
PHYSICAL REVIEW A 101, 061801(R) (2020)
Rapid Communications

Tuning a regular cavity to wave chaos with metasurface-reconfigurable walls
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Wave-chaotic systems underpin a wide range of research activities from fundamental studies of quantum chaos
via electromagnetic compatibility up to more recently emerging applications, such as microwave imaging for
security screening, antenna characterization, or wave-based analog computation. To implement a wave-chaotic
system experimentally, traditionally cavities of elaborate geometries (bow tie shapes, truncated circles, or
parallelepipeds with hemispheres) are employed because the geometry dictates the wave field’s characteristics.
Here, we propose and experimentally verify a conceptually different approach: a cavity of regular geometry
but with tunable boundary conditions, experimentally implemented by leveraging a reconfigurable metasurface
reflect array. This approach offers an alternative stirring mechanism and enables a fuller study of random matrix
theory in connection with wave chaos.
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For decades, wave chaos has been an attractive field of
fundamental research concerning a wide variety of physical
systems, such as quantum physics [1–4], room or ocean
acoustics [5–7], elastodynamics [8], guided-wave optics [9],
or microwave cavities [10–14]. The success of wave chaos
is mainly due to its ability to describe such a variety of
complex systems through a unique formalism yielding a
universal statistical behavior. Indeed, since the Bohigas-
Giannoni-Schmit conjecture [15] concerning the universal-
ity of level fluctuations in chaotic quantum spectra, it has
become customary to analyze spectral and spatial statis-
tics of wave systems whose ray counterpart is chaotic with
the help of statistical tools introduced by random matrix
theory (RMT) [12,16–20]. In recent years, electromagnetic
(EM) chaotic cavities have been involved in a variety of
applications ranging from reverberation chambers (RCs)
for electromagnetic compatibility (EMC) tests [21–27] via
wavefront shaping [28–30] and microwave imaging [31–35]
to applications in telecommunication and energy harvest-
ing [36,37], indoor sensing [38,39], antenna characteriza-
tion [40], and wave-based analog computation [41]. All
of these applications leverage the field ergodicity [42] of
responses and eigenfields of chaotic cavities [20,22]. Tra-
ditionally, whether they are used to study fundamental
physics or for applications, these cavities are associated
with irregular geometries. They are often built from a par-
allelepipedic cavity by modifying its geometry (for instance,
by adding spherical caps or hemispheres [11,21,22,24,43]) so
that its spatial and/or spectral statistics follow the universal
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RMT predictions [22]. Furthermore, most of these cavities
include mechanically movable elements, so-called stirrers,
adding to the chaoticity, and allowing one to perform ensem-
ble averaging (mode stirring) [44,45].

Here, we investigate a completely different approach to
build a chaotic cavity by only modulating locally the boundary
conditions of a cavity of regular geometry. Experimentally,
the tuning of the boundary conditions is achieved with a
reconfigurable metasurface reflect array that covers parts of
the cavity walls. First, we study the amount of metasurface
elements required to tune a regular cavity to wave chaos. Since
the metasurface is built upon resonant elements, we consider
frequencies matching their operation band. The chaoticity of
the cavity is evaluated by comparing the experimentally ob-
served wave field distribution with RMT predictions for wave-
chaotic systems. The latter depend on a single experimentally
evaluable parameter: the mean modal overlap d [20,46]. This
overlap is defined at the operating frequency f as the product
of the average modal bandwidth � f and the mean density
of states n f . Second, by using an unexpected efficiency of
the metasurfaces outside their operation band, we implement
our approach in different regimes of modal overlap, the latter
being a key parameter of all wave systems [20,29,47,48].

Experimental setup. For our experiments, we cover three
contiguous and nonparallel walls of a metallic parallelepi-
pedic cavity (42 × 38.5 × 35 cm3) with electronically recon-
figurable metasurfaces (ERMs) [49] without significantly al-
tering the cavity geometry (see Fig. 1). Each of the three
metasurfaces consists of 76 phase-binary pixels. The under-
lying working principle of hybridizing two resonances is
outlined in Ref. [50]. By controlling the bias voltage of a p-i-n
diode, each pixel can individually be configured to emulate
the behavior of a quasiperfect electric or quasiperfect mag-
netic conductor. Stated differently, the phase of the tangential
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FIG. 1. Top view of the metallic parallelepipedic cavity (42 ×
38.5 × 35 cm3). Three walls are covered by reconfigurable metasur-
faces (76 pixels per metasurface). Each metasurface pixel can be
configured electronically to emulate a perfect electric or magnetic
conductor. The wave field is probed by measuring the transmission
between two antennas with a vector network analyzer (VNA). The
VNA and the cavity’s top plate are not shown in this figure.

component of the field reflected by the pixel can be shifted
by π . Note that our proposal to locally modulate the cavity’s
boundary conditions could also be implemented with other
designs of tunable impedance surfaces, such as mushroom
structures [31,51–53]. Since the design of our metasurface
leverages resonant effects, the band of frequencies over which
it displays the desired effect is a priori inherently limited.
The ERM prototype we use for our experiments has been de-
signed to work efficiently within a 1-GHz bandwidth around
5.2 GHz.

Random matrix theory benchmark. To evaluate whether
boundary condition modulations induced by ERMs can tune
a regular cavity to wave chaos, we compare the statisti-
cal distribution of the normalized intensity I of Cartesian
field components measured for a given ensemble of ERM
configurations with the theoretical RMT distribution. In this
section, we recall the main steps leading to the RMT predic-
tion [20,46,54].

In the presence of losses, for a given configuration of
an ideal chaotic cavity (or a given frequency, relying on
ergodicity), the real and imaginary parts of each Cartesian
component of the field are independently Gaussian distributed
but with different variances [20,22]. The ensuing distribution
of the modulus square of each component |Ea|2 depends on a
single parameter ρ, called the phase rigidity, defined by [20]

ρ =

∫
V

�E · �E d�r∫
V

|| �E ||2d�r
. (1)

More precisely, in a chaotic RC, due to the ergodicity of the
modes contributing to the response, for a given excitation fre-
quency and a given configuration (here, ERMs configurations,
polarizations, and positions of the antennas), the probability
distribution of the normalized intensity of the Cartesian com-
ponent I = |Ea|2/〈|Ea|2〉�r depends solely on the modulus of ρ

and is given by [20,55]

P(I; ρ) = 1√
1 − |ρ|2

exp

[
− I

1 − |ρ|2
]
I0

[ |ρ|I
1 − |ρ|2

]
, (2)

with I0 being the modified Bessel function of the first kind.
This result was originally proposed by Pnini and Shapiro [56]
to model the statistics of scalar fields in partially open chaotic
systems.

The above distribution continuously interpolates between
the two extreme distributions, namely, Porter-Thomas for
lossless closed systems (|ρ| → 1) and exponential for com-
pletely open systems (|ρ| = 0). The latter case corresponds to
the limit where the field is statistically equivalent to a random
superposition of traveling plane waves [20,56] meaning that
real and imaginary parts of each Cartesian component of the
field are statistically independent and identically distributed
following a normal distribution. This regime is known as
Hill’s regime in the EMC community [45,57], Ericson’s
regime in nuclear physics [58], or Schroeder’s regime in room
acoustics [5] and corresponds to a very high modal overlap
regime.

Since the phase rigidity is itself a distributed quantity, the
distribution of the normalized field intensity in a chaotic RC
for an ensemble of responses resulting from stirring reads

PI (I ) =
∫ 1

0
Pρ (ρ)P(I; ρ)dρ, (3)

where Pρ (ρ) is the distribution of the phase rigidity of the re-
sponses. Preliminary investigations, based on numerical sim-
ulations of the random matrix model described in Ref. [20],
show that Pρ (ρ) depends only on the mean modal overlap d .
An ansatz was proposed in Ref. [46] to determine Pρ (ρ) solely
based on the knowledge of d . This ansatz reads

PW
ρ (ρ) = 2B exp[−2Bρ/(1 − ρ)]

(1 − ρ)2
, (4)

where the parameter B has a smooth d dependence [46]
numerically deduced from the RMT model presented in
Ref. [20]. Originally, in Ref. [46], the empirical estimation of
B(d ) was limited to d � 1. Currently, B(d ) has been extended
to larger values of d and is given by [54]

B(d ) = ad2

1 + bd + cd2
, (5)

with a = 0.50 ± 0.02, b = 1.35 ± 0.03, and c = 0.30 ±
0.02 [54]. The mean modal overlap d is, therefore, the key
parameter to predict the statistical distribution of the normal-
ized intensity I of Cartesian field components,

PI;d (I ) =
∫ 1

0
PW

ρ (ρ)P(I; ρ)dρ. (6)

For a three-dimensional (3D) EM cavity of volume V , the
mean density of states can be estimated with Weyl’s law,
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which reads at leading order n f � nw( f ) = 8πV c−3 f 2 [59],
where c is the speed of light and f is the mean of the
considered frequency window. The mean modal overlap d is,
thus, related to f , V , the modal width � f , and the composite
quality factor Q = f /� f through

d = n f � f � 8πV

c3Q
f 3. (7)

Minimum number of “activated” ERM pixels. First, we are
interested in the minimum number of metasurface pixels that
have to emulate a perfect magnetic conductor (PMC) to ob-
serve wave-chaotic behavior in a cavity with regular geometry.
To that end, we choose 500 random configurations of the three
ERMs for which the overall number of PMC-like (activated)
pixels na is fixed and the 228 − na remaining pixels are left
in their PEC-like state (not activated). For each configuration,
we measure the S parameters between two monopole antennas
for 1601 frequency points in a frequency window of 250 MHz
around 5.2 GHz where the pixels are the most efficient. This
experiment is repeated for different values of na ∈ [2, 122].
Then, for each set of experiments with fixed na, we extract for
both antennas their frequency-dependent coupling constants
κi( f ) which read [12,43,60,61]

κi = |1 − 〈Sii〉|2
1 − |〈Sii〉|2

(i = 1, 2), (8)

where Sii( f ) (i = 1, 2) are the reflection parameters and 〈·〉
denotes an ensemble average over random ERM configura-
tions. Next, we deduce from the measurement of the transmis-
sion parameter S12( f ) the normalized value of the amplitude
of the Cartesian component of the electric field along the
orientation of the monopole antenna 2 inside the cavity as [46]

Ea = �E (�r2, f ) · n̂a = S12( f )

κ1κ2
, (9)

where �E (�r2, f ) is the electric field at the position of antenna 2
and n̂a is the unit vector along the polarization of antenna 2.

The RMT prediction in Eq. (6) assumes that 〈Ea〉 is van-
ishing. Physically, this means that static contributions, such as
direct processes (short path) are negligible [58,62–65]. Rea-
sons for the presence of static contributions include directivity
and relative positions of the antennas as well as the ERMs’
stirring efficiency. To extract the universal properties from our
experiments that can be compared with RMT predictions, we
numerically suppress the nonuniversal static contribution via
the commonly used transformation Ea → Ea − 〈Ea〉 [23,58].
In many practical applications involving reconfigurable wave
chaos, such a differential approach to remove the static con-
tribution is applied to efficiently use the available degrees
of freedom [34,39,41,66]. The universal and nonuniversal
contributions in our data are discussed and displayed in detail
in the Supplemental Material [67].

For each set of experiments with fixed na, we compare
the empirical cumulative distribution function (ECDF) of the
normalized field intensity I = |Ea|2/〈|E2

a |〉 of the ensemble
of cavity configurations Fna (I ) with the theoretical cumulative
distribution function,

FI;d (I ) =
∫ I

0
PI;d (x)dx, (10)
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FIG. 2. Transition to chaotic behavior as the number of pixels
emulating a perfect magnetic conductor na increases. Main plot: �,
blue continuous curve and red dotted line show, respectively, the ex-
perimental values of ζ (na) (see the text for details), the interpolation
of ζ (na) by the heuristic function f (x) = 1 − 0.06 exp(−0.373x)
and the limit ζ = 0.999 above which Fna (I ) is in good agreement
with FI;d (I ). The inset: red dashed-dotted line, green dotted line, blue
continuous lines, and orange dashed line correspond, respectively, to
F2(I ), F6(I ), F70(I ), and FI;d (I ). Arrows in the main plot locate the
associated values of ζ (na).

where we use the experimentally obtained value of d .
To estimate d with Eq. (7), we extract from our data
the cavity’s composite Q factor as Q = f /� f = 2πτ f ,
where τ = (2π� f )−1 is the intensity decay time of the in-
verse Fourier-transformed transmission signal |FT(S21)|2 ∝
exp(−t/τ ). Around 5.2 GHz, we thereby estimate d = 19.81.
The deviation of the measured ECDF of field intensity Fna (I )
from the RMT prediction FI;d (I ) with d = 19.81 is then
estimated as

ζ (na) = 1 − 〈(
Fna − FI;d

)2〉
I/

〈(
Fna − Fna

)2〉
I . (11)

In Fig. 2, the diamonds (�) present the experimentally ob-
tained values of ζ (na). Good agreement between the empirical
Fna (I ) and the RMT prediction FI;d (I ) is guaranteed as soon
as ζ (na) � 0.999. This is illustrated in the inset of Fig. 2
with the ECDFs F2(I ), F6(I ), and F70(I ) corresponding, re-
spectively, to cases of ζ < 0.99, 0.99 � ζ < 0.999, and ζ �
0.999. Among the three ECDFs shown, only F70(I ) (which
yields ζ � 0.999) is in good agreement with the RMT pre-
diction FI;d (I ). To estimate the minimum number of activated
pixels nmin, required to obtain a chaotic cavity, we interpolate
the experimental ζ (na) values by a heuristic function f (x) =
1 − a exp(−cx) and search the value xmin such that f (xmin) =
0.999. The fit yields a = 0.06 ± 3.1%, c = 0.373 ± 3.4%,
and xmin � 10.98. Therefore, for the specific cavity and meta-
surface design used in our experiment, nmin = 11.

Extension to different modal overlap regimes. Having
demonstrated that, in a regular cavity equipped with ERMs
chaotic behavior can be observed within the ERMs’ operation
band, we now consider frequencies outside this band which
allows us to explore different regimes of modal overlap. The
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ERM pixels are individually less efficient far outside their
designed operating band: The phase difference between the
two states is well below π . Nonetheless, surprisingly, we
observe that collectively they are still able to sufficiently alter
the boundary conditions to observe wave-chaotic behavior.
We now choose 9000 fully random configurations of the
228 pixels. For each ERM configuration, we measure the S pa-
rameters between the monopole antennas for 1601 frequency
points in [1.8, 5.8 GHz]. At this point, we draw the reader’s
attention to the fact that most of RMT predictions assume
that the mean density of states, the coupling strength of the
antenna, the absorption and the ensuing mean modal overlap
are constant [12,16–18,22,23,43,46,58,60,68–72]. Practically,
this means that we assume that these quantities vary only
slightly within the investigated frequency range. Obviously,
in the present Rapid Communication, none of the above-
mentioned parameters are slightly varying across the full
frequency range from 1.8 to 5.8 GHz, especially the mean
density of states. Therefore, we focus our study on a subset
of five frequency windows of 150-MHz width, respectively,
centered on 1.84, 3.1, 3.6, 4.5, and 5.2 GHz. The corre-
sponding measured values of modal overlap are, respectively,
d = 0.4, 1.98, 3.47, 6.45, and 19.81.

We can now study the field intensity distribution of the
ensemble of random cavity configurations and thