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Recently, it was shown that dissipative quantum systems with three or more levels are able to synchronize to
an external signal. Some researchers have stated that this is not possible for two-level systems, as those systems
lack a stable limit cycle in unperturbed dynamics, but others have demonstrated, under a different definition of
synchronization, that it is possible in qubits in models which include other elements. We show how a quantum
two-level system can be understood as containing a valid limit cycle as the starting point of synchronization and
that it can synchronize its dynamics to an external weak signal. This is demonstrated by analytically solving the
Lindblad equation of a two-level system coupled to an environment, determining the steady state. This is a mixed
state with contributions from many pure states, each of which provides a valid limit cycle. We show that this is
sufficient to phase lock the dynamics to a weak external signal, hence clarifying synchronization in two-level
systems. We use the Husimi Q representation to analyze the synchronization region, defining a synchronization
measure which characterizes the strength of the phase locking. Also, we study the stability of the limit cycle and
its deformation with the strength of the signal in terms of the components of the Bloch vector of the system.
Finally, we generalize a model of the three-level system to illustrate how the stationary fixed point of that model
can be changed into a limit cycle similar to the one that we describe for the two-level system.

DOI: 10.1103/PhysRevA.101.062104

I. INTRODUCTION

The phenomenon of synchronization occurs in many differ-
ent situations and has been extensively studied for many years.
If an autonomous oscillating system is coupled to another
such system or to an external driving force, it can synchronize
its frequency and phase to the external system. Examples
are coupled pendulums, circadian rhythms in living systems,
and synchronization of fireflies flashing. Common to these
systems are the fact that they need to have a stable limit cycle,
which means they must be dissipative, so that they can return
to the stable cycle after a perturbation, and contain an energy
source, so that they can sustain oscillations indefinitely in the
presence of dissipation [1].

One well-studied example of classical synchronization is
the van der Pol oscillator model [1,2]. Some years ago, the
van der Pol model was reformulated in terms of a quantum
system [3,4], and it was shown that when the system is far
from the ground state, synchronization in quantum systems is
analogous to classical synchronization of the same system in
the presence of noise [1]. When we are close to the ground
state, this correspondence is changed because the discreteness
of the energy levels becomes important. It is therefore interest-
ing to study synchronization in quantum systems with a small
number of energy levels.

The natural idea is to synchronize a two-level system
(TLS) either with another two-level system, as was done in
Refs. [5,6], or with an external signal. The latter was discussed
in Ref. [7], with the conclusion that it is not possible to
have a stable limit cycle in the dynamics of a dissipative
TLS, and therefore synchronization cannot occur. However, in
Refs. [8,9], it is claimed that synchronization between a qubit
and a driven external signal is possible, although there is no

discussion about the limit cycle of the system or how it may
occur. A brief discussion of the synchronization of a single
qubit to an external signal is also present in Ref. [10]. We
show how one can understand the appearance of a valid limit
cycle, which is an essential starting point for synchronization,
if one aims to relate the quantum version of this phenomena
to its classical counterpart. In this context, the system is not
completely phase locked, and therefore if we accept that the
quantum system is similar to a classical system with noise,
as is the case for the van der Pol oscillator [3,4] (and all
quantum systems in general [11–13]), a TLS is in fact capable
of synchronization, and the following considerations allow us
to understand why.

Our system is in contact with an environment so that it is
able to gain and emit energy, hence creating the dissipating
frame synchronization requires. Solving the Lindblad equa-
tion for the system in the absence of any external signal, one
finds that the stationary solutions are mixed states that are
constant in time, lying on the rotation axis of the Bloch sphere,
which we will take to be the z axis. As was stated in Ref. [7],
this is not a valid limit cycle and it seems that it cannot form
the starting point for synchronization. Nevertheless, as these
states are mixed, we must understand that the system is in a
probability mixture of some pure states. While the ensemble
of pure states which generates a given mixed state is not
unique, we can choose them to be on that circle on the surface
of the Bloch sphere which is in the plane normal to the z
axis and which has the given mixed state at the center; see
Fig. 1. Each of these states is then rotating and provides a limit
cycle, while the mixed state of the ensemble is stationary. This
argument does not apply to the three-level system discussed in
Ref. [7], since in that case the steady state in the absence of an
external signal is an eigenstate of the Hamiltonian, and only
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FIG. 1. We can realize the mixed steady state as a probabilistic
ensemble of the states located on the surface of the Bloch sphere
(state space) in the plane normal to the z axis (blue circle). Each of
these states move along the same circle, with a periodic motion that
will correspond to a limit cycle in the phase space. In this example,
we have chosen �g

