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Phase diagram of the dynamics of a precessing qubit under a quantum measurement
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We study the phase transitions induced by sequentially measuring a single qubit precessing under an external
transverse magnetic field. Under projective quantum measurement, the probability distribution of the measure-
ment outcomes can be mapped exactly to the thermodynamic probability distribution of a one-dimensional
Ising model, whose coupling can be varied by the magnetic field from ferromagnetic to antiferromagnetic. For
the general case of sequential quantum measurement,we develop a fast and exact algorithm to calculate the
probability distribution function of the ferromagnetic order and antiferromagnetic order, and a phase diagram
is obtained in the parameter space spanned by the measurement strength and magnetic field strength. The
mapping to a long-range interacting Ising model is obtained in the limit of small measurement strength. Full
counting statistical approach is applied to understand the phase diagram and to make connections with the
topological phase transition that is characterized by the braid group. This work deepens our understanding of
phase transitions induced by quantum measurement and may provide another method to characterize and steer
the quantum evolution.
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I. INTRODUCTION

Quantum measurement is one of the most intriguing prop-
erties in quantum mechanics [1–4]. The understanding and
utilization of quantum measurement is crucial to the future
application of quantum information and quantum computa-
tion [5], quantum cryptography [6], and quantum sensing
[7]. Quantum measurements can be either strong or weak,
depending on the specific system and purpose of application.
For strong measurement, it is usually applied in initializing
and reading out quantum states [8–14]. For weak quantum
measurement, it is particularly useful for monitoring quantum
evolution [15–19], maneuvering quantum state [20–22], and
studying the entanglement and correlation propagation in
quantum many-body systems [23–25]. More recently, great
efforts have been devoted to the development of different
experimental techniques to detect the single-qubit dynamics
[26–32] and to characterize the decoherence induced by en-
vironments [33–35]. In the context of quantum measurement,
the idea of dynamical phase transition and thermodynamics of
quantum jump trajectories was also proposed [36]. Backaction
of measurement on the many-body system induces nontriv-
ial dynamical effects such as long-range entanglement and
correlated tunneling [37]. Moreover, interplay between mea-
surement and the intrinsic interaction yields different kinds of
phase transitions [38] and exotic universality class of critical
phenomena in non-Hermitian systems [39].

Continuous or sequential quantum measurement has been
theoretically studied using different approaches, like ran-
dom walks in state space [40], quantum Bayesian approach
[41], and stochastic path-integral formalism [42,43]. Recently,
it was theoretically discovered that the language of phase
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transition can be used to distinguish the weak and strong
measurements by mapping the probability distribution of se-
quential measurement outputs to the thermodynamic distribu-
tion of interacting Ising spin models [44]. The authors find
that, for a single qubit or a two-level system under sequen-
tial quantum measurement, the boundary between weak and
strong measurements can be very well defined by a critical
value of measurement strength or duration. However, their
study is mainly focused on a qubit without any dynamics.
One would expect that there exist richer and more interesting
phase transition behaviors if the qubit experiences its own dy-
namics besides that induced by measurement. Indeed, it was
theoretically discovered that, in the presence of an external
transverse magnetic field, the qubit dynamics may undergo
a phase transition between coherent oscillation and quantum
Zeno effect, induced by sequential weak measurement [45].
Furthermore, it was later found that this phase transition is
associated with a topological transition that can be classified
by different elements of the braid group [46].

In this paper, we study the interplay of external magnetic
field and sequential quantum measurement on the dynamics
of a single qubit, by mapping the measurement outcomes to
the on-site spin states of a one-dimensional (1D) Ising spin
model. We find that the presence of a transverse magnetic
field introduces an additional degree of freedom that induces
the phase transition among the ferromagnetic, paramagnetic,
and antiferromagnetic phases. We develop a fast and exact
algorithm to calculate the probability distribution of the fer-
romagnetic order and antiferromagnetic order and thus to
determine the phase diagram in the parameter space spanned
by field strength and measurement strength. In the limit of
small measurement strength, the probability distribution can
be mapped to a long-range Ising spin model, which can
help us understand the phase diagram. Moreover, using the
full counting statistical approach, we can analytically obtain
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the probability distribution in the limiting cases of small
measurement strength and field strength, which helps us make
a connection with the topological phase transition discovered
in Ref. [46]. Our findings provide deeper understanding in the
phase transitions induced by quantum measurements.

