices, instead of only one as in the
standard spin-boson model [16,17]. Depending on the relative
values of the coupling constants, different classical regimes
emerge at low energy, with one channel dominating the others.
What is more, for some fine-tuned cases, the more interesting
phenomena of decoherence frustration occurs [17] where all
channels contribute to suppress the loss of coherence of the
system at all energy scales. These kinds of subtleties in the
einselection process have also been studied in circuit QED
[18–22] where, once again, the emergent classical picture is
strongly dependent on the structure of the environment and
the relative strength of its decoherence channels.

Thus, in the case of several incompatible decoherence
channels, the problem of the emergence of a privileged basis
is far from trivial. In this paper, we analyze the einselection
process of a system in contact with two competing deco-
herence channels inspired by cavity QED experiments. The
system is a mode of the electromagnetic field confined in a
high-quality cavity. The two sources of decoherence, i.e., one
to the coherent-state family and the other to the number basis,
come, respectively, from the imperfections of this cavity and
from the atoms used to probe the field that are sent through
the cavity. We base our analysis on the Lindblad equation to
describe the effective open quantum dynamics. The problem
is solved exactly using quantum trajectories, characteristic
functions, and the quantum channel approach. These methods
allow one to go beyond the formal solution [14,15] by offering
a clearer physical representation of the dynamics and the
relevant timescales of the the problem. Still, the einselection
problem, which is about finding the most robust (approximate)
states to the interaction with the environment, has to be
solved numerically. We choose those states as the pure states
that minimize the short-time variation of some entanglement
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witness (the linear entropy) with the environment at a given
fixed energy. Depending on the relative values of the coupling
constants, we find the intuitive result that the einselected states
interpolate between Fock and coherent states. However, we
uncover the remarkable fact that Fock states remain exactly
the optimal einselected states up to a critical value of the
couplings that can be obtained analytically. Finally, in the
long-term dynamics, the einselection process appears to be
much more complicated.

The paper is structured as follows. In Sec. II, we present a
summary of techniques to derive the reduced dynamics from
the full system-environment unitary evolution. This section
can be skipped if the reader accepts Eq. (4). The core re-
sults are presented in Sec. III, where the model is solved
exactly. The einselection process is analyzed in Sec. IV and
we present numerical evaluation of the Wigner function of
the system which is used to properly analyze the different
einselection regimes. We conclude in Sec. V by discussing
how our analysis could be generalized and understood from
a more abstract perspective through the algebraic structure of
the jump operators.

II. MOTIVATIONS FROM CQED

By managing to entangle a single mode of the electro-
magnetic field and an atom, cavity quantum electrodynamics
(CQED) is a nice experimental setup to explore the foun-
dations of quantum theory, quantum information, and the
physics of the quantum-to-classical transition.

One implementation of CQED [23] uses an electromag-
netic mode trapped in high-quality factor mirrors as a system
which is probed by a train of atoms acting as two-level
systems (qubits) conveniently prepared. The setup can work
in different regimes where the qubit is in resonance or not with
the field. The off-resonance functioning mode, also called the
dispersive regime, is particularly interesting since the atoms
can be thought of as a small transparent dielectric medium
with respect to the field with an index of refraction depending
on its state. The atom is able to register some phase informa-
tion about the field making it a small measurement device. In
fact, a train of atoms can be thought of as a nondestructive
measurement device probing the number of photons in the
field. Focusing our attention on the field itself, the atoms have
to be considered as part of the environment of the field (even
if it is well controlled by the experimentalist) giving rise to a
decoherence channel having the Fock states as pointer states
[23–25]. Similar experiments can also now be performed on
circuit QED platforms [22].

However, a second source of decoherence exists, not con-
trolled by the experimentalist this time, that has its origin
in the imperfections of the cavity. Indeed, while the quality
factor is high enough to see a subtle quantum phenomenon,
photons can still get lost over time in the remaining elec-
tromagnetic environment. This second decoherence channel
leads to a decoherence of the field mode on the coherent-
state basis of the electromagnetic field [26] and introduces
dissipation.

We thus have two natural decoherence channels in this
experimental setup, i.e., one which selects photon number
states and the other coherent states. However, those two bases
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FIG. 1. Dynamics of the cavity. The cavity is coupled to its own
electromagnetic environment and to an atom, which is itself coupled
to its own electromagnetic environment. We suppose that the two
electromagnetic baths are not coupled. Eventually, the coupling of
the cavity to its bath leads to photon losses. The coupling with the
atom, in the dispersive regime, leads to decoherence on the photon
basis.

are incompatible in the sense that one has a definite number of
photons and the other has a phase. This strong incompatibility
between these classical states motivates the question of which
classical pictures, if any, emerge from such a constrained
dynamics.

Before analyzing this problem in detail, let us first put the
previous discussion on firmer ground by deriving an open
quantum system dynamics of the Lindblad form. We use
a Born-Markov approximation of an effective Hamiltonian
describing a CQED experiment, represented in Fig. 1. As a
starting point, consider the following Hamiltonian:

H = HS + HE + HSE , (1a)

HS = h̄ωcN, (1b)

HE = 1

2
h̄ωeg σz +

∑
k
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k + bk ), (1c)

HSE = h̄χ (t ) N (σz + a)
∑

k

g(c)
k c†

k + H.c., (1d)

with (a, b, c) ladder operators of harmonic oscillators asso-
ciated to the system and two environments, respectively, N =
a†a the number operator for the system oscillator a, and σz the
z Pauli matrix. The system of interest is the mode confined in
the cavity. Its free Hamiltonian HS is just the free harmonic
oscillator at frequency ωc. The cavity mode is coupled to two
other systems:

(i) The atom at frequency ωeg. It is coupled to the cav-
ity in the (large) dispersive regime, which is defined by a
large dephasing � = ωeg − ωc between the qubit and the
cavity compared to the dressed frequency of the cavity.
This is the first term of HSE . The coupling constant χ (t )
is given by g2(t )/4�, where g(t ) is the coupling constant
in the Jaynes-Cummings model. This atom is subjected to
an electromagnetic environment described by the harmonic
modes (ω(a)

k , g(a)
k ) coupled to it by a spin-boson model. Both

the atom and its electromagnetic environment form the first
decoherence channel.

(ii) Other harmonic modes ω
(c)
k describing the electromag-

netic environment of the cavity. In the secular approximation,
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this environment leads to photon losses in the cavity. This is
the second decoherence channel.

The first decoherence channel is given by the atom passing
through the cavity. Its effect on the field is characterized by a
correlation function of the form

G(a)
ρ (t, t ′) = 〈χ (t )σz(t ) χ (t ′)σz(t ′)〉ρ = χ (t )χ (t ′). (2)

We remark that in this case, the correlation function is inde-
pendent of the state of the qubit ρ. We will rewrite the corre-
lation function in terms of the variable τ = t − t ′. Supposing
that G(a)

ρ (t, t ′) satisfies the usual assumptions of the Born-
Markov approximation scheme (stationarity and fast decay),
the operators appearing in the Born-Markov equation are of
the form

∫ +∞
0 G(a)(t, τ )e−iωτ dτN . From there follows a Lind-

blad equation with the jump operator Ln(ω) =
√

2G(a)(−ω)N .
Unfortunately, it is not possible to satisfy those requirement
for the function χ (t ) (indeed, stationarity implies that χ

should be a phase but, being real, it must be a constant which
cannot satisfy the decay requirement). Thus, the time depen-
dence must be kept in full generality in this model, breaking
the usual stationarity assumption. This is not a problem for the
derivation of a master equation of the Lindblad form, the only
difference being that the rates will be time dependent. Still
making the assumption of fast decay in the time coordinate τ ,
the usual steps of the derivation can be followed. We then end
up with a time-dependent Lindblad term proportional to the
operator N : Ln(t, ω) =

√
2G(a)(t,−ω)N .