�d
= 3.

when we introduce an external signal do we obtain a cycle by
driving the system away from this state. We will illustrate at
the end how to modify this model so that the stationary state
in the absence of a signal is a limit cycle in the same sense as
for the TLS we consider here. In the following, we will show
that a two-level system indeed displays all the signatures of
synchronization as was demonstrated for a three-level system
(spin 1) [7], but also that it is possible to understand this
synchronization as arising from the limit cycles provided by
the mixed steady state in the unperturbed dynamics.

II. MODEL AND LIMIT CYCLE

We consider a two-level system characterized by the
Hamiltonian

Ĥ0 = h̄

2
ω0n · σ̂, (1)

where σ̂ is a vector containing the three Pauli matrices. The
density operator for this system can be written as

ρ̂ ′ = 1
2 (1 + m′ · σ̂ ), (2)

where m′ is the Bloch vector [14]. Whenever m′ is not
pointing in the same direction as n, the Bloch vector precesses
around the n axis with frequency ω0, which we call the natural
frequency of the system. However, although this may indicate
the existence of a limit cycle, states should be stable under
perturbations. Thus, we must consider a model in which the
system is capable of gaining and losing energy. If we choose
n such that it points toward the z direction in the Bloch sphere,
we can write the Hamiltonian as

Ĥ0 = h̄

2
ω0σ̂z. (3)

We transform to a frame rotating with the natural frequency
ω0, defining the density matrix in the rotating frame as ρ̂ =
T̂ω0 ρ̂

′T̂ †
ω0

, where

T̂ω0 = ei ω0
2 σ̂zt , (4)

and denote the corresponding Bloch vector m. In this frame,
the Lindblad equation including gain and damping is [14]

d ρ̂

dt
= �g

2
D[σ̂+]ρ̂ + �d

2
D[σ̂−]ρ̂, (5)

where �g and �d are the gain and damping rates, D[Ô]ρ̂ =
Ôρ̂Ô† − 1

2 {Ô†Ô, ρ̂} is the Lindblad superoperator, and σ̂+
and σ̂− are the ladder operators for the system, σ̂± = 1

2 (σ̂x ±
iσ̂y). This equation is equivalent to the one studied in Ref. [7].

In terms of the Bloch vector components, we find the
following equations:

ṁx = − 1
4 (�d + �g)mx, (6a)

ṁy = − 1
4 (�d + �g)my, (6b)

ṁz = 1
2 [�g(1 − mz ) − �d (1 + mz )]. (6c)

As we are working in a frame rotating with the natural
frequency of the system, a point that precesses in the non-
rotating frame should be now a fixed point. Thus, we look for
stationary solutions, i.e., ˆ̇ρ = 0, ṁ = 0. The solution is then

mx = 0; my = 0; mz = �g − �d

�g + �d
. (7)

For the ground state |↓〉 and the excited state |↑〉 which
correspond to the Bloch vectors mg = (0, 0,−1) and me =
(0, 0, 1), respectively, we do not expect a limit cycle, as the
state is a fixed point. However, even if the solution for any
of the other cases is lying on the z axis, we must remember
that they are mixed states. This means that our solution is a
mixture of pure states, each of them weighted with a certain
probability. It is not a superposition and our system is for sure
in any of those pure states, but only in one of them at the same
time.

Thus, the limit cycle is provided given that each of those
possible pure states that make up our mixed state would pre-
cess around the z axis once we move back to the nonrotating
frame. For example, a mixture of states lying on a circle on
the surface of the Bloch sphere, in a plane normal to the z
axis and with the steady state in the center, as illustrated in
Fig. 1. However, the stationary state can always be realized
as a mixture of the pure states |↓〉 and |↑〉, which are not
precessing, and this means that the above argument is not
fully convincing. Having this picture in mind, we will now
demonstrate that a TLS indeed allows synchronization in the
presence of an external signal.

III. SYNCHRONIZATION OF THE TLS

In order to synchronize our system with an external signal,
we use a classical drive [7] of frequency ω and strength ε.
In the rotating-wave approximation [14], it is given by the
Hamiltonian

Ĥsignal = ih̄
ε

4
(eiωt σ̂− − e−iωt σ̂+). (8)
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If we want to move to a frame rotating with the frequency
of the signal, the transformation operator we must apply to our
Lindblad equation is

T̂ω = ei ω
2 σ̂zt , (9)

giving

d ρ̂

dt
= − i

2
[�σ̂z + εσ̂y, ρ̂] + �g

2
D[σ̂+]ρ̂ + �d

2
D[σ̂−]ρ̂,

(10)

where � = ω0 − ω.
Again, we obtain the evolution equations for the Bloch

vector components,

ṁx = − 1
4 (�d + �g)mx − �my + εmz, (11a)

ṁy = �mx − 1
4 (�d + �g)my, (11b)

ṁz = 1
2 [�g(1 − mz ) − �d (1 + mz ) − 2εmx], (11c)

with the stationary solution

mx = 4ε(�g − �d )

(�d + �g)2 + 8(ε2 + 2�2)
, (12a)

my = 16ε�(�g − �d )

(�d + �g)[(�d + �g)2 + 8(ε2 + 2�2)]
, (12b)

mz = (�d − �g)[(�d + �g)2 + 16�2]

(�d + �g)[(�d + �g)2 + 8(ε2 + 2�2)]
. (12c)

In order to obtain the state operator in the nonrotating
frame, we transform back with T̂ω, and thus the state operators
are related by ρ̂ ′ = T̂ †

ω ρ̂T̂ω. Therefore, the Bloch vector in the
nonrotating frame will be given by

m′
x = mx cos ωt − my sin ωt, (13a)

m′
y = mx sin ωt + my cos ωt, (13b)

m′
z = mz. (13c)

When transforming back to the nonrotating frame, m′
x and

m′
y will vary in time with the frequency of the signal, which

means that the system phase locks to the external force.
Equations (12) give steady states with nonzero transverse

Bloch vector components mx and my, provided the damping
and gain rates are not equal and the strength of the signal
is different than zero. Thus, Eq. (13) will give a precessing
vector with frequency ω in the nonrotating reference frame.
Also, it is not difficult to show that it does not matter which
is the initial state: After some transient, the motion will be the
one described by the steady solution.

When both mx and my are zero, the steady state is lying on
the z axis and will still be a fixed point in the nonrotating frame
(m′

z = 0 if �g = �d ). Therefore, there is no synchronization in
this case.

In order to visualize the behavior of the system, we follow
Ref. [7] and use the Husimi Q representation adapted to
spin systems [15]. This is a quasiprobability distribution that
allows us to represent the phase space of the two-level system
and is defined by

Q(θ, φ) = 1

2π
〈θ, φ| ρ̂ |θ, φ〉 . (14)

Q ( , )
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FIG. 2. Q function of the steady state for ε = 2 min{�g, �d},
� = 0, and �g

�d
= 10. The distribution is peaked around θ = 0 be-

cause it is the gain rate that dominates and around φ = 0 because
we are synchronizing to a resonant signal (there is no detuning).
Complete phase locking does not occur and the Q function is nonzero
everywhere. Note that the units of ε and � will depend on those
chosen for the rates.

Here |θ, φ〉 are spin-coherent states, which in the case of
a TLS are the eigenstates of the spin operator σn = n · σ̂

along the axis given by the unit vector n, which has polar
coordinates θ and φ. These are nothing but the pure states at
the corresponding point on the Bloch sphere in terms of the
angles θ and φ. Therefore, the Q representation tells us how
every pure state (corresponding to a pair of angles in the Bloch
sphere) that contributes to the state operator ρ̂ is weighted:

〈θ, φ| ρ̂ |θ, φ〉 =
∑

n

Pn| 〈θ, φ|ψn〉 |2, (15)

where ρ̂ = ∑
n Pn |ψn〉 〈ψn|.

Given the solution, Eq. (12), it is easy to find that the Q
function of the steady states, as a function of the components
of the Bloch vector, is

Q(θ, φ) = 1

4π
[1 + mx cos φ sin θ + my sin φ sin θ

+ mz cos θ ]. (16)

Figure 2 shows the Q function for the case where there is
no detuning and the gain rate is larger than the damping rate,
�g > �d . As expected, the states that contribute the most to
the mixture of the steady state are those corresponding to θ =
0. Also, the distribution is located around φ = 0. The system
is phase locked in the sense that the state is made up mostly
by contributions from a specific φ region.

On the other hand, in Fig. 3, it is the damping rate that
dominates. Hence, we expect higher values of the Q function
at θ values close to π . When this is the case, for no detuning,
the distribution is situated at φ = π . However, in Fig. 3 the
detuning shifts the phase toward φ = π

2 . In terms of the Bloch
vector, the detuning makes my nonzero, and therefore the
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Q ( , )

0.025

0.050

0.075

0.100

0.125

FIG. 3. Q function of the steady state for ε = 2 min{�g, �d},
� = 3 min{�g, �d}, and �g

�d
= 0.1. Since �d > �g, we find the higher

values of the function around θ = π . Because of the detuning, the
distribution is displaced along the φ axis, moving away from φ = π ,
which is where it would be located if � = 0.

projection in the xy plane is not a vector lying on the x axis,
which is the case for Fig. 2, where there is no detuning.

As a next step, we attempt to measure how strong is
synchronization defining a synchronization measure.

IV. SYNCHRONIZATION REGION

Even if we are able to observe phase locking when plotting
the Q function, we would like to characterize its strength.
There is a tool that allows us to do it, and following the work
done in Ref. [7], we define a synchronization measure,

S(φ) =
∫ π

0
dθ sin θQ(θ, φ) − 1

2π
. (17)

This is identically zero when there is no synchronization, i.e.,
when only mz is nonzero. Explicitly performing the integral
over θ , we find that

S(φ) = 1
8 (mx cos φ + my sin φ). (18)

Thus, S(φ) is going to be greater as the steady state is farther
from the z axis.

Figures 4–6 are useful for understanding the synchroniza-
tion dynamics. In Fig. 4, we can observe how the detuning
drives the phase of the system toward positive or negative φ

if the detuning (� = ω0 − ω) is positive or negative. As the
absolute value of � increases, the synchronization weakens.
Note that for this figure we have �d

�g
< 1 and we observe

in-phase synchronization. If instead we use �d
�g

> 1, we would
observe antiphase synchronization, which means that the
maximal value of S(φ) will be at φ = π for � = 0.

On the other hand, Fig. 5 takes into account the effect of
growing signal strength on the synchronization measure. It
is clear that the synchronization is stronger for a greater ε

(both in- and antiphase synchronization), but we must keep

S( ) for = d
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0

0.01

0.02

0.03

FIG. 4. S(φ) for ε = �d for different �, �d
�g

= 0.1. As expected,
the phase locking is stronger when there is no detuning. When �

is positive or negative, the maximal value of S(φ) is shifted toward
φ = π or φ = −π , respectively.

in mind that a very strong signal would take us out of the
synchronization regime.

Finally, the Arnold tongue that is characteristic of every
synchronized system is displayed in Fig. 6. The shape is that
of the tongue for a spin-1 system (Fig. 3 from Ref. [7]),
and it is worth mentioning that S(φ) is different from zero
everywhere except for the case when ε = 0. The state will
always precess with the frequency of the signal but depending
on the size of mx and my, the synchronization measure will be
greater or smaller, telling us the strength of the phase locking.

We have seen that the results for the two-level system are
equivalent to those obtained in Ref. [7] for the three-level
system. Moreover, we have explained the appearance of the
limit cycle for the present case. Nevertheless, in order to stay

S( ) for = 0

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

FIG. 5. S(φ) for � = 0 for different ε. We study how the strength
of the signal modifies the strength of the phase locking. We observe
that greater strength of the signal is correlated with stronger phase
locking. It is because there is no detuning that the highest values
locate at φ = 0 (in-phase synchronization), as we could deduce from
Fig. 4.

062104-4



SYNCHRONIZATION IN TWO-LEVEL QUANTUM SYSTEMS PHYSICAL REVIEW A 101, 062104 (2020)

Max[S( )]
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FIG. 6. Arnold tongue of the system. We plot the maximum
value of S(φ) as function of the strength ε and the detuning �,
with �d

�g
= 0.1. This plot resembles the one in Ref. [7]. Unless

ε = 0 or �g = �d , (12) will always give nonzero mx and my, and
therefore max[S(φ)] will be nonzero, even if it is so small that the
synchronization is negligible.

in the synchronization regime, the strength of the external
signal should not be too large, and we will analyze how the
limit cycle is distorted with ε in the following section.

V. STRENGTH OF THE SIGNAL AND DEFORMATION
OF THE LIMIT CYCLE

Recall the solution we found for the Bloch vector of
the steady state of the synchronized two-level system in the
rotating frame, Eq. (12). For small ε, we can expand each of
the Bloch vector components in powers of ε:

mx ≈ A · ε[1 − Kε2] (19a)

my ≈ Bε[1 − Kε2], (19b)

mz ≈ C[1 − Kε2], (19c)

where

A = 4(�g − �d )

(�d + �g)2 + 16�2
, (20)

B = 16�(�g − �d )

(�d + �g)[(�d + �g)2 + 16�2]
, (21)

C = �d − �g

�d + �g
, (22)

K = 8

(�d + �g)2 + 16�2
. (23)

Note that the first nonconstant term of (19c) is quadratic in ε

while both (19a) and (19b) are linear in ε. Thus, we expect that
for small signal strengths, the Bloch vector components that
change with ε are mx and my, showing that the system phase
locks to the external signal. mz will remain approximately
constant, and it will have the value it had without signal.
In general, we could say that when the z component of the

Bloch vector moves far from its original nonsignal value, the
limit cycle is perturbed because the signal is too strong, and
therefore we are not talking about synchronization anymore.
Thus, the parameter that tells us if our system is forced or not
is Kε2, as some kind of deformation parameter.

Let us consider the case of Fig. 3. Here, Kε2 ≈ 0.12, and
therefore mz ≈ 0.88C. We observe that the value of mz is close
to C, but it is not that close. In this regime, the limit cycle
is slightly deformed, although we could consider it is still
a valid picture for synchronization. In Figs. 4, 5, and 6, the
maximum value of the strength is ε = 1, which corresponds
to Kε2 = 0.07. The boundary between synchronization and
forced oscillation is not sharply defined, but it seems reason-
able to say that we are in the synchronization regime for the
parameters values used in these figures.

VI. GENERAL THREE-LEVEL SYSTEM MODEL
AND APPEARANCE OF LIMIT CYCLE

In this section, we contrast the TLS model that we have
studied with the three-level model of Refs. [7,17,18] and see
how to modify this so that it will have a limit cycle in the
same sense as we have described (see Fig. 1). The key differ-
ence between these two systems is the nature of the steady
state in the absence of signal. In order to explain the fact
that the two-level system can be synchronized, we have made
use of the interpretation of the mixed state as a probabilistic
ensemble of pure states, each of them describing a different
and valid limit cycle. In this way, this system is analogous to
a classical system that synchronizes in the presence of noise.

In the three-level model studied in Ref. [7], the steady state
is the pure state |0〉 which is an eigenstate of the Hamiltonian.
It has a Husimi Q distribution that is equally distributed over
all φ, which means that it is a quantum superposition of a
set of spin coherent states, each of which are moving along
the limit cycle. The crucial difference between our approach
and that of Ref. [7] is therefore that we allow statistical
mixtures instead of quantum superpositions in the resolution
of the stationary state in terms of pure states evolving on
a limit cycle. This allows a unified understanding of the
synchronization behavior of two- and three-level systems.

In this framework, the stationary state |0〉 of the Lindblad
equation for the three-level model in Ref. [7] is not inter-
preted as a limit cycle, being one single eigenstate of the
Hamiltonian. Only when adding a signal is the stationary
state pushed away from this eigenstate and we obtain a cycle.
However, in this case it seems natural that there is a substantial
deformation of the stationary state, as the limit cycle changes
from a single point to a circle.

We can consider a more general three-level system which
will show a limit cycle in the same sense as our TLS model.
If |mz〉 are the eigenstates of the spin-1 operator Sz, the model
of Ref. [7] included transitions only from |1〉 or |−1〉 to |0〉.
In the extended model, we allow transitions from |0〉 to |1〉 or
|−1〉 in addition.

The modified Lindblad equation in the absence of an
external signal would be similar to that of the TLS, although
we need to work with a generalized eight-dimensional Bloch
sphere if we want to study the motion of the Bloch vector of
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the system [16]:

d ρ̂

dt
= αD[Ŝ+]ρ̂ + βD[Ŝ−]ρ̂, (24)

where α and β are transition rates. The form of the density matrix for a three-level system is

ρ̂ =

⎛
⎜⎝

1√
3

+ m3 + 1√
3
m8 m1 − im2 m4 + im5

m1 + im2
1√
3

− m3 + 1√
3
m8 m6 − im7

m4 + im5 m6 + im7
1√
3

− 2√
3
m8.

⎞
⎟⎠ (25)

The stationary solution is

m1 = m2 = m4 = m5 = m6 = m7 = 0, (26)

m3 = −12α2 − 6αβ√
3(2α + 4β )(2α + β )

, (27)

m8 = 1

2
+ β(α − 4β )

2α(2α + β )
. (28)

The Bloch vector that corresponds to the |0〉 state is m3 =
−

√
3

2 , m8 = 1
2 , and the rest of the components are equal to

zero. We see that, in general, the steady state will differ from
this one and is instead a mixed state. Thus, in this case we have
a mixture of pure states on a circle similar to the one in Fig. 1,
which we can see as the analog of the limit cycle in a classical
system. Notice that not all values of α and β are allowed since
we need to keep our states inside an eight-dimensional sphere
of radius 1 [16].

VII. CONCLUSIONS

We have shown that, inside the classical synchronization
framework, it is possible to understand that a two-level system
provides a valid limit cycle if we interpret mixed states as
a probability mixture of pure states with a limit cycle as-
sociated to each of them. Explaining the appearance of this
cycle was the missing point in previous works [8,9] and is
essential for making an analogy with the classical counterpart
of synchronization. Equations for the two-level system can be
analytically solved and the motion of the Bloch vector in the
presence of an external signal can be obtained. Therefore, syn-
chronization can be achieved, but without full phase locking
(as is the case for every quantum system that synchronizes,

due to quantum noise). Also, the Husimi Q representation is a
powerful tool for characterizing the synchronization regimes
and strength of phase locking. We also studied the evolution
and distortion of the limit cycle with the strength of the signal,
since it is fundamental that the signal is too weak to move
away from the synchronization regime, as defined classically
[1].

With these results for the TLS, we can compare it to the
three-level system treated in Refs. [7,17,18]. We observe that
the response of the system to an external signal is essentially
the same for both systems, showing that it is reasonable to
consider a qubit to be synchronized in a similar way as a
three-level system. Our interpretation of the stationary state
as a statistical mixture of pure states following the limit cycle
enables a clear interpretation of this behavior. In fact, a more
general model for a three-level system than the one used in
these previous works is needed if one attempts to understand
synchronization starting from a similar limit cycle, since a
mixed stationary state is required for following the same
argument.

Being able to synchronize such small systems is of great
interest because the qubit is the basic unit of quantum com-
putation. Quantum information theory has been in constant
development in recent years, and hence learning how these
qubits can synchronize can be useful in the quantum comput-
ing field. We believe that clarifying the mechanisms by which
limit cycles, characteristic of self-sustained oscilltors, arise
in quantum systems will help further studies about quantum
synchronization.
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