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Dynamics of quantum coherence and quantum Fisher information after a sudden quench
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The dynamics of relative entropy and l1 norm of coherence, as well as, the Wigner-Yanase skew and quantum
Fisher information are studied in the one-dimensional XY spin chain in the presence of a time-dependent
transverse magnetic field. We show that, independent of the initial state of the system and while the relative
entropy of coherence, the l1 norm of coherence, and quantum Fisher information are incapable, surprisingly, the
Wigner-Yanase skew information dynamic can truly spotlight the equilibrium critical point. We also observe that,
when the system is quenched to the critical point, these quantities show suppressions and revivals. Moreover,
the first suppression (revival) time scales linearly with the system size and its scaling ratio is unique for all
quenches independent of the initial phase of the system. This is the promised universality of the first suppression
(revival) time.
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I. INTRODUCTION

Evaluating quantum coherence (QC) is highly substan-
tial for both quantum foundations and quantum technologies
[1,2]. Quantum coherence itself represents an essential fea-
ture of quantum states and supports all forms of quantum
correlations [3]; however, the inevitable interaction of the
system with the environment mostly brings incoherency to
the input states and evolves a coherence loss [4]. Recently,
several precise measures have been introduced to quantify
the quantum coherence [5–8], including the l1 norm quantum
coherence (Cl1) [5,9], the relative entropy of coherence (REC)
[5], the trace norm quantum coherence (TQC) [5,10] and
the Wigner-Yanase skew information (WYSI) [11]. Among
these quantum resource measures, TQC and Cl1 are defined
through a well trace norm, where a closed analytical formula
for calculating X states has been derived invariant under
unitary transformations [10,12–15]. Skew information was
first introduced by Wigner and Yanase in 1963 [16] and was
originally used to represent the information content of mixed
states. In the theory of statistical estimation, the statistical
idea that governs skew information is Fisher information [17],
which is not only a key notion of statistical inference [18]
but also plays an important role in informational treatments
of physics [19–21].

Nowadays, quantum Fisher information (QFI), as a witness
of multipartite entanglement, displays much richer aspects
of complex structures of topological states [22]. It has been
extensively explored in many different fields such as the calcu-
lation of quantum speedup limit time [23], the study of uncer-
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tainty relations [24,25], and the properties of quantum phase
transition [26,27]. In particular, quantum Fisher information
prepares a bound to characterize the members of a family of
probability distributions. Moreover, when quantum systems
are involved, an excellent measurement may be found by
using tools from quantum estimation theory. This is especially
true for a kind of problems for which the quantity of interest
is not directly available.

Quantum Fisher information has introduced the quantum
version of the Cramér-Rao inequality [19,28–30] and has
imposed the lower bound [29]. Moreover, different features
of quantum coherence have been studied, including quan-
tification, dynamic evolution, and operational explanation of
quantum coherence [7,31–34]. Some recent works have also
examined the relationship between quantum coherence and
quantum phase transition [25–27], as well as the performance
of the quantum walk version of the Deutsch-Jozsa algorithm
and the deterministic quantum computation with one quan-
tum bit (DQC1) algorithm [35–37]. Additionally, it has been
shown that multipartite entanglement which witnessed by QFI
can capture a quantum phase-transition point [29,38]. How-
ever, despite several works on quantum coherence and QFI,
the dynamics of quantum coherence and QFI have not yet
been studied sufficiently. Therefore, understanding dynami-
cal behavior of quantum coherence and QFI would be very
useful for the description of the nonequilibrium dynamics and
universal behavior of quantum many-body systems [39–49].

In this paper, by considering a one-dimensional XY model
with time-dependent (step function) couplings in an exter-
nal time-dependent (step function) transverse magnetic field,
we study the dynamical behavior of the relative entropy of
coherence, l1 norm of coherence, and also as measures of
quantum coherence, the Wigner-Yanase skew and quantum
Fisher information. We find that all of these quantities show

2469-9926/2020/101(6)/062105(9) 062105-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0904-0538
https://orcid.org/0000-0002-6234-0575
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.062105&domain=pdf&date_stamp=2020-06-08
https://doi.org/10.1103/PhysRevA.101.062105


R. JAFARI AND ALIREZA AKBARI PHYSICAL REVIEW A 101, 062105 (2020)

suppressions and revivals when the system is quenched to
the critical point. We also show that the first suppression
(revival) time scales linearly with the system size. This scaling
ratio is independent of the size of the quench and the initial
preparation phase of the system.