The paper is organized as follows. In Sec. II, we present the
formalism that is needed to describe the dynamics of a single
qubit under quantum measurement and external transverse
magnetic field. In Sec. III, we discuss the phase transition
when the qubit is monitored by projective measurement. In
Sec. IV, we develop the fast algorithm to calculate the prob-
ability distributions of ferromagnetic order and antiferromag-
netic order and obtain the phase diagram. We further find a
long-range interacting Ising model than can capture physics
in the case of small measurement strength. Furthermore, a full
counting statistical approach is applied to obtain analytical
expressions of probability distribution in the limiting case of
small measurement strength and field strength. In Sec. V, the
cases with different initial states and with nonzero relaxation
rates are discussed. Conclusions are made in the last section.

II. FORMALISM OF MEASURING A PRECESSING
SINGLE QUIBIT

We consider the dynamics of a single qubit under a trans-
verse magnetic field in the ŷ direction. Its Hamiltonian is
expressed as

Ĥ = 1
2 h̄ωLσ̂y, (1)

in which σ̂y is the y-component Pauli matrices and ωL is
the Larmor frequency. Without quantum measurement, the
density matrix ρ̂ that describes the quantum state of the quibit
undergoes a unitary evolution, and it can be formally written
as

ρ̂(t ) = e−iĤt ρ̂0eiĤt , (2)

with ρ̂0 being the initial density matrix and Û (t ) = e−iĤt be-
ing the unitary evolution operator. In terms of Pauli matrices,
the single-qubit density matrix can always be represented by
four real parameters, ρ0 and ρ ≡ {ρx, ρy, ρz}:

ρ̂ = 1
2 [ρ01̂ + ρ · σ̂ ]. (3)

Starting from initial-state vector {ρ0, ρx, ρy, ρz}, the density
matrix becomes, after revolution time τ ,

ρ̂(τ ) = ρ01̂ + [ρx cos(ω) + ρz sin(ω)]σ̂x

+ [ρz cos(ω) − ρx sin(ω)]σ̂z + ρyσ̂y. (4)

Here we introduce a parameter ω to describe the strength of
external magnetic field:

ω = ωLτ. (5)

Together with the measurement strength, it will induce the
phase transitions among ferromagnetic, paramagnetic, and
antiferromagnetic phases. Note that since the qubit precesses
around the transverse magnetic field in the y direction, the y
component of the density matrix would not change, and thus
can be set to be zero, ρy(t ) = 0.

We adopt a sequential measurement scheme, described by
a series of commuting POVM operators [15,40],

M̂α = 1√
2

(
sin

θ

2
1̂ + α cos

θ

2
σ̂z

)
, (6)

with α = ±1 being the measurement outcomes. This mea-
surement scheme allows us to consider both the weak and
strong measurements with adjustable measurement strength
λ = sin θ ranging from 0 to 1 when θ ranges from 0 to
π/2. Under a single quantum measurement, the probability
of obtaining outcome α is given by

Pα = Tr[M̂αρ̂M̂†
α], (7)

and the normalized density operator after measurement be-
comes

ρ̂ ′ = M̂αρ̂M̂†
α/Pα. (8)

After a series of such measurements with equal time inter-
val τ and unitary evolution under transverse magnetic field ωL

in between, the combined evolution of density matrix can be
formally expressed as

ρ̂ = M̂αN ÛN . . . M̂α1Û1ρ̂0Û
†
1 M̂†

α1
. . . Û †

N M̂†
αN

/Pα. (9)

Here, N is the total number of measurements, and Pα is the
probability of obtaining a specific series of outcomes α =
{α1, α2, . . . , αN }, given by

Pα = Tr
[
M̂αN ÛN . . . M̂α1Û1ρ̂0Û

†
1 M̂†

α1
. . . Û †

N M̂†
αN

]
. (10)

Since the y component of density matrix can be set to
be zero, we introduce a three-component vector to describe
the state of the qubit: p ≡ {ρ0, ρz, ρx}. Starting immediately
after the (n − 1)-th measurement with vector pn−1, the state
experiences a precession ω of time τ and then is followed by
the nth measurement M̂αn . The new vector pn evolves in the
following way:

pn = Aαn pn−1 (11)

with the “evolving matrix”