A sufficient condition for the fast decay assumption to be
valid is to have an exponential decay. This is the case in
the Rydberg atoms experiment where the coupling constant
follows the Gaussian beam in the cavity. From this, one
can obtain something close to a time-independent Lindblad
equation, by sending a stream of atoms. With the fast decay
assumption, each atom behaves almost like a single Marko-
vian environment. If we send the atoms one after the other,
provided that they do not interact with each other, they will
form a usual Markovian environment, with the Markovian
time governed by the average time between two atoms.

The second decoherence channel comes from the leaky
cavity and does not present any analytical difficulties. Sup-
posing that those degrees of freedom are at equilibrium and at
zero temperature, the Born-Markov equation then reduces to a
Lindblad term with the jump operator La(ω) =

√
2G(c)(−ω)a,

with G(c) the correlation function of the environment field
modes at zero temperature.

Before going to the main analysis of the model, two
remarks have to be made. The first remark is that if we were to
prepare the experimental setup in the resonant regime � = 0,
the atom-field interaction would be modified in such a way
that the atom could emit or absorb a photon from the mode.
Staying in the Markovian regime would result in a dissipative
dynamics equivalent to a photon emission and absorption,
albeit with very different transition rates. Thus, running the
experiment in the resonant regime would not result in the
dynamics we are interested in. The second one refers to
the system-environment cut and the Markovian hypothesis.
Here, we chose to consider as the system only the field
mode, all the other degrees of freedom then being part of the
Markovian environment. However, as it was done in [18], it

is also possible to consider as the system the field and the
qubit, while all the other electromagnetic field modes form
the Markovian environment. Different decoherence channels
acting on the qubit and/or on the field can be considered,
while the nontrivial internal Jaynes-Cummings dynamics adds
another level on complexity.

III. DISSIPATIVE DYNAMICS

A. Position of the problem

The previous discussion shows that cavity quantum elec-
trodynamics experiments are good candidates to analyze an
open quantum dynamics with two decoherence channels.
From an experimental point of view, modeling the dynamics
of the cavity is, in fact, subtle since only a few atoms are
present. In this case, adiabatic elimination techniques can be
used [27] to obtain the effective dynamics of the cavity.

In what follows, we will simplify the problem by elim-
inating all time dependence or extra terms that could arise
from a more precise effective description of experimental
setups. The problem we are interested in is to understand
the einselection process of a field mode modeled by a simple
harmonic oscillator subject to two decoherence channels: one
is induced by the dispersive interaction with a train of atoms
leading to decoherence on Fock states and the other is induced
by loss of photons in the cavity leading to decoherence on
coherent states. The open quantum dynamics is modeled by
a Lindblad equation with the Hamiltonian HS and two time-
independent jump operators,

La = √
κaa, Ln = √

κn a†a = √
κnN. (3)

Those two operators do not commute with each other and
therefore cannot be simultaneously diagonalized. The incom-
patibility between decoherence channels that we are referring
to has to be understood in this sense. Still, their commutator
[Ln, La] ∝ La remains simple enough and this is the key to
find an exact solution [14].

Given the two quantum jumps La and Ln, the Lindblad
equation we want to analyze is

∂tρ = −iωc [N, ρ] + κn

(
NρN − 1

2
{N2, ρ}

)

+ κa

(
aρa† − 1

2
{N, ρ}

)
, (4)

where N is the number operator and ωc the frequency of the
field mode.

To gain some intuition on the physics behind this dynam-
ics, let us study the evolution of some average values. We will
focus on the average position in phase space, which can be
recovered directly from the average value of the annihilation
operator 〈a〉, as well as the variance around this position
which is related to the average photon number 〈N〉 and the
square of the annihilation operator 〈a2〉. From those values,
we can extract the average position and the fluctuations on an
arbitrary axis, x̂θ = cos θ x̂ + sin θ p̂.

The observable N is in this case of particular interest. First
of all, it gives access to the average energy of the cavity.
Second, it is not affected by the proper dynamics of the cavity
nor by the Ln jumps. A direct computation gives the standard
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exponential decay of a damped harmonic oscillator with rate
κa,

〈N (t )〉 = e−κat 〈N (0)〉. (5)

This solution gives the intuitive result that photon loss induces
a decrease of the average number of photons in the cavity.

On the contrary, both decoherence channels affect the
average values of the annihilation operator a and its square,

〈a(t )〉 = e−iωct e−κnt/2e−κat/2 〈a(0)〉, (6)

〈a2(t )〉 = e−2iωct e−2κnt e−κat 〈a2(0)〉. (7)

We see that the average position in phase space oscillates at
the frequency of the cavity and is exponentially suppressed at
a rate (κa + κn)/2, different than the decay rate of the average
energy. We expect that for some states, this separation of
timescales will lead to an increase of fluctuations at interme-
diate times.

To put this statement on firmer ground, it is instructive to
compute the average fluctuations along an axis xθ making
an angle θ with the horizontal in phase space. A direct
computation gives

�x2
θ (t ) = 1

2 + (〈N (t )〉 − |〈a(t )〉|2)

+ Re[(〈a2(t )〉 − 〈a(t )〉2)e−2iθ ]. (8)

The first term 1/2 remains even when the cavity is empty
and corresponds to the fluctuations of the vacuum. It is also
the minimal isotropic fluctuations that satisfy the Heisenberg
principle. The second term corresponds to isotropic fluctua-
tions above the vacuum state and is, for instance, zero for
coherent states but not for a thermal density matrix. Finally,
the last term is the anisotropic part of the fluctuations and can
be either positive or negative. Even though the overall fluctu-
ations must satisfy Heisenberg inequalities, states can exhibit
fluctuations below the vacuum ones in some directions. This
property is called squeezing and is of particular interest for
quantum technologies.

If the initial state at t = 0 is a Fock state |n0〉, only the
isotropic contribution 〈N (t )〉 = n0 e−κat survives. In this case,
the fluctuations are decreased solely because of the loss of
energy in the cavity. This is due to the fact that the La channel
does not create any coherences between different Fock states,
while the Ln channel does not affect the statistical mixtures of
Fock states.

However, the situation is more subtle if we prepare a co-
herent state. A coherent state |α〉 such that α = √

n0eiϕ gives
the values 〈N (0)〉 = n0 and 〈a2(0)〉 = n0e2iϕ . The fluctuations
for such a state are evolving according to

�x2
θ (t ) = 1

2 + n0e−κat (1 − e−κnt )

×{1 − e−κnt cos[2(ϕ − θ − ωct )]}. (9)

As in the Fock state case, the fluctuations are exponentially
suppressed in time as the cavity loses energy with a rate
κa. However, the situation is more interesting because of the
competition between both channels on the isotropic part of
the fluctuations: on top of the exponential suppression, the
Ln channel tends to increase fluctuations up to the maximum
possible for the average energy still stored in the cavity. As

0 τ1 τ2 τk−1 τk t

|m〉 |m − 1〉 |m − k + 1〉 |m − k〉
· · ·

FIG. 2. Parametrization of a quantum trajectory built from two
types of quantum jumps, La = √

κa a and Ln = √
κn a†a. The times

τσ correspond to the La jumps and the quantum state between each
jump is above each slice.

we will see later, this comes from the fact that the coherences
between different photon numbers are suppressed over a
timescale 1/κn.

The anisotropic part of the fluctuations, in this case, is
always smaller than the isotropic part over the vacuum. The
fluctuations will thus always stay above the vacuum fluc-
tuations in any directions: this dynamics does not exhibit
squeezing. At short times, however, the fluctuations behave
as �x2

θ (t ) � 1/2 + 2n0κnt sin2(ϕ − θ − ωct ). They stay iden-
tical in the axis given by (0, α), but are increased with a
rate n0κn in the orthogonal direction. At longer times, the
anisotropic fluctuations decay, with an exponential rate (κa +
κn), faster than the isotropic decay rate κa.

Those timescales are very important to properly follow the
einselection process and we will analyze them in detail after
having obtained the general solution.

B. Quantum trajectory approach

The Lindblad equation (4) can be solved exactly from the
quantum trajectory approach [28]. One of the motivations for
using this approach is that it is now possible to explore the
dynamics of well-controlled quantum systems at the level of a
single experimental realization [29]. In this sense, it is closer
to the latest experiments studying decoherence. The strategy
will be to first write the stochastic Schrödinger equation for
the system, properly parametrize a trajectory, write its relative
state, and, finally, average over all possible trajectories to
obtain the reduced density matrix.

The stochastic Schrödinger equation associated to the
Lindblad equation (4) can be written as

|ψc(t + dt, [μ])〉

=

⎧⎪⎪⎨
⎪⎪⎩

{
1 − dt

[
iωa†a + κa

2 a†a + κn
2 (a†a)2

]} |ψc(t, [μ])〉
if μ(t ) = 0,

−i
√

dtκn a†a |ψc(t, [μ])〉 if μ(t ) = 1,
−i

√
dtκa a |ψc(t, [μ])〉 if μ(t ) = 2,

(10)

where μ(t ) takes the values 0, 1, and 2 if there is no quantum
jump, a jump Ln, or a jump La, respectively. A trajectory will
then be parametrized by the type of jump and its occurrence
time. We stress that the state |ψc(t, [μ])〉 is not normalized, the
probability of the trajectory t 	→ μ(t ) being given by p[μ] =
〈ψc(t, [μ])|ψc(t, [μ])〉.

To have a better intuition of how a state evolves, let us
start from a Fock state |m〉. Since it is an eigenstate of a†a,
the trajectories μ = 0 and μ = 1 do not change the state and
only induce a phase. However, the jump μ = 2 induces a
photon loss and the state is changed into |m − 1〉 with a phase.
Thus, a proper parametrization of a trajectory is to slice the
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evolution according to the La jumps, as shown in Fig. 2. There,
a trajectory is parametrized by the following:

(a) Na jumps La, indexed by the letter σ , occurring at times
τσ ,

(b) Nσ jumps Ln in the slice σ , indexed by the letter s,
occurring at times tσ,s ∈]τσ , τσ+1[.

For a given slice σ ∈ [[1, k + 1]] where τk+1 = t and τ0 =
0, the relative state obtained from Eq. (10) is proportional to
the Fock state |m − σ 〉. By denoting α(t, [μ]) the proportion-
ality constant, we find

|ψc(τσ , [μ])〉

=
Nσ−1∏
s=1

[−i
√

κndtσ−1,s(m − σ + 1)]

× [−i
√

κadτσ (m − σ + 1)]

× e−(i(m−σ+1)ωc+(m−σ+1)2κn/2+(m−σ+1)κa/2)(τσ −τσ−1 )

× α(τσ−1, [μ]) |m − σ 〉 . (11)

Having the formal form of the state of the system relative
to a given quantum trajectory, we can obtain the reduced
density matrix by summing over all possible trajectories. Our
parametrization is such that we can resum all the phases
accumulated between each of the La jumps easily and then
average over all La jump events. For the initial Fock state
|m〉, only the diagonal elements of the reduced density matrix
can be nonzero. No coherences are induced since a Fock
state remains a Fock state and no superposition appears.
This immensely simplifying feature comes directly from the
special commutation relation of the jump operators. We obtain

ρm−k,m−k =
(

m

k

)
(1 − e−κat )ke−κat (m−k). (12)

Starting from a Fock state |m〉, the state |m − k〉 is reached
if k photons have leaked. The associated probability is given
by p(t, k) = (m

k

)
(1 − e−κat )ke−κat (m−k), which is the classical

probability for a binomial experience B(m, p), where the
probability p for a photon to leak between 0 and t is p =
1 − e−κat . We recover the standard evolution of a damped
harmonic oscillator prepared in a Fock state.

The coupling constant κn does not appear in this expres-
sion, which means that the dephasing induced by an atom
flux has no effect on a Fock state. Indeed, we saw that
Ln jumps induce a dephasing between Fock states. Since a
unique trajectory keeps the cavity in a single Fock state, this
dephasing is only a global phase shift and thus has no effect
at all.

Since Fock states form a basis of the Hilbert space of the
system, an analogous computation starting from any superpo-
sition of Fock states gives the general solution,

ρm,n(t ) = e−iω(m−n)t e−κa
m+n

2 t e− κn
2 (m−n)2t

×
∑
Na

√(
m + Na

Na

)(
n + Na

Na

)
(1 − e−κat )Na

× ρm+Na,n+Na (0). (13)

The physical content of this general exact expression is
more transparent if we initially prepare a superposition of
coherent states. What is more, those are the typical quantum
states that are used in cavity quantum electrodynamics to
study the decoherence process. Let us then consider the state
|�c〉 = |α+〉+|α−〉√

N , where α± = α e±iθ/2, α ∈ C, and N is a
normalization factor. The initial density matrix is then given
by

ρm,n(0) = 1

N [ρm,n(α+) + ρm,n(α−)

+ ρm,n(α+, α−) + ρm,n(α−, α+)], (14)

where ρm,n(α) = 〈m|α〉〈α|n〉 refers to the matrix element mn
in the Fock basis of the density matrix of the coherent state
|α〉. The last two terms correspond to interferences between
the two coherent states, with ρm,n(α+, α−) = 〈m|α+〉〈α−|n〉.
Using Eq. (13), the time-evolved density matrix at time t is
given by

ρm,n(t ) = 1

N e−κn
(m−n)2

2 t
{
ρm,n[α+(t )] + ρm,n[α−(t )]

+e−|α|2(1−e−κat )(1−eiθ )ρm,n[α+(t ), α−(t )] + H.c.
}
,

(15)

where α±(t ) = α± e−iωct e− κa
2 t . The effect of the two deco-

herence channels can be clearly identified. First, the term
da(t ) = e−|α|2(1−e−κat )(1−eiθ ) is the usual decoherence factor
coming from the jump La = √

κaa (damped harmonic oscil-
lator), which tends to destroy coherences between coherent

states. On the other hand, the term e−κn
(m−n)2

2 t tends to destroy
coherences between Fock states, which are the natural pointer
states of the channel Ln = √

κnN .
The interesting and surprising aspect of Eq. (15) is that

while the Lindblad jump operators do not commute, the
overall evolution is, in a sense, decoupled. This can be made
precise by using the quantum channels perspective. Indeed,
by considering the superoperators H = −i(H̄ ⊗ 1 − 1 ⊗ H )
and D = ∑