II. TIME-DEPENDENT XY MODEL

The Hamiltonian of the time-dependent XY model in a
one-dimensional lattice is given by [50–53]

H = −
N∑

i=1

[
J (t )

[
(1 + γ )Sx

i Sx
i+1 + (1 − γ )Sy

i Sy
i+1

] + h(t )Sz
i

]
,

(1)
where N shows the site’s number, and γ is the anisotropy
parameter. We consider the periodic boundary condition and
Sα

i are the spin-half operators at the ith site, which are defined
by half of the Pauli matrices as follows

Sα
i = 1

2σα
i , α = {x, y, z}.

To study the effect of a time-varying coupling parameter J (t )
and magnetic field h(t ), we assume the following expressions:

J (t ) = J0 + (J1 − J0)�(t ),

h(t ) = h0 + (h1 − h0)�(t ),
(2)

with the Heaviside step function defined by

�(t ) =
{

0 t � 0
1 t > 0.

(3)

The considered model (1) can be exactly diagonalized by
standard Jordan-Wigner transformation [50–54]. Then the
Liouville equation of the Fourier-transformed Hamiltonian
can be solved exactly and the magnetization and two-point
correlation functions can be calculated analytically [50–54].

In the subsequent calculations, we assume that the system
is initially at thermal equilibrium. In this respect, the reduced
two-spin density matrix �l,m(t ) is achieved by

�l,m(t ) =

⎛
⎜⎜⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ∗
23 ρ33 0

ρ∗
14 0 0 ρ44

⎞
⎟⎟⎟⎠, (4)

where its matrix elements can be written in terms of one- and
two-point correlation functions, which are given by

ρ11 = 〈
Mz

l

〉 + 〈
Sz

l Sz
m

〉 + 1
4 , ρ22 = ρ33 = −〈

Sz
l Sz

m

〉 + 1
4 ,

ρ23 = 〈
Sx

l Sx
m

〉 + 〈
Sy

l Sy
m

〉
, ρ14 = 〈

Sx
l Sx

m

〉 − 〈
Sy

l Sy
m

〉
,

ρ44 = −〈
Mz

l

〉 + 〈
Sz

l Sz
m

〉 + 1
4 , (5)

with the magnetization in the z direction characterized as
follows:

Mz = 1

N

N∑
j=1

Mz
j = 1

N

N∑
j=1

Sz
j . (6)

Here, the expectation for the average value is defined by

〈· · · 〉 = Tr[(· · · )ρ(t )]

Tr[ρ(t )]
, (7)

where the exact analytical form of the magnetization, and two-
point spin-spin correlation functions are precisely presented in
Refs. [50–54] (see also Appendix A).

III. QUANTUM COHERENCE AND QUANTUM FISHER
INFORMATION

As mentioned, quantum coherence is a fundamental physi-
cal resource in quantum information tasks [55], and revealing
quantum coherence is imperative to accomplish the realization
of the quantum correlations. It is understood as a key root
for physical resources in quantum computation and quan-
tum information processing, and a rigorous theory has been
proposed to define an excellent notion for measuring it [5].
In this section we briefly quantify and review the relative
entropy of coherence, l1 norm of coherence, Wigner-Yanase
skew information, and quantum Fisher information.

A. The relative entropy and l1 norm of coherence

The l1 norm of coherence is defined as a sum of the
absolute values of all off-diagonal elements in the density
matrix �l,m using following expression [5]:

Cl1(�) =
∑
l �=m

|�l,m|. (8)

Moreover, the relative entropy of coherence is defined as

CREC(�) = S(�diag) − S(�), (9)

where �diag is the diagonal part of �l,m, and the function

S(�l,m) = −Tr[�l,m log2 �l,m] (10)

is the von Neumann entropy of the density matrix �l,m.
Calculating the l1 norm for a transverse field XY model is
straightforward and results in

Cl1 = 4
∣∣〈Sx

l Sx
m

〉∣∣. (11)