Aα = 1

2

⎛
⎝ 1 α sin θ cos ω −α sin θ sin ω

α sin θ cos ω − sin ω

0 cos θ sin ω cos θ cos ω

⎞
⎠. (12)

It contains α as the outcome, and two parameters θ and
ω describing the measurement strength and the strength of
transverse field, respectively. It should be emphasized that
Eq. (12) describes the conditioned evolution of qubit state
vector pn. The conservation of total probability is guaranteed
by noting that, after the nth measurement, the total probability
is the sum of the two probabilities with outcomes α = ±1.
Thus, Pn = (A+pn−1)11 + (A−pn−1)11 = (pn−1)11 ≡ Pn−1 .

In this paper, we will utilize this evolving matrix to analyze
the probability distribution of the outcomes and to determine
the phase transitions. However, before we discuss the general
cases, we would like to, in next section, first discuss the
special case of projective quantum measurement, in which
the probability distribution can be easily obtained and the
mapping to Ising spin model is exact.
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III. PHASE TRANSITION INDUCED BY LARMOR
PRECESSION AND PROJECTIVE MEASUREMENT

For projective measurement with θ = π/2, the measure-
ment operator reduces to

M̂α = 1
2 [1̂ + ασ̂z], (13)

Its effect on any initial wave function is to collapse the wave
function to become the eigenstate |α〉 of Pauli matrix σ̂z,
depending on the outcome α = ±1. In the language of density
matrix, the projective measurement operator M̂α reduces the
state ρ̂ = (1/2)(ρ01̂ + ρ · σ̂ ) to be ρ̂ = (1/2)(1̂ + ασ̂z ), with
probability of obtaining outcome α, Pα = (1/2)(ρ0 + αρz ).
Taking into account of the unitary evolution due to Larmor
precession, one obtains the probability Pα0,α after one mea-
surement with outcome α together with the previous outcome
being α0:

Pα0,α = 1
2 [1 + cos(ω)αα0]. (14)

Therefore, the probability of obtaining a series of specific
outcome α would be

Pα = 1

2N

N∏
k=1

[1 + cos(ω)αkαk−1]. (15)

This probability can be mapped exactly to the thermodynamic
probability of a nearest-neighbor coupled Ising spin model
described by Hamiltonian

H = −J
N∑

k=1

αkαk−1. (16)

The model is defined on a 1D lattice of N sites, with each
site assigned with an Ising spin αk = ±1. The probability of
finding a specific spin configuration is given by the Gibbs
distribution [47],

PIsing = 1

Z e−βH = 1

Z eβJαkαk−1 . (17)

Here, β is the inverse of temperature β = 1/(kBT ). The
partition function Z = Tre−βH with the trace running over
all the 2N possible spin configurations. Setting Pα = PIsing, we
arrive at the following relation:

tanh(βJ ) = cos(ω). (18)

This identity builds up the relation between the Larmor fre-
quency of single qubit and the effective coupling of a 1D
Ising model. When ω = 0, βJ = ∞, corresponding to a fer-
romagnetically coupled Ising spin chain with infinite coupling
strength J , or with finite coupling strength J but under zero
temperature. In this case, the ferromagnetic phase is very well
defined. As one increases ω, the quantity βJ becomes finite,
which can be understood as the increase of temperature being
nonzero, thus leading to the transition into a paramagnetic
phase. As ω becomes π , βJ = −∞, corresponding to antifer-
romagnetic coupling in the Ising model with infinite coupling
strength, or finite strength but at zero temperature. In this case,
the system is in the antiferromagnetic phase.

Note that a similar discussion of phase transition among the
ferromagnetic, paramagnetic, and antiferromagnetic phases is
made in Ref. [44]. However, this transition is induced by

the angle between sequential measurements. This needs to
change the measurement axis at each time of measurement,
which requires experimental technique with sufficiently high
standards and precision. Otherwise, if, at each time of mea-
surement, the angle with the previous measurement axis is
not a constant, then it actually corresponds to introducing
disorder in the coupling strength of the Ising model. From
statistical mechanics, any amount of disorder would break the
long-range ferromagnetic order in the 1D Ising model, making
the phase transition difficult to observe. In our case, however,
the phase transition is induced by the external magnetic field,
which can be controlled in the experiment with high precision.