μ L̄μ ⊗ Lμ − 1
21 ⊗ L†

μLμ − 1
2 L̄†

μL̄μ ⊗ 1 (the bar
notation corresponds to complex conjugation), the Lindblad
equation can be formally integrated as [30]:

ρ(t ) = e(H+D)tρ(0) = LH,[Lμ](t )ρ(0). (16)

The notation LH,[Lμ](t ) is here to remind us that the quantum
channel depends on the set of jump operators Lμ through the
operator D. In our problem, we have two noncommuting jump
operators La = √

κa a and Ln = √
κnN . Astonishingly, their

respective quantum channels do commute, leading to

LH,La,LN (t ) = LH,La (t )LLN (t ) = LLN (t )LH,La (t ). (17)

Thus, while the generators of the open quantum dynamics
do not commute, the associated quantum channels do (and
decouple in this sense). The full dynamics of the model can be
solved by parts by looking at the evolution of both quantum
channels separately, which is an easy task. Nevertheless, this
does not trivialize the einselection problem of finding the
exact or approximate pointer states that entangle the least with
the environment. The emergence of a classical picture does
depend on the “fine structure” of the dynamics.
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TABLE I. Comparison of the timescales relative to the classes of exact pointer states.

Timescale Expression Coherent state (C) Fock state (F)

Decoherence of coherence states τa = 1/2 〈N〉κa sin2(θ/2) Decoherence (C) Spreading
Relaxation τr = 1/κa Relaxation Relaxation and decoherence (C)
Spreading in angle τs = 2/κn〈N〉 Spreading Decoherence (F)
Crown formation τc = 1/κn Decoherence (F)

Two natural decoherence timescales can be defined, still
considering the initial state to be the superposition of coherent
states |�c〉. The first one is the usual decoherence timescale τa

of a superposition of coherent states induced by the decoher-
ence channel La. Its expression is obtained by the exponential
modulation of the coherence term in the general solution given
by Eq. (15). For decoherence processes, it is meaningful to
look at short times, i.e., when κat  1, especially when the
two components of the Schrödinger’s cat are well separated.
In this limit, and looking at the effect of the La channel alone,
we derive the characteristic time

τa = 1

2 〈N〉 κa sin2(θ/2)
, (18)

using that |α|2 = 〈N〉. Over time, this channel tends to empty
the cavity. The relaxation timescale τr deduced from the
equation α(t ) = e−κat/2α is such that

τr = 1

κa
. (19)

A second decoherence timescale τn is associated to the Ln

channel. In the Fock basis, its expression is straightforwardly
given by τs = 2/κn(m − n)2. Still, we can rewrite it in a
form more suitable for coherent states. Indeed, coherent states
have a Poissonian distribution of photons with an average
〈N〉 = |α|2 and a standard deviation �n =

√
|α|2 = √〈N〉.

Thus, the characteristic width �n of a coherent state gives
a characteristic upper bound m − n � �n. This allows us to
extract a characteristic time which, as we will see, corresponds
to a spreading in the angle variable in phase space,

τs = 2

κn〈N〉 . (20)

This timescale corresponds to the short-time effect of Ln. The
long-time effect is given for m − n = 1 and corresponds to a
disappearance of the Fock states superposition. The associated
timescale τc, which corresponds to the formation of a rotation-
invariant crown in phase space, is given from Eq. (15) by

τc = 1

κn
. (21)

Thus, the two natural decoherence timescales for coherent
states are τa and τc, corresponding to the loss of coherence
on the coherent state and number state basis, respectively. The
scaling τa/τc � κn/κa〈N〉 implies that for sufficiently high
energy, we can have a separation of decoherence times, by
first seeing a decoherence over the coherent states followed
by one on the number basis. Table I summarizes the different
timescales, their expression, and interpretation when a super-
position of coherent states is initially prepared. However, as
we will see over the next sections, the interpretation of those

timescales is relative to the class of pointer states we use, such
as, for instance, when we initially prepare Fock states.

C. Phase-space approach

1. The general solution

The last section presented the general solution of the Lind-
blad equation (4) using the quantum trajectories approach.
It is also possible to solve the same problem from a phase-
space perspective using characteristic functions of the density
matrix. This approach offers interesting physical insights on
the dynamical evolution imposed by the two incompatible
channels.

Given a density operator ρ, we associate a function
Cρ (λ, λ∗), with λ ∈ C, defined as

Cρ (λ, λ∗) = tr(ρeλb†
e−λ∗b). (22)

This function is called the characteristic function adapted to
the normal order. All of the normally ordered average values
can be recovered from it. It is an integral transform of the
Wigner function that we will define and use extensively later
on. Now, by taking each term of the Lindblad equation (4), it
is a straightforward computation, using the Baker-Campbell-
Hausdorff formula, to write it in terms of the characteristic
function as

∂tCρ + λ
(κa

2
− iωc

)
∂λCρ + λ∗

(κa

2
+ iωc

)
∂λ∗Cρ

= −κn

2
(λ∂λ − λ∗∂λ∗ )2 Cρ. (23)

By using polar coordinates λ = r eiθ , we obtain the more
transparent form(

∂t + κa

2
r∂r − ωc∂θ

)
Cρ (r, θ, t ) = κn

2
∂2
θ Cρ (r, θ, t ). (24)

This equation is of the Fokker-Planck type, with the right-
hand side being a diffusion term with a diffusion coefficient
given by the coupling constant κn. Thus, the channel Ln tends
to spread in an angle to the characteristic function. This is in
accord with the first discussion of the evolution of fluctuations
given through the average values. Note that we could even
consider an environment at finite temperature and obtain a
similar equation (with an inhomogeneous term) that can also
be solved exactly.

When only the channel La is present, the differential
equation is first order and can be solved by the method of
characteristics [31,32]. This is not directly the case here but
can be remedied by going to the Fourier domain with respect
to the variable θ . Doing this is indeed quite intuitive if we
remember that the conjugated observable associated to θ is
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the number operator N , which is the natural observable of the
problem, and that both are related by a Fourier transform.

Let us then define a new characteristic function Cρ (r, n) =∫
Cρ (r, θ ) einθ dθ , which is the Fourier series of Cρ (r, θ ).

We then end up with an inhomogeneous first-order partial
differential equation,(

∂t + κa

2
r∂r

)
Cρ (r, n, t ) = (iωcn − n2)

κn

2
Cρ (r, n, t ). (25)

By applying the method of characteristics, solving the equa-
tions ṙ = κa and ṅ = 0, we obtain the general solution for an
initial condition C0(r0, n0),

Cρ (r, n, t ) = C0(re−κat/2, n) e(iωcn− κn
2 n2 )t . (26)

From the radial damping, we recover the usual damping rate
leading to decoherence on the coherent-state basis. Besides
this usual behavior, we have a new damping term depending
on the square of the Fock variable n, which leads to the
decoherence in the Fock basis with the characteristic angle-
spreading timescale τs already uncovered in Sec. III B.

2. Fock state decoherence

Different initial states can be prepared. We will naturally
focus on two classes of states, i.e., Fock states |n〉 and coherent
states |α〉. As a warm-up example, suppose that only the
channel Ln is present. If we prepare a Fock state |n〉, whose
characteristic function is given by C|n〉(λ) = Ln(|λ|2) where
Ln is the Laguerre polynomial of order n, we know that it will
not be affected by the environment and will evolve freely, as
can be readily checked from Eq. (26). The important remark
here is that the phase-space representation of a Fock state or
any statistical mixture of them is rotation invariant.

If we now prepare a quantum superposition of Fock
states (|n0〉 + |n1〉)/

√
2, it is straightforward to show

that the coherence part of the characteristic function
C01(λ, λ∗) = tr(|n0〉〈n1| eλb†

e−λ∗b) evolves as

C01(λ, λ∗) = e− κn
2 (n1−n0 )2tC01(r, ωct + θ ). (27)

The coherence term between Fock states is damped by an ex-
ponential factor with a characteristic timescale 2/(n0 − n1)2κn

scaling as the quadratic inverse of the “distance” between the
two components of the state. The is the expected decoherence
dynamics for the exact pointer states of a decoherence chan-
nel.

3. Coherent states and the Wigner representation

In the spirit of cavity quantum electrodynamics experi-
ments, it is more appropriate to study the evolution of coherent
states and their superposition. Before discussing the dynamics
of such states, it is necessary to introduce a better-suited
phase-space representation than the one defined by Eq. (22).
Indeed, this latter function is a complex-valued function,
which is not the best choice for representation purposes.
From the characteristic function Cρ (λ, λ∗), we can recover
an equivalent, real-valued, phase-space representation called
the Wigner function Wρ (α) of the state ρ (with the parameter
α ∈ C), defined as the following integral transform [31,33]:

Wρ (α) = 1

π2

∫
Cρ (λ) e−|λ|2/2eαλ∗−α∗λ d2λ. (28)

Using the position and momentum coordinates in phase space
α = x + ip, we recover the common expression

Wρ (x, p) =
∫

〈x + u/2|ρ|x − u/2〉e−iup du

2π
, (29)

where the states |x〉 are eigenstates of the position operator
x ∝ a + a†. The Wigner function is used in a wider context
than quantum optics [34,35] and possesses a nice set of
properties to represent quantum interference in a transpar-
ent way. We will use it throughout this paper to represent
our analytical and numerical results. Furthermore, since the
proper dynamics of the field mode can be factored out, the
dynamics is pictured without the rotation in phase space that
it introduces.

Both for the numerical calculations as well as for under-
standing the dynamics in phase space, it is helpful to write
the Wigner function in terms of its Fourier components of the
polar angle θ . Thus, let us decompose the Wigner function on
the Fock state basis as

W (x, p) =
∑
m,n

ρmnWmn, (30)

Wmn(x, p) =
∫

〈x + χ/2 | m〉〈n | x − χ/2〉e−ipχ dχ

2π
. (31)

If we denote x + ip = reiθ , we find that for l � 0,

Wk,k+l (r, θ ) = (−1)k

π

√
2l

k!

(k + l )!
e−ilθ rkLl

k (2r2), (32)

where Lk
m are generalized Laguerre polynomials. This implies

that the coherence given by ρk,k+l (k ∈ N, l � 0) and ρk−l,k

(k ∈ N, l � 0) corresponds to the lth harmonics of the angle
variable in the Wigner function.

Notably, since the Ln channel acts by multiplying all the
elements situated at a distance l from the diagonal by the same
quantity, it corresponds to reduce the different harmonics of
the angle variable by an exponential amount. This corresponds
to the idea of a spread in the angle variable.

κnt = 0 κnt = 1/20 κnt = 2

-5 0 5 -5 0 5 -5 0 5

-5

0

5

Re(α)

Im
(α

)

-0.6 -0.3 0.0 0.3 0.6

FIG. 3. Evolution of a superposition of coherent states from t =
0, subject to the Ln channel only (κa = 0) in the Wigner function
representation. The Gaussian spots are spread over a timescale given
by κnτs = 2/〈N〉. For the chosen parameters α = √

40, it is given
by κnτs = 1/20. At longer times κnt = 2, the superposition evolves
toward a statistical mixture of Fock states with the characteristic
rotation invariance in phase space.
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κnt = 0 κnt = 1/10 κnt = 2

-5 0 5 -5 0 5 -5 0 5

-5

0

5

Re(α)

Im
(α

)

-0.6 -0.3 0.0 0.3

FIG. 4. Depending on the preparation, with, for instance, here
α+ = √

40 and α− = −√
10, the interference spot is totally washed

out by the Ln channel (κa = 0) after the spreading timescale κnt =
1/10, leading at longer times κnt = 2 to a mixture of Fock states.

If we now prepare a coherent state |α〉 whose characteristic
function is given by C|α〉(λ) = eα∗λ−αλ∗

, its evolution in the
presence of only the Ln decoherence channel is given by the
convolution of the initial characteristic function with a Gaus-
sian function Nσ (θ ) = e−θ2/2σ 2

/
√

2πσ 2 of the angle variable
θ spreading in time with a variance σ 2 = κnt (see Appendix
1). In terms of the Wigner function, we have

W (r, θ, t ) =
∫ +∞

−∞
W0(r, θ ′)Nσ 2=κnt (θ − θ ′)dθ ′, (33)

with W0 the initial Wigner function. This form clearly displays
the diffusive dynamics induced by the Ln decoherence channel
in the phase angle, putting the initial intuition on firm ground.

Figure 3 represents the evolution of the Wigner function
of a superposition of coherent states. At a timescale τs =
2/κn〈N〉, the Gaussian spots start to spread along circles with
a radius given by their respective amplitude. The same can be
said for the Gaussian interference spot which is centered at the
midpoint in phase space. At later times t � τc, the coherent
states spread uniformly and are completely decohered as a
statistical mixture of Fock states.1

In fact, we can better understand the structure of
the Wigner function at finite times by explicitly writ-
ing the periodicity in the variable θ hidden in Eq. (33).
Indeed, we have W (r, θ, t ) = ∫ 2π

0 W0(r, θ ′) ϑ ( θ−θ ′
2π

; i κnt
2π

) dθ ′
2π

,
with ϑ (z; τ ) = ∑

n∈Z exp(π in2τ + 2π inz) the Jacobi theta
function. When κnt � 1, the expansion ϑ ( θ

2π
; i κnt

2π
) � 1 +

2
∑

n∈N∗ (e−κnt/2)
n2

cos nθ can be used to approximate the
Wigner function. For instance, if κnt = 2, only the first har-
monic of the Wigner function dominates with oscillations in

1This affirmation is true because of the rotation invariance of the
Wigner function. Indeed, the Wigner function of a statistical mixture
of Fock states is rotation invariant, being a sum of function of the
form Ln(r2). The converse is also true: from the fact that the set
of functions [Ylm(θ )Ln] forms a basis of the functions f (θ, r), a
rotation-invariant Wigner function W (r) can be represented as a sum
of Laguerre polynomials. In terms of the density operator (Fourier
transforming the Wigner function), we end up with a statistical
mixture of Fock states.

La

t ∼ τa

t ∼ τr

Ln

t ∼ τs

t ∼ τc

FIG. 5. Summary of different evolution and timescales of a su-
perposition of coherent states under the effects of two decoherence
channels: the Ln channel induces a spreading of the wave packet,
while the La channel destroys interferences and makes the system
relax to the vacuum.

amplitude of 74% of the average value, the second harmonic
being less than 2%, as can be seen in Figs. 3 and 4. This
harmonic decomposition also shows that in the presence of
symmetries in angle, for instance, W (r, θ + 2π/p) = W (r, θ )
for an integer p � 2, the first nonzero modulation term scales
as e−κnt p2/2. Thus, symmetric initial states will decohere much
quicker than the ones that are not.

Finally, note that the presence of an interference pattern
in Fig. 3 is not a signature of coherence between the Fock
state. For a different preparation such as the one in Fig. 4, the
interference spot is completely washed out over a timescale of
τs.

IV. EINSELECTION PROCESS

Now that we have a proper analytic solution of the problem
and we completely understand the evolution and characteristic
timescales of each decoherence channel separately, which is
summarized in Fig. 5, we can analyze the einselection process
in its full generality.

A. Pointer states dynamics

Intuitively, we expect that the classical picture that emerges
must be dominated by the quantum channel which has the
strongest coupling constant [17]. We can, in fact, play with
two parameters, i.e., the ratio κn/κa and the average energy of
the state 〈N〉.

One regime is when we have τa/τc ≈ κn/κa〈N〉 � 1 or,
equally, 〈N〉  κn/κa. We expect in this case that Fock state
decoherence dominates the dynamics. We can refine our
statement by unraveling two subregimes with respect to the
relaxation timescale τr :
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FIG. 6. Coherent-state dynamics for α = √
40 � κn/κa. De-

pending on the relative ratio of the coupling constants κn/κa, we
either see an emergent classical picture based solely on coherent
states κn/κa < 1 or both coherent and then Fock states (κn/κa > 1).

(i) In the range τc  τa, τr or, equally, 〈N〉  κn/κa and
τr/τc ≈ κn/κa � 1, we have a proper decoherence on the
Fock basis, as we expected.

(ii) However, for τr  τc  τa or, equally, 〈N〉  κn/κa

and τr/τc ≈ κn/κa  1, we end up in the almost degenerate
case 〈N〉  1, where we relax on the vacuum state.

Thus, in the regime τa � τc, where the Fock decoherence
initially dominates, we see that the relaxation induced by the
La channel forbids one to transition toward a proper nontrivial
coherent-state classical picture: before evolving towards a
proper statistical mixture of coherent states, the system relaxes
to the vacuum. All in all, the emergent physically meaningful
classical picture is given by Fock states.

From the einselection perspective, a richer dynamics
can be found in the complementary regime where τa/τc ≈
κn/κa〈N〉  1 or, equally, 〈N〉 � κn/κa. Figure 6 shows the
evolution of the Wigner function of a coherent state (with
initially 40 photons on average) for this situation. We can see
at least three different regimes:

(1) The regime with κa � κn (first column with κa =
5 κn). In this case, we see that coherent states remain largely
unaffected by the environment and evolve according to the
dynamics of the La channel with the characteristic dissipation
timescale τr .

(2) The complementary regime with κn � κa (third column
with κn = 5 κa) where the Ln rules the dynamical evolution.
We see that the coherent state is spread into a statistical
mixture of Fock states over a timescale τc, which is then
followed by the much slower process of relaxation.

(3) The intermediate regime with κa ≈ κn. In this case, it
is not possible to clearly conclude which basis is the most
classical one.

The previous discussion focused mainly on a preparation
of coherent states. A similar discussion can be made if we
prepare a Fock state. As expected, if the Ln channel dominates,
we observe a decoherence over the Fock basis with a slow
relaxation towards the vacuum induce by the La channel.
Nonetheless, some subtleties, detailed in Appendix 2, occur
in the opposite situation because coherent states do not form a
proper orthogonal basis. In the same way that a very close
superposition of coherent states will not properly decohere
under the influence of the La channel, a Fock state, being a
continuous superposition of coherent states, cannot properly
evolve toward a classical mixture of coherent states.

B. Approximate pointer states

For a general dynamics, exact pointer states, defined as
states that do not get entangled with the environment if they
are initially prepared, do not exist. Instead, we have to rely on
an approximate notion of pointer states to give a meaningful
notion of an emergent classical description. Approximate
pointer states are defined as the states that entangle the least
with the environment according to a given entanglement
measure. This definition of approximate pointer states, called
the predictability sieve and used in different contexts [36,37],
is one definition among different proposals to formalize the
idea of robustness against the environment. For instance, the
Hilbert-Schmidt robustness criterion [38,39] defines pointer
states as time-dependent pure states that best approximate
according to the Hilbert-Schmidt norm the impure state gen-
erated by infinitesimal time evaluation. Fortunately, those dif-
ferent approaches were shown to be consistent for physically
meaningful models [40].

Many different measures of entanglement exist in quantum
information theory and it is not yet totally clear which one is
the proper one to use in the predictability sieve approach. For
the sake of simplicity, we will consider the purity γ defined
as2

γ = tr ρ2. (34)

Approximate pointer states are then defined by searching for
pure states that minimize the initial variation of the entropy or,
equivalently, minimize the loss of purity.3 It is worth noting
that the purity variation, for a pure state, is also equal to twice
the variation of the principal eigenvalue of the density matrix.

Before proceeding, we could inquire about the dependence
of the approximate pointer states that we find on the en-
tanglement witness that we choose. For instance, we could
have chosen a whole class of entropies Sα called the Rényi
entropies [41] defined as Sα (ρ) = 1

1−α
tr ρα . Using those en-

tropies to find the approximate pointer state does not change
the conclusion if we are looking at the short-time evolution
of a pure state. Indeed, if we prepare at t = 0 a pure state,
we have that ρα = ρ for α �= 0. Then, Ṡα = α

1−α
tr ρ̇ρα−1 =

α
1−α

tr ρ̇ρ, which is equal, apart from a proportionality factor,

2The purity can be used to define a notion of entropy S = 1 − γ

called the linear entropy.
3This corresponds to maximizing the derivative of the purity along

time at t = 0, which is always a negative quantity for a pure state.

062107-9



FELLER, COEURET CAUQUIL, AND ROUSSEL PHYSICAL REVIEW A 101, 062107 (2020)

κa

κa+κn
= 3

5
κa

κa+κn
= 4

5
κa

κa+κn
= 1

κa

κa+κn
= 0 κa

κa+κn
= 1

5
κa

κa+κn
= 2

5

−5 0 5 −5 0 5 −5 0 5

−5

0

5

−5

0

5

Re(α)

Im
(α

)

−0.2 0 0.2 0.4 0.6

FIG. 7. Wave packet that minimizes the loss of purity at initial
time, for an average energy of 20 photons, obtained by numerical op-
timization techniques. The optimal (with respect to the purity) state
γ̇opt interpolates between Fock states and coherent states, depending
on the relative value κa/(κa + κn) of the coupling constants.

to the evolution of purity. The approximate pointer states do
not then depend on which measure we choose.

Coming back to the purity, its derivative γ̇ , which is, up to
a constant factor, just the derivative of the largest eigenvalue
for an initial pure state, is linear in ∂tρ. We thus have γ̇ =
γ̇a + γ̇n, where γ̇a (γ̇n) is the contribution solely due to the La

(Ln) channel. First of all, since each of these contributions is
nonpositive, a pure state will stay pure if and only if it stays
pure for each channel. In this case, it is easy to see that unless
one of the two constants κa or κn is zero, the only state staying
pure is the vacuum state. That is why, in general, no exact
pointer states exist for a complex open quantum dynamics
and we have to look for approximate ones. Having said that,
we now have to search for pure states that minimize the loss
of purity at initial time. As a function of the matrix elements
ρmn of the initial state written in the Fock basis, the purity
derivatives satisfy the equations

γ̇n = −κn

∑
m,n

|ρm,n|2(m − n)2, (35a)

γ̇a = −κa

∑
m,n

[|ρm,n|2(m + n)

−2ρ∗
m,nρm+1,n+1

√
(m + 1)(n + 1)]. (35b)

To find the approximate pointer states, we thus have to find
the initial pure state that minimizes the purity loss, under the
constraint of a unit norm. It is also natural to fix the average
energy of the wave packet (otherwise, the vacuum is a trivial
optimum). Since it is difficult to perform this optimization
analytically, we performed it numerically using the Pagmo
library [42] with the SNOPT algorithm [43]. We see in Fig. 7
that when the average energy is a multiple of the number of

photons, the optimal state deforms from a coherent state to a
Fock state. The optimal purity variation γ̇opt as a function of
(κa, κn) can be seen for different numbers of photons in Fig.
9.