Furthermore, using the relative entropy formula (9), we have

CREC =
1∑

q=0

(ξq log2 ξq + ηq log2 ηq − ζq log2 ζq) − 2ε log2 ε,

(12)
with

ξq = 1
4 − 〈

Sz
l Sz

m

〉 + (−1)q
(〈

Sx
l Sx

m

〉 + 〈
Sy

l Sy
m

〉)
,

ηq = 1
4 + 〈

Sz
l Sz

m

〉 + (−1)q
√〈

Sz
l

〉2 + (〈
Sx

l Sx
m

〉 − 〈
Sy

l Sy
m
〉)2

,

ε = 1
4 − 〈

Sz
l Sz

m

〉
. (13)

B. The Wigner-Yanase skew information

The definition of the Wigner-Yanase skew information
which is used as a measure of quantum coherence is given
by [11,16,25,56]

I (�,V ) = − 1
2 Tr[

√
�,V ]2, (14)

where the density matrix � depicts a mixed quantum state, V
is an observable, and [· · · , · · · ] represents the commutator.
The quantity I (�,V ) can also be interpreted as a measure
of the quantum uncertainty of V in the state � instead of
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the conventional variance. A set of the local spin’s elements
(Sα) is an arbitrary and natural choice of observable which
constitutes a local orthonormal basis, as

LQCα = I
(
�l,m, Sα

l ⊗ 1m
)
. (15)

The reduced two-spin density matrix (4) facilitates the an-
alytical evaluation of the Wigner-Yanase skew information
of the two-spin density matrix. Thus, one can obtain the
eigenvalues and their corresponding normalized eigenvectors
of the density matrix as

p1 = 1
2 (ρ11 + ρ44 +

√
(ρ11 − ρ44)2 + 4|ρ14|2),

p2 = 1
2 (ρ11 + ρ44 −

√
(ρ11 − ρ44)2 + 4|ρ14|2),

p3 = 1
2 (ρ22 + ρ33 +

√
(ρ22 − ρ33)2 + 4|ρ23|2),

p4 = 1
2 (ρ22 + ρ33 −

√
(ρ22 − ρ33)2 + 4|ρ23|2),

(16)

and

|φ1〉 = 1

N1

⎛
⎜⎜⎜⎝

ρ14

0

0

p1 − ρ11

⎞
⎟⎟⎟⎠, |φ2〉 = 1

N2

⎛
⎜⎜⎜⎝

ρ14

0

0

p2 − ρ11

⎞
⎟⎟⎟⎠,

|φ3〉 = 1

N3

⎛
⎜⎜⎜⎝

0

ρ23

p3 − ρ22

0

⎞
⎟⎟⎟⎠, |φ4〉 = 1

N4

⎛
⎜⎜⎜⎝

0

ρ23

p4 − ρ22

0

⎞
⎟⎟⎟⎠, (17)

respectively. Here Ni (i = 1, 2, 3, 4) are the normalization
factors and are defined by

N1 =
√

|ρ14|2 + (p1 − ρ11)2, N2 =
√

|ρ14|2 + (p2 − ρ11)2,

N3 =
√

|ρ23|2 + (p3 − ρ22)2, N4 =
√

|ρ23|2 + (p4 − ρ22)2.

(18)
By straightforward calculations, the root of the two-qubit
reduced state,

√
�l,m, can be obtained as

√
�l,m =

⎛
⎜⎜⎜⎝

α� 0 0 λ�

0 β� ν� 0

0 ν∗
� γ� 0

λ∗
� 0 0 δ�

⎞
⎟⎟⎟⎠, (19)

with the following elements:

α� = |ρ14|2
(√

p1

N2
1

+
√

p2

N2
2

)
,

β� = |ρ23|2
(√

p3

N2
3

+
√

p4

N2
4

)
,

γ� =
√

p3(p3 − ρ22)2

N2
3

+
√

p4(p4 − ρ22)2

N2
4

,

δ� =
√

p1(p1 − ρ11)2

N2
1

+
√

p2(p2 − ρ11)2

N2
2

,

λ� = ρ14

(√
p1(p1 − ρ11)

N2
1

+
√

p2(p2 − ρ11)

N2
2

)
,

ν� = ρ23

(√
p3(p3 − ρ11)

N2
3

+
√

p4(p4 − ρ11)

N2
4

)
.