IV. SEQUENTIAL MEASUREMENT AND
PHASE DIAGRAM

For the general cases of measurement strength θ and
Larmor precession ω, the analytical approach becomes awk-
ward and even impossible. In this section, we develop a fast
algorithm which enables us to numerically and accurately
determine the phase transitions. As is well known, to describe
the magnetic phase transition, one needs to define a ferro-
magnetic order parameter MF and antiferromagnetic order
parameter MAF , and study their probability distribution, which
would tell us about the information of phase transition, as was
revealed in Landau’s theory of phase transition. Using this
algorithm, we determine the phase diagram in the parameter
space spanned by θ and ω. We show that this phase diagram
can be quantitatively understood from the long-range Ising
spin model and from the full counting statistical approach.

A. Recursion relation

Specifically for the definition of ferromagnetic order, we
assume N measurements, or N sites in the language of Ising
model. Then we can define the ferromagnetic order as MF =
(N↑ − N↓)/N , with N↑,↓ being the number of sites with spin
up (down), or the number of outcomes α = ±1, respectively.
We define a probability P(n↑, n) denoting the probability of
obtaining n↑ outcomes of α = +1 after n measurements. It
is actually nothing but the first component of state vector
P(n↑, n) ≡ {ρ0, ρz, ρx}, which describes the conditioned state
vector after n measurements and with n↑ outcomes of α = +1.
Given the evolving matrix Aα in Eq. (12), the conditioned
state vector P(n↑, n) is given by the following recursion
relation:

P(n↑, n + 1) = A+P(n↑ − 1, n) + A−P(n↑, n). (19)

The initial condition is simply P(n↑, n = 0) = δn↑,0 p0 with
p0 = {ρ0(0), ρz(0), ρx(0)} being the initial state vector. This
recursion relation can be understood in the following way.
Immediately after (n + 1)-th measurement, the probability of
obtaining n↑ number of up spins has two contributions: one
is from the previous probability P(n↑ − 1, n) of obtaining
n↑ − 1 up spins together with the (n + 1)-th measurement to
be up (given by A+), the other is from the previous probability
P(n↑, n) of obtaining n↑ up spins together with the (n + 1)-th
outcome to be down (given by A−).

After N measurements, we come to a probability vector
P(N↑, N ) describing the probability with N↑ outcomes of
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FIG. 1. Phase transitions revealed by the probability distribution of ferromagnetic order MF (a) and antiferromagnetic order MAF (b). Panel
(a) shows the transition from the polarized (PL) phase with two peaks at MF 	= 0, to the unpolarized (UPL) phase with only one peak centered
exactly at MF = 0, as one increases the value of ω. From left to right, we fix θ = 2π/5, and vary ω to be 0.0, 0.1, 0.5, 1.5, 2.0. Panel (b) shows
the transition from the unpolarized phase with one peak centered at MAF = 0, to the antipolarized (APL) phase with two peaks at MAF 	= 0.
Again, we fix θ = 2π/5, and vary ω to be 1.1,1.6, 2.5, 3.0, π from left to right. Note that all the variables, such as ω, MF , MAF , and P(MF ),
are unitless.

α = +1. The first component is just P(n↑, n) that we are
desired for, from which a symmetry-breaking phenomena can
be observed, as is illustrated in Fig. 1(a), in which we plot this
probability distribution as function of MF = (N↑ − N↓)/N for
different values of ω and θ . Clearly a transition from two
peaks to one peak is observed, as we fix the value of θ

but increase ω. The position of maximal probability transits
from N (max)

↑ 	= N/2 to exactly N (max)
↑ = N/2, corresponding

to the transition from nonzero ferromagnetic order MF 	= 0
to exactly MF = 0.

For the definition of antiferromagnetic order parameter, we
divide the N sites into N/2 unit cells, with each unit cell
consisting of two nearest neighbor sites. There are in total
four cases of spin configurations {↑↑}, {↑↓}, {↓↑}, and {↓↓}
in one unit cell. Then we define the AFM order to be MAF =
(N↑↓ − N↓↑)/(N/2), with N↑↓ (N↓↑) being the number of unit
cells with the two neighboring spins in state {↑↓}({↓↑}).

Using similar procedure to the case of ferromagnetic order,
we develop an algorithm to calculate the probability distri-
bution of antiferromagnetic order MAF . For this purpose, we
first define a quantity nA = n↑↓ − n↓↑, with n↑↓ (n↓↑) being
the number of unit cells with the two neighboring spins in
state {↑↓} ({↓↑}). Then we study the probability distribution
PA(nA, n), meaning the probability of obtaining nA after 2n
measurements. The recursion relation for the corresponding
conditioned state vector P(nA, n) can be readily written as

PA(nA, n + 1) = APPA(nA, n) + A+A−PA(nA − 1, n)

+A−A+PA(nA + 1, n), (20)

with the parallel measurement operator given by

AP = A2
+ + A2

−. (21)

It means that at (n + 1)-th unit cell, or at 2(n + 1)-th mea-
surements, the conditioned state vector PA(nA, n + 1) of ob-
taining nA is contributed from three sources: The first is from

PA(nA, n) with same number of nA together with the outcome
of the nth unit cell being in state {↑↑} or in state {↓↓}, the
second is from the probability PA(nA − 1, n) together with
the outcome of nth unit cell being in state {↑↓} (contributing
A+A−), and the last is from the probability PA(nA + 1, n)
together with the outcome of nth unit cell being in state {↓↑}
(contributing A−A+).

After N measurements, we obtain the probability
PA(NA, N/2) which is just the probability distribution
PA(MAF , N ) of the antiferromagnetic order MAF = NA/(N/2).
We plot this probability distribution for different values of ω

but with fixed θ in Fig. 1(b), and observe that there is indeed
a transition from two peaks located at MAF 	= 0 to one peak
centered at MAF = 0.

B. Phase diagram

In order to quantitatively characterize these two transi-
tions in terms of the probability distribution, we define three
phases, polarized (PL) phase, unpolarized (UPL) phase, and
antipolarized (APL) phase, and obtain the phase diagram in
the θ -ω plane. From the probability distribution P(MF , N )
of ferromagnetic order MF , we can define the PL phase if
the maximal probability is located at nonzero value MF 	=
0. From the probability distribution of PA(MAF , N ) of the
antiferromagnetic order MAF , we can define the APL phase
if the maximal probability is located at nonzero value of
MAF 	= 0. Otherwise, if both the maximum of P(MF , N ) is
located at MF = 0 and that of PA(MAF , N ) at MAF = 0, then
we call UPL phase.

In Fig. 2, based on the calculations using the fast algorithm,
we present the phase diagram for two different values of
N = 100 [Fig. 2(a)] and N = 1000 [Fig. 2(b)]. It is clear
that, for a fixed measurement strength θ , as one increases the
Larmor precession ω, the system undergoes in sequence the
three phases, PL, UPL, and APL. There are two points worth

062102-4



PHASE DIAGRAM OF THE DYNAMICS OF A PRECESSING … PHYSICAL REVIEW A 101, 062102 (2020)

FIG. 2. Phase diagram in the θ -ω plane, for two cases of N =
100 (a) and N = 1000 (b). The insets are enlargements of the
oscillations that appear in the region of small θ and ω. Initial state
is p0 = {1, 0, 1}, and relaxation rate is zero.

noting. First, for small N , the finite-size effect is obvious.
Especially for the region of small θ and ω, there appears
an oscillation with a certain oscillation period. As shown in
Fig. 2, the period of oscillation is about 0.063 for N = 100
[see the inset in Fig. 2(a)] and 0.0063 for N = 1000 [see the
inset in Fig. 2(b)]. As will be discussed in next subsection,
this oscillation behavior can be understood from a long-range
interacting Ising model, and the period is found to be roughly
2π/(N − 2), which agrees well with our numerical results.
Second, for large N , the finite-size effect becomes diminished,
and the phase boundary is almost a straight line, defined
by ω = θ for the PL/UPL phase boundary, and θ = π − ω

for the UPL/APL phase boundary. The boundary can be
understood from analytical analysis by using the full counting
statistical approach.

C. Long-range interacting Ising model

The phase diagram obtained by numerical calculation can
be quantitatively understood by deriving a long-range inter-
acting Ising model in the limit of weak measurement strength
θ 
 1. From Eq. (12), one can obtain the final-state vector pN

after N measurements with a specific series of outcomes α in
a form like

pN (α) = AαN . . .Aα2Aα1 p0. (22)

In general, the mathematical form is too complicated to give
rise to a compact analytical result. However, in the limit of
θ 
 1, one is lucky to find that the probability is given by

P(α) ∼ eθ2 ∑N
j<k cos[(k− j−1)ω]α jαk . (23)

This probability distribution can be recognized as the Gibbs
distribution of a long-range interacting Ising model with

Hamiltonian:

H = −θ2
N∑

j<k

cos[(k − j − 1)ω]α jαk . (24)

For the case of ω = 0, this model reduces to the long-range
ferromagnetic Ising Hamiltonian obtained in Ref. [44]. More
interesting cases occur with increasing ω when the long-range
couplings gradually change from ferromagnetic to antiferro-
magnetic. The longest-range coupling is between the site 1
and N with coupling strength J1,N = θ2 cos[(N − 2)ω]. As ω

increases, this coupling strength J1,N starts to oscillates, first
decreasing from positive to negative and then increasing back
to positive. The oscillation period is given by δω = 2π/(N −
2). The other shorter range couplings also oscillate with ω,
but with a smaller period. Totally, this picture gives rise to an
oscillating behavior on the phase boundary. However, at larger
ω, the coupling strengths of different range oscillating with
different periods interfere with each other and the amplitude
of oscillation in the phase boundary finally diminish, as is
revealed in the phase diagram in Fig. 2.

D. Full counting statistical approach

In this subsection, we would like to understand the phase
diagram by using the full counting statistical approach, in
order to obtain analytical expressions for the probability
distribution functions. Define the generating function for the
conditioned state vector P(n↑, n) at the nth measurement [48],

Z(χ, n) =
∞∑

n↑=0

P(n↑, n)eiχn↑ . (25)

The recursion relation (19) becomes

Z(χ, n) = (A+eiχ + A−)Z(χ, n − 1). (26)

Through this method, the generating function Z(χ, N ) after
N measurements would be readily written down. Thus, the
probability P(N↑, N ) of obtaining N↑ after N measurements
would be analytically calculated from the generating function:

P(N↑, N ) = 1

2π

∫ 2π

0
dχe−iχN↑Z0(χ, N ). (27)

In general cases, the analytical expression for Z0(χ, N ) is
difficult to obtain. However, for the limiting case with small ω

and small θ , one can obtain a closed form. Indeed, in this limit,
the “Hamiltonian” K̂ = A+eiχ + A− governing the dynamics
of Z(χ, n) reduces to

K̂ (z) = 1

2

⎛
⎝ z + 1 (z − 1)θ 0

(z − 1)θ z + 1 −(z + 1)ω
0 (z + 1)ω z + 1

⎞
⎠ (28)

with z = eiχ . This “Hamiltonian” has three eigenvalues:

E1,2 = 1
2 [(z + 1) ± ε(z)], E3 = 1

2 (z + 1), (29)

with

ε(z) =
√

(z − 1)2θ2 − (z + 1)2ω2. (30)

It is interesting to note that, for the first two eigenvalues,
if we set z = 0, they reduce to E1,2 = 1

2 (1 ± √
θ2 − ω2),
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which are real for θ > ω, but become imaginary for θ < ω,
leading to quite distinguished behaviors of Z(χ, t ) in the
large-N limit, and thus that of probability distribution function
P(N↑, N ). Generally, the generating function Z0(χ, N ) can be
written as Z0(χ, N ) = ∑

j=1,2,3 c j (χ )EN
j , with c j being the

coefficients that are dependent on the initial states.
From a similar equation, we note that in Ref. [46], the

authors discovered a transition from the regime with quantum
mechanical coherent oscillations to the regime with a frozen
dynamics, i.e., quantum Zeno effect, and it was connected
to an interesting topological phase transition, described by
a braiding group in the space of complex eigenvalues as
functions of χ ranging from 0 and 2π . Here, our findings
of the ferromagnetic-paramagnetic phase transition is closely
connected to this transition, and the study of PL and UPL
phases may provide another point of view for this transition,
whose transition line is also defined by ω = θ .

Indeed, for simplicity, we consider the case with initial
state ρ̂0 = 1

2 (1̂ + σ̂x ), corresponding to initial condition for
Z(χ, n = 0) = (1, 0, 1). The evolution can be obtained ex-
plicitly:

Z0(z, N ) = fzE
N
3 + 1

2 (1 − fz )
(
EN

1 + EN
2

)
, (31)

with

fz = (z + 1)ω

(z − 1)θ + (z + 1)ω
. (32)

In obtaining the probability distribution from Eq. (27), one
can make a variable change: z = eiχ , thus transforming the
integration to be a contour integration on the unit circle C in
the complex plane:

P(N↑, N ) = 1

2π i

∮
C

dz
1

zN↑+1
Z0(z, N ). (33)

In the large-N limit, we can use the stationary phase
approximation to obtain analytical results. We discuss the two
limiting cases with θ � ω and θ 
 ω.

For the case with θ 
 ω, fz → 1, the second term in
Eq. (31) vanishes compared to the first term. Then we have

P(N↑, N ) = 1

2π i

∮
C

dz
1

zN↑+1
EN

3 = 1

2N↑
CN↑

N . (34)

The probability distribution reduces to a binomial distribution
function with only one peak located at N (max)

↑ = N/2. There-
fore, this distribution function corresponds to the unpolarized
phase.

For the case with θ � ω, fz → 0, and thus the second term
proportional to (1 − fz ) in Eq. (31) dominates. Near z ∼ 0, we
can approximate ε(z) up to first order of z: ε = q2 + q1z, with
q1 = θ2+ω2√

θ2−ω2 and q2 = √
θ2 − ω2. Then we obtain

P(N↑, N ) = 1

2N+1
CN↑

N [(1 + q1)N↑ (1 − q2)N−N↑

+ (1 − q1)N↑ (1 + q2)N−N↑]. (35)

In this case, the distribution function is a combination of
two binomial distribution functions. In the large-N limit, it
corresponds to two peaks located at

N (max)
↑ = 1 + q1

2 + q1 − q2
N, and

1 − q1

2 − q1 + q2
N, (36)

which are no longer N/2.

FIG. 3. The probability distribution obtained from the analytical
results (red lines) are compared with the exact numerical calculations
(black dots). Distribution function (34) is used in panel (a) with
parameters θ = 0.01 and ω = 0.2, while Eq. (35) is used in panel
(b) with θ = 0.3 and ω = 0.001.

The above two results are plotted in Fig. 3 together with
that obtained from exact numerical calculations. It is seen that
the analytical result agrees well with numerical results.

V. DISCUSSIONS

It is worth noting that in Ref. [36], the authors applied the
large deviation (LD) method to study the dynamics of quan-
tum trajectory ensembles and observed a similarity between
the dynamical order parameters and the order parameters
that are considered in equilibrium statistical properties of
ensembles of configurations. The procedure they adopted is
similar to the full counting statistics we used in the present
paper. However, the findings are quite different. In Ref. [36],
the formal similarity is observed between the LD function of
trajectories and free energy of equilibrium statistical mechan-
ics, and then a dynamical phase transition or phase crossover
is identified. Moreover, this phase transition is well defined
only for a quantum system with more than two degrees of
freedom. That is, it does not exist in the two-level system
under continuous observation, the system that is our study
object in the present paper. In our case, the mapping of
the measurement outcomes to 1D Ising spin model is direct
and well established, and a long-range coupled Ising spin
Hamiltonian is presented. Given this, the correlation between
each measurement outcome can be studied, and the phase
transition is also defined, just in the same way as that in
equilibrium statistical mechanics.
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FIG. 4. The phase diagram with different initial states (a) and
different relaxation rates (b). For panel (a), the initial states are,
respectively, p0 = (1, 1/2,

√
3/2) (the orange line with diamonds),

p0 = (1,
√

3/2, 1/2) (the gray line with circles), and p0 = (1, 1, 0)
(the green line with triangles), together with p0 = (1, 0, 1) (the
dashed blue line). Here, the number of measurements is N = 1000.
For panel (b), the initial states are p0 = (1, 1, 0), and N = 100, with
different relaxation rates r = 0.01 (the black line with triangles) and
r = 0.02 (the red line with hollow circles).

Until now, our studies are mainly focused on the sit-
uation with initial state ρ̂0 = 1

2 (1̂ + σ̂x ) and with relax-
ation rate set to be zero. To complete our studies, we
would like to briefly discuss the effects of different initial
quantum states and additional relaxation rate on the phase
diagram.

First, we plot the phase diagram for different initial states
in Fig. 4(a). Besides the state p0 = (1, 0, 1) denoting the ini-
tial spin pointing to x direction, we choose three other initial
states to be p0 = (1, 1/2,

√
3/2) (red), p0 = (1,

√
3/2, 1/2)

(gray), and p0 = (1, 1, 0) (blue), respectively representing
spins pointing to the direction of angles π/3, π/6, and 0 to
z axis. Thus, they will give a typical description of the effect
of different initial states. We see that the phase boundaries
are strongly modified at nonzero ω for different initial states.
This may be attributed to the fact that our criteria to determine
the boundary between polarized phase and unpolarized phase
is too sensitive to the initial state. In contrast, the boundary
between the unpolarized phase and antipolarized phase is a
little bit more robust, as shown by the red line. Nevertheless,
deep inside the three phases, the probability distributions of
ferromagnetic order and antiferromagnetic order are still very
well distinguished, indicating that the description of single-
qubit dynamics in terms of the language of phase transition is
still very useful.

Second, we discuss the case with nonzero relaxation rate.
In general, relaxation is induced by the interaction of the
qubit system with the environment and is described by the
Lindblad master equation [15]. It can include very different
kinds of mechanisms and channels by introducing different
jump operators. The quantum measurement effect we have
discussed in the paper can also be integrated into the Lindblad
equation. Besides that, we want to further consider the other
channels like phase damping effect induced by the environ-
ment. In the limit of thermal bath with high temperature
and in the limit of weak interaction, the relaxation rate r
can be introduced phenomenologically in the quantum master
equation:

d

dt
ρ̂ = − i

h̄
[Ĥ , ρ̂] − r(ρ̂ − ρ̂ (th) ) (37)

with ρ̂ (th) = 1̂/2 being the density matrix for the totally
thermalized state. Repeating the same procedure as in Sec. II,
we obtain that the evolving equation for state vector pn should
be modified as

Aα = 1

2

⎛
⎝ 1 α sin θ cos ωe−rτ −α sin θ sin ωe−rτ

α sin θ cos ωe−rτ − sin ωe−rτ

0 cos θ sin ωe−rτ cos θ cos ωe−rτ

⎞
⎠.

(38)

Using the same recursion relations and Eq. (38), we plot
the phase diagram for the case of nonzero relaxation rate in
Fig. 4(b). We see that when the relaxation rate is increased,
the oscillation behavior in the phase diagram becomes more
amplified. To qualitatively understand this intriguing behav-
ior, one can resort to Eq. (24) which describes the effective
long-range and oscillating coupling between on-site spins
and can thus give rise to the oscillating behavior of phase
boundary, as explained in Sec. IV C. With the presence of
relaxation, one can imagine from Eq. (38) that relaxation rate
r serves as an effective, but imaginary, Larmor precessing
frequency, as can be seen that r always appear together with
ω in Aα . When the imaginary part of ω comes into the
cosine function in Hamiltonian (24), it turns to a hyperbolic
cosine (cosh) function, and the coupling strength is still
oscillating as a function of lattice distance but its amplitude
is now much more magnified. Therefore, the oscillation of
phase boundary is amplified. However, as long as the relax-
ation rate is sufficiently small, it does not change the phase
boundary.

VI. CONCLUSION

In conclusion, in this paper, we have studied the phase
transitions induced by quantum measurement on a single
qubit that is precessing around an external magnetic field.
The corresponding phase diagram is obtained numerically
by a fast algorithm we developed. By resorting to a long-
range interacting Ising model, and the full counting statistical
approach, the phase diagram can be quantitatively understood.
The presence of magnetic field serves as an additional degree
of freedom and can be easily achieved and controlled in the
experiment. Our findings deepen the understanding of phase
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transition induced by quantum measurement and may shed
light on the characterization and monitoring of quantum state
evolution [49,50] and find its future application in quantum
tomography and quantum sensing.
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