The time evolution of the approximate pointer states is
featured in Fig. 8. This illustrates that on short timescales, the
optimal state keeps its shape and, as such, is quite robust to
both interactions.

Furthermore, a remarkable fact can be seen by looking
at the overlap between the Fock state of energy n0 and the
optimal pure state |ψopt〉: Fock states remain the approximate
pointer states even in the presence of the La decoherence
channel at small coupling κa  κn. This is characterized by
the presence of a plateau on the overlap |〈n0|ψopt〉| as a
function of κa/(κa + κn), as shown in Fig. 9.

To better understand this phenomenon, it is instructive to
look at the evolution of the purity for a state not far away
from the Fock state |n0〉 and see whether or not this small
perturbation changes the optimal problem. Assuming that the
state |ψ〉 = ∑

n cn |n〉 has coefficients cn = δn,n0 + εn, with
|εn|  1, we have

γ̇n = −2 κn

∑
n

|εn|2(n − n0)2, (36)

γ̇a = −2 κa

[
n0

(
1 + 2Reεn0

)2 +
∑

n

|εn|2(n + n0)

− ∣∣εn0+1

∣∣2
(n0 + 1) − ∣∣εn0−1

∣∣2
n0

− 2Reεn0+1ε
∗
n0−1

√
n0(n0 + 1)

]
. (37)

The norm and energy constraints can be rewritten as the
equation system,

2Reεn0 +
∑

n

|εn|2 = 0, (38a)

∑
n

(n − n0)|εn|2 = 0. (38b)

Using the global phase symmetry of the quantum state, we
can fix εn0 (an imaginary part on εn0 corresponds to changing
the phase of the initial Fock state). Furthermore, using both
constraints, we can eliminate all the terms containing εn0 . The
variation of purity takes the form

γ̇

2
= κan0 −

∑
n

|εn|2κn(n − n0)2

+ κa
[∣∣εn0+1|2(n0 + 1) + ∣∣εn0−1

∣∣2
n0

+ 2Reεn0+1ε
∗
n0−1

√
n0(n0 + 1)

]
. (39)

We see that under the normalization constraint, Fock states are
always stationary points of the purity variation. Furthermore,
provided that κn > 4κa, the purity derivative is a maximum
along all directions except possibly on the plane (εn0−1, εn0+1).
We can thus concentrate on this plane. In this case, the
constraint given by Eq. (38b) is simply |εn0−1|2 = |εn0+1|2. If
we denote θ as the phase difference between εn0−1 and εn0+1,
the tipping point occurs when

κn/κa = n0 + 1
2 +

√
n0(n0 + 1) cos θ. (40)
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FIG. 8. Evolution of the approximate pointer states for several (κa, κn) parameter regimes, for an initial energy of n0 = 20 photons.

Since κn has to be maximum, we can keep θ = 0. And, thus,

κn/κa = n0 + 1

2
+

√
n0(n0 + 1) ≈ 2

(
n0 + 1

2

)
. (41)

This equation gives the critical point where Fock states are
no longer the einselected states of our dynamics and explains

γ̇opt /(κa + κn) |〈n0|ψopt 〉|

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

−4

−2

0

κa/(κa + κn)

n0 1 2 5 10

FIG. 9. Purity and scalar product of the approximate pointer state
with Fock states for energies of n0 = 1, 2, 5, 10 photons. We see that
in the low-κa regime, the approximate pointer state |ψopt〉 is still a
Fock state, until the critical value κn/κa = n0 + √

n0(n0 + 1) + 1/2.
As expected, the derivative of the purity linearly decreases on this
plateau.

the qualitative features of Fig. 9. Actually, what we have just
shown is that a Fock state is always a stationary point of
the purity variation. Given the norm and energy constraints,
it moves from an extremum to a saddle point exactly when
κn/κa = n0 + √

n0(n0 + 1) + 1/2, with n0 the average energy
of the state. When n0 � 1, κn/κa ≈ 2n0 + 1. As such, when
n0 becomes bigger, the size of the plateau on which the Fock
state remains the einselected state becomes smaller. Away
from the critical point, the most robust state becomes the
state that interpolates between a number and coherent state
of Fig. 7.

However, when the average number of photons n̄0 in the
cavity is not an integer, the behavior is quite different. First,
even when κa = 0, there is no exact pointer state satisfying
this constraint. The approximate pointer states in this case
are superpositions of Fock states, |ψsf〉 = α |�n0�〉 + β |�n0�〉,
with (α, β ) such that the energy constraint is satisfied. An-
other difference is that in this case, the optimal state deforms
smoothly from the superposition |ψsf〉 to the coherent state.
Contrary to the integer case, there is no tipping point, as can
be seen in Fig. 10.

V. DISCUSSIONS AND CONCLUSION

Here we discussed the einselection process in the pres-
ence of two incompatible decoherence channels and used
the characterization of approximate pointer states as states
that entangle the least with the environment. By choosing an
entanglement measure, they are found by solving an optimiza-
tion problem from the short-time open evolution of pure states
(under natural constraints). Two drawbacks of this approach to
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γ̇opt /(κa + κn) |〈ψcoh |ψopt 〉| |〈ψsf |ψopt 〉|
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FIG. 10. Purity variation, and scalar product of the approximate
pointer state with the approximate pointer states when one of the
coupling constants is zero. The average energy corresponds to n̄0 =
1.5, 2.5, 5.5, 10.5 photons. In this case, the optimal state when
κa = 0 is |ψsf〉 = (|�n̄0�〉 + |�n̄0�〉)/

√
2. Conversely, when κn = 0,

we have a coherent state whose average energy is n̄0. Contrary to the
integer case, there is no plateau appearing in the low-κa regime.

the einselection problem can be stated: how the choice of the
entanglement measure influences the answer and whether or
not an optimal state remain robust over time (validity of the
short-time hypothesis). As we already discussed, focusing on
the short-time evolution basically solves the issue of which
entanglement measure to choose, but the problem remains
open in general.

From the exact solution of the model, we can compare
the evolution over time of the purity between the optimal,
the Fock, and the coherent state of a given energy, as shown
in Fig. 11. As expected, we observe that at short times, the
evolution of purity is the slowest for the optimal state (by con-
struction), while at very long time compared to the relaxation
time, everything converges toward the same value since we are
basically in the vacuum. However, at intermediate timescales,
the evolution of purity gets quite involved and we see that it
may even be possible that the optimal state does not remain
so and this is strongly dependent on the coupling constants.
In this case, one can get an intuition of this behavior because
the optimal states have a smaller spreading on the Fock basis
than the coherent states and, as such, contract to the vacuum
more slowly. Thus, while the definition of approximate pointer
states is physically intuitive, the question remains of how
to properly characterize them not only from an information
perspective, but also from a dynamical perspective.

A general question that we can also ask in the perspective
that we adopted here on understanding the emergence of a
classical picture from a complex environment would be the
following: what can we learn about the dynamics and the
einselection process of the model through the general features
of the model such as the algebraic relations between the jump
operators? Naturally, the whole problem depends on the kind
of dynamical approximations we do, if we start from the
exact Hamiltonian dynamics or from an approximate master

FIG. 11. Evolution of the purity for the coherent state, the Fock
state, and the approximate pointer state for the energy n0 = 20
photons.

equation such as the Lindblad equation, as we did and still
have in mind here.

Focusing on the general dynamics first, we saw that given
the Lindblad equation and the commutation relations of the
jump operators, the dynamics can be exactly solved alge-
braically by adopting a quantum channel perspective: the
full dynamics of the model decouples and we can look at
the evolution of both quantum channels separately, which
is an easy task. In fact, our solution can be abstracted in
the following sense. Consider an open quantum dynamics
with a damping channel encoded by the jump operator L
and a number decoherence channel encoded by the jump
operator L†L. Our approach can then be followed step by
step again. It, however, opens the question of how to define a
proper phase space associated to a jump operator (through, for
instance, generalized coherent states [44]), how to generalize
characteristic functions such as the Wigner representation, and
how to verify if the phase-space perspective on decoherence
developed throughout our analysis still holds in this general-
ized context.

Concerning the einselection process, however, note that
having a general solution does not mean that finding the
approximate pointer states is also solved. Here, the prob-
lem remains largely open when we have many incompatible
decoherence channels. Indeed, not only does the algebraic
structure influence the einselection process, but also the set
of coupling constants and how they run as a function of the
energy [16,17].

We can already start to grasp those subtleties when a
thermal environment is present. Indeed, absorption processes
can occur, which forces us to consider a jump operator of
the form La† = √

κan̄ a†. However, such a jump taken alone is
hardly meaningful (the state evolves toward an infinite-energy
configuration). Relaxation processes have to be taken into
account and this is summed up by the usual commutation
relations between a and a†. Still, this is not sufficient to reach
equilibrium and proper relations between the coupling con-
stants of the different processes must exist. This well-known
example already shows that relating the general features of the
open quantum dynamics to the einselection process is not that
straightforward.
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The model studied in this paper behaves quite intuitively:
when one of the couplings dominates, the associated deco-
herence channel controls the einselection process. However,
when both couplings are comparable, the nontrivial commu-
tation relations between the jump operators enter the game.
No exact pointer basis exists and the robust states interpolate
between the extreme cases and how far they are from them
depends on the relative values of the coupling constants again.
Still, we also unraveled the fact that given some constraints,
the transition from one class of pointer states to another as a
function of the relative values of the couplings is not smooth:
below a critical value, Fock states remain exactly the most
robust states. How such a behavior can be anticipated from the
structure of the dynamics remains to be explored. In the end,
this shows that the question of predicting general features of
the emergent classical picture only from the structure of the in-
teraction (algebraic relations between jump operators and set
of coupling constants) still calls for a deeper understanding.

In summary, we solved exactly a model of decoherence
for an open quantum system composed of two incompatible
decoherence channels using quantum trajectories and phase-
space techniques. We then studied numerically the dynamical
emergence of a classical picture. We were then able to see
how the selection of approximate pointer states depends on
the relative values of the coupling constants. This unraveled
the remarkable robustness of Fock states relative to a decoher-
ence on the coherent-state basis and we were able to analyze
quantitatively the critical coupling where this robustness gets
lost. Our results show that the physics of decoherence and
einselection still has a lot to offer when a complex dynamics
is at play.
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APPENDIX: DETAILS OF THE WIGNER
REPRESENTATION

1. Decoherence on the Fock basis

If decoherence occurs on the Fock basis, the components
are modulated by an exponential factor with a decoherence
timescale inversely proportional to the “distance” between
two Fock states. We can then write the Wigner function as

Wt (r, θ ) =
∑
l∈Z

Wl (r)e−κnl2t/2eilθ (A1)

=
∫ 2π

0
W0(r, θ ′) ϑ

(
θ − θ ′

2π
; i

κnt

2π

)
dθ ′

2π
(A2)

=
∫ +∞

−∞
W0(r, θ ′)Nσ 2=κnt (θ − θ ′) dθ ′, (A3)

where Wl (r) is the lth harmonic of the angle variable of the
Wigner function at time t = 0, ϑ (z; τ ) = ∑

n∈Z exp(π in2τ +
2π inz) is the Jacobi theta function, and Nσ 2 is the centered
normal distribution of variance σ 2.

FIG. 12. Radial part of the Wigner function for different initial
Fock states |n0〉.

In phase space, the dynamics induced by the Ln channel is
thus the expected Gaussian spreading of a diffusive evolution.
When κnt  1, the periodicity can be forgotten. However,
when κnt � 1, we have the interesting expansion of the Jacobi
function,

ϑ

(
θ

2π
; i

κnt

2π

)
= 1 + 2

∑
n∈N∗

(e−κnt/2)n2
cos nθ. (A4)

Consequently, for κnt = 2, only the first harmonics dominates
with amplitude oscillations of 74% of the average value, as
can be seen in Fig. 4.

Note that if there is a discrete symmetry in the angle
variable of the Wigner function, such as W (r, θ + 2π/p) =
W (r, θ ) for an integer p � 2, the first nonzero modulation
term scales as e−κnt p2/2. Here, the scaling is not linear, but
quadratic. This could be, in fact, directly recovered by noting
that the symmetry W (r, θ + 2π/p) = W (r, θ ) is equivalent to
having ρk,k+l = 0 if l is not a multiple of p. In the end, initial
states possessing a symmetry will thus form a crown much
quicker than the ones that do not.

2. Decoherence on the coherent-state basis

If we initially prepare the cavity in the Fock state |m〉, then
the Ln dynamics is trivial. As we have seen by Eq. (12), the
state inside the cavity can be described as a classical mixture
of Fock state, with the probability to have the state |k〉 given
by

pk =
(

m

k

)
(1 − e−κat )(m−k)e−κakt , (A5)

which is a binomial distribution of parameters m and p =
e−κat . The mean of such a distribution is mp and its variance
is σ 2 = mp(1 − p).

For small times, we have σ 2 � mκat . This timescale is
comparable to the decoherence timescale τa that we intro-
duced in Eq. (18) for the coherent states. We see that in this
case, it corresponds to the time it takes for the probability
distribution to spread over several Fock states. In the Wigner
function, it corresponds to the attenuation of the oscillations
near the origin (see Fig. 12).
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On the contrary, this does not correspond to a fast deco-
herence over coherent states. Since the Fock states have no
definite phase, it is natural to look for a mixture of coherent
states which is uniform in its phase distribution. A natural ex-
pression for any state without phase preference would thus be

ρ =
∫

q(n0) |√n0eiθ 〉〈√n0eiθ | dθdn0. (A6)

We can easily show that

ρ =
∑

n

∫
q(n0)Pn0 (n) dn0 |n〉〈n| , (A7)

where Pn0 is the Poisson distribution of rate n0. The resulting
distribution over Fock states thus has a variance equal to
its mean. This is approximately the case for the binomial
distribution only when p � 0.

As such, the timescale to have decoherence over coherent
states from an initial Fock state is 1/κa, which is the same as
the relaxation scale. This situation is actually similar to the
one for coherent states in respect to the Ln dynamics: the short
timescale governs the spreading in phase space, while the long
timescale governs the decoherence between the Fock states.
This is summarized in Table I.
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