(20)

In addition, for the bipartite system in Eq. (4), the two-spin
local quantum coherence (LQC) components can be written
as [57]

LQCx = 1 − 2(α�β� + γ�δ� ) − 4Re[λ�ν�],

LQCy = 1 − 2(α�β� + γ�δ� ) + 4Re[λ�ν�],

LQCz = 1 − [
α2

� + β2
� + γ 2

� + δ2
� − 2(|λ�|2 + |ν�|2)

]
,

(21)

which quantify the coherence with respect to the first subsys-
tem locally.

C. The Quantum Fisher information

Estimation theory is an important topic in different areas
of physics [19,28,38,58–60]. In the general phase-estimation
perspective, the evolution of a mixed quantum state, given by
the density matrix �, under a unitary transformation, can be
described as

�θ = e−iAθ�eiAθ , (22)

where θ is the phase shift and A is an operator. The estima-
tion accuracy for θ is bounded by the quantum Cramér-Rao
inequality [19,28]:

�θ̂ � 1√
νF (�θ )

, (23)

where θ̂ expresses the unbiased estimator for θ , and ν is the
number of times the measurement is repeated. Correspond-
ingly, F (�θ ) is the so-called quantum Fisher information,
which is defined as [19,28,59,60]

F (�, A) = 2
∑
m,n

(pm − pn)2

(pm + pn)
|〈m|A|n〉|2, (24)

where pm and |φm〉 represent the eigenvalues and eigenvectors
of the density matrix �, respectively. Now, following the route
provided in Ref. [57], the quantum Fisher information can be
written as

FQ =
∑

μ

F (�, Aμ ⊗ I + I ⊗ Bμ), (25)

where {Aμ} and {Bμ} are arbitrary and natural complete sets
of local orthonormal observables of the two subsystems with
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respect to �. The value of FQ given by Eq. (25) is independent
of the choice of local orthonormal bases [57], meaning that it
is an inherent quantity of the composite system. For a general
two-spin system, the local orthonormal observables {Aμ} and
{Bμ} can be defined as

{Aμ} = {Bμ} =
√

2{I, Sx, Sy, Sz}, (26)

and finally, for the reduced two-spin density matrix in Eq. (4)
the analytical evaluation of the QFI can be evaluated as

FQ = 16
(〈

Sx
i Sx

i+r

〉 − 〈
Sy

i Sy
i+r

〉)2

1 + 4
〈
Sz

i Sz
i+r

〉
+

[
16(

1 + 4
〈
Sx

i Sx
i+r

〉)(
1 + 4

〈
Sy

i Sy
i+r

〉) − 4
〈
Sz

i

〉2
]

×
[(

3
〈
Sz

i

〉2 + 4
〈
Sz

i Sz
i+r

〉2 − 2
〈
Sz

i Sz
i+r

〉)(〈
Sx

i Sx
i+r

〉
+ 〈

Sy
i Sy

i+r

〉) + 1

2

(〈
Sz

i

〉2 + 4
〈
Sz

i Sz
i+r

〉2 − 8
〈
Sz

i

〉2〈
Sz

i Sz
i+r

〉)
+ (

1 − 8
〈
Sz

i Sz
i+r

〉)(〈
Sx

i Sx
i+r

〉2 + 〈
Sy

i Sy
i+r

〉2)
+ 4

〈
Sx

i Sx
i+r

〉3 + 4
〈
Sy

i Sy
i+r

〉3]
. (27)

IV. NUMERICAL RESULTS AND DISCUSSIONS

We now come to present our numerical results. Although
our formalism was for a general case, for simplicity we restrict
our discussion to the time-dependent transverse magnetic
field, i.e., J1 = J0 = 1. Furthermore, in the main text we
only consider a time-dependent transverse field Ising model
(TFIM) by setting γ = 1, and for more general cases, γ �= 1,
one can look at Appendix B. It is well known that the ground
state of the TFIM is characterized by a quantum phase transi-
tion that takes place at the critical point hc = J0 [61,62]. This
phase transition is a result of the quantum fluctuations at zero
temperature, which destroy the quantum correlations in the
ground state. It is determined via the order parameter 〈Mx〉,
which differs from a finite value for h < hc to zero for h � hc.

Moreover, the ground state is ferromagnetic aligned in the
x direction for zero magnetic field and it has a paramagnetic
alignment along the field for the limit of large magnetic field.
Both cases are minimally entangled since the ground state
is a product of individual spin states pointing in the z (x)
direction as h → ∞ (h → 0) [61,62]. Furthermore, by raising
the temperature, the entanglement shows a sudden decay
near the critical point, although it remains constant at zero
temperature and in the vicinity of the critical point [63].

A. Quench away from the critical point

In Fig. 1(a), we plot the intensity of the relative entropy of
coherence, the l1 norm of coherence [Fig. 1(b)], the quantum
Fisher information [Fig. 1(c)], and local quantum coherence
components [Figs. 1(d)–1(f)], versus t and h1. The plots are
for h0 = 0.7, and at zero temperature. As one can see, for
zero h1, where the spins are completely aligned in the x direc-
tion, all quantities (expect Cl1) show an oscillatory behavior
in time. By introducing an external magnetic field h1, the

FIG. 1. Density plots of (a) the relative entropy of quantum
coherence (CREC), (b) the l1 norm of quantum coherence (Cl1),
(c) the quantum Fisher information (QFI), and (d)–(f) the local
quantum coherence (LQCα) with α = x, y, z, versus t and h1, at zero
temperature and for h0 = 0.7 (h0 < hc).

magnitude of quantities increases as the field increases until
they reach their maximum value close to hM

1 = h1 ≈ 0.5. In
different circumstances, the maximum values of LQCx occur
at the equilibrium critical point hM

1 = h1 = hc. As h1 exceeds
hM

1 , the magnitude of all quantities decreases gradually by
magnetic field. Thus, when the system initially is prepared in
the ferromagnetic phase, Mx(t, T = 0) �= 0, the maximum of
two-spin Sx local coherence occurs at the equilibrium critical
point and LQCx is the only quantity that can capture truly the
critical point. It should be mentioned that, when the system is
prepared in its critical point, h0 = hc, the maximum value that
quantities can reach is much greater than in the previous case
and appears at hM

1 = h1 = hc.
To further elaborate on the behavior of the zero-

temperature dynamics above the transition field, h0 > hc,
Fig. 2(a) presents the intensity of the relative entropy of
coherence, the l1 norm of coherence [Fig. 2(b)], the quantum
Fisher information [Fig. 2(c)], and local quantum coherence
components [Figs. 2(d)–2(f)], versus t and h1. We assume
h0 = 1.5, where the system is initially prepared in the para-
magnetic phase, Mz(t, T = 0) �= 0. As seen, for h1 = 0, all
quantities show an oscillatory behavior in time. Besides, when
the external magnetic field is turned on (h1 > 0), the magni-
tude of all quantities except LQCx and LQCy enhances until
reaching a maximum value at the equilibrium critical point
hM

1 = h1 = hc, then reduces upon increasing the magnetic
field. From these findings one can conclude that dynamical
two-spin local Sz, quantum coherence (WYSI), can positively
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FIG. 2. Same density plots as in Fig. 1 but for the case of h0 =
1.5 (h0 > hc).

pick out the critical point while the REC, QFI, and Cl1 fail in
this task. To summarize, it depends on the initial state which
the system is prepared, dynamics of the proper component of
local quantum coherence can capture the critical point of the
system. In other words, when the system is prepared in the
initial state with Mα �= 0, the dynamics of LQCα reaches its
maximum value at the critical point.

On top of that, there would be a great interest to study
the effect of temperature on the critical behavior of many-
body systems such as the spin systems [63–66]. To show
whether the WYSI is able to pinpoint the critical point at
finite temperature, we plot the LQCx and LQCz in Fig. 3
for different temperatures; namely, T = 1 and T = 5. Al-
though the maximum value of LQC decreases as the tem-
perature increases, the equilibrium phase transition point can
still be signalled by the maximum of LQCx and LQCz at
low temperature. This significant property can be easily ap-
plied to determine quantum critical points of the systems
which today’s technology makes it virtually impossible to
achieve the necessary temperature that quantum fluctuations
are dominated.

B. Quench from or to the critical point

The time evolution of REC, Cl1, QFI, and LQC are plotted
for a quench to the critical point h1 = 1 for h0 = 0.7 in Fig. 4,
for different system sizes. As is clear, in a very short time
all quantities change rapidly from the equilibrium state to
their average (constant) value that they oscillate around. More
than that, all quantities show suppressions and revivals as
deviations from the average value. To study the effect of the
system size on revival or suppression time, tr , we also plot

FIG. 3. The density plots of the local quantum coherence versus
t , and h1, for the different temperatures of T = 1 and T = 5. Panels
(a) and (b) show the LQCx for h0 = 0.7, and panels (c) and (d) rep-
resent the LQCz for h0 = 1.5.

tr (N ) versus the system size in Fig. 4(f). As seen, the tr
increases linearly with system size, i.e.,

tr (N ) = τN, (28)

where the scaling ratio is obtained as τ = 0.2405. A more
detailed analysis shows that tr and τ are the same for all
quenches and do not depend on the initial preparation phase
of system. This is the promised universality of revival or
suppression time, which shows that the size of the quench
(different values of h0) and the initial phase of the system are
unimportant.

We also demonstrate in Fig. 5 the evolution of REC, Cl1,
QFI, and LQC for h1 = 1.5 and h0 = hc, where the system is
prepared initially at the critical point. Applying the external
magnetic field causes a rapidly change in all quantities from
the equilibrium state to a constant value, before starting
oscillations at the time tc(N ) [see the insets in Figs. 5(a)–
5(e)]. In principle, tc(N ) is an instance time under which all
curves correspond to a system larger than size N , clearly join
together. Examining the details in Fig. 5(f) also shows a linear
behavior of tc versus N ,

tc(N ) = τcN, (29)

and interestingly we find a similar scaling value as revival or
suppression time; namely, τc = τ = 0.2405. Our calculations
show that tc and τc are the same for all quenches and do not
depend on the phase of the system where it quenched to. This
is the promised universality of tc which shows that the size of
the quench (different values of h1) and the phase of system,
where the system is quenched to, are ineffectual.

Finally, we study the dynamics of REC, Cl1, WYSI, and
QFI for anisotropic case γ �= 0. Our numerical analyses show
that our previous findings are correct for anisotropic case
(see Appendix B). It is worthwhile to mention that, for the
case γ < 0, when the system is initialized at the phase with
My(t, T = 0) �= 0, the critical point of the system is signalled
by the maximum of LQCy (see Appendix B). Moreover, the
numerical simulation shows that tr , tc and their scaling ratios
τ and τc are independent of the anisotropy parameter.
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FIG. 4. The evolution of (a) the relative entropy of quantum coherence, (b) the l1 norm of quantum coherence, (c) the quantum Fisher
information FQ, and (d), (e) local quantum coherence, for a quench to the critical point h1 = hc, for h0 = 0.7 at zero temperature, and for the
different system sizes. Panel (f) shows the linear behavior of the first suppression time (revival time) tr (N ) versus the system size.

V. SUMMARY

We have reported the dynamical behavior of quantum
coherence in the one-dimensional time-dependent transverse
magnetic field XY model. For this purpose, we investigate

the dynamics of relative entropy of coherence, l1 norm of
coherence, Wigner-Yanase skew information, and quantum
Fisher information. We show that the phase-transition point
can be signalled by the maximum of the Wigner-Yanase skew
information local components, even at low temperature. The

FIG. 5. (a)–(e) The same plots as in Figs. 4(a)–4(e) but for the case that the system is at the critical point h0 = hc, and quenched to h1 = 1.5.
All plots show again an oscillating behavior after time tc, which scales linearly versus the system size shown in panel (f).
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FIG. 6. Same density plots as Fig. 1 but for the case of γ = 0.5,
at zero temperature and for h0 = 0.7 (h0 < hc).

relative entropy of coherence, l1 norm of coherence, and quan-
tum Fisher information lack such an indicator of criticality in
the model. In addition, we find that all of these quantities show
suppressions and revivals by quenching the system to the
critical point. Furthermore, the first suppression (revival) time
scales linearly with system size and free from the quench size
and the initial phase of system, therefore our work highlights
the universality in out-of-equilibrium quantum many-body
systems.

The success of the Wigner-Yanase skew information dy-
namics to reveal the equilibrium phase transition may origi-
nate from its dependence on the square root of the elements of
the density matrix. Therefore, it is a meaningful proposal to
study the dynamics of similar quantifiers with a functionality
of the square root of the elements of the density matrix. More-

over, it will be interesting to extend the current investigation
to more general time-dependent cases of the external magnetic
field, such as exponential or periodic functions, and also it is
worthwhile to extend the calculation to the disorder case.
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APPENDIX A: TWO-POINT CORRELATION FUNCTIONS
OF TIME-DEPENDENT XY MODEL

Using Eqs. (6), and (7) the expectation value of the magne-
tization along the z direction, specifically, is given by [50–54],

〈Mz〉 = 1

4N

N/2∑
p=1

tanh [β�(h0, J0)]

�2(h1, J1)�(h0, J0)

{
2J1(J0h1 − J1h0)δ2

p

× sin2 [2t�(h1, J1)] + 4�2(h1, J1)
× (J0 cos φp + h0)

}
, (A1)

where φp = 2π p/N , δp = 2γ sin φp, and β = 1/KBT . Here
KB is the Boltzmann constant and T is the temperature. One
can simply use the Wick theorem [67] to obtain the nearest-
neighbor spin-correlation functions as follows:〈

Sx
l Sx

l+1

〉 = 1
4 Fl,l+1,〈

Sy
l Sy

l+1

〉 = 1
4 Fl+1,l ,〈

Sz
l Sz

l+1

〉 = 1
4 [Fl,l × Fl+1,l+1 − Ql,l+1 × Gl,l+1

− Fl+1,l × Fl,l+1], (A2)

in which by defining �[h(t ), J (t )] = {[J (t ) cos φp + h(t )]2 +
γ 2J2(t ) sin2 φp} 1

2 , we can write

Ql,m = 1

N

N/2∑
p=1

[
2 cos[(m − l )φp] + i(J1h0 − J0h1)δp sin[(m − l )φp] sin [4t�(h1, J1)] tanh [β�(h0, J0)]

�(h1, J1)�(h0, J0)

]
,

Gl,m = 1

N

N/2∑
p=1

[
− 2 cos[(m − l )φp] + i(J1h0 − J0h1)δp sin[(m − l )φp] sin [4t�(h1, J1)] tanh [β�(h0, J0)]

�(h1, J1)�(h0, J0)

]
,

Fl,m = 1

N

N/2∑
p=1

tanh [β�(h0, J0)]

�2(h1, J1)�(h0, J0)

[
cos[(m − l )φp]

{
J1[J0h1 − J1h0]δ2

p sin2 [2t�(h1, J1)] + 2�2(h1, J1)(J0 cos φp + h0)
}

+δp sin[(m − l )φp]{J0�
2(h1, J1) + 2(J1h0 − J0h1)(J1 cos φp + h1) sin2 [2t�(h1, J1)]}]. (A3)

APPENDIX B: WIGNER-YANASE SKEW INFORMATION
FOR ANISOTROPIC CASE γ �= 0

In this Appendix, we study the dynamics of the quantities
for anisotropic case γ �= 0 [Eq. (1)]. For this purpose, in
Fig. 6, we first look at the anisotropic case γ = 0.5. We show
the density plot of dynamical behavior of the relative entropy
of coherence [Fig. 6(a)], the l1 norm of coherence [Fig. 6(b)],

the quantum Fisher information [Fig. 6(c)], and local quantum
coherence components [Figs. 6(d)–6(f)], versus time and h1,
for J0 = J1 = 1, and h0 = 0.7. As we expect, when the initial
state prepared in the ferromagnetic case Mx �= 0, the LQCx
shows maximum at the critical point of the system hc = 1.
Moreover, we show that, when the system initialized at the
paramagnetic phase Mz �= 0, i.e., h0 > 1, the LQCz fulfils the
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FIG. 7. Same density plots as Fig. 1 but for the case of γ = 0.5
at zero temperature and h0 = 1.5 (h0 > hc).

expectation and reaches its maximum at the critical point.
This is clearly represented in the results of Fig. 7. Finally,
for the case in which the system is initially prepared in
the ferromagnetic phase γ < 0 and in which My �= 0, the

FIG. 8. Same density plots as in Fig. 1 but for the case of γ =
−0.5 at zero temperature and h0 = 0.7 (h0 < hc) with magnetization
along the y direction.

maximum of LQCy happens at the critical point of the system
(see Fig. 8). Briefly, one can conclude that, when the system
is prepared in the initial state with Mα �= 0, the dynamics of
LQCα reaches its maximum value at the critical point.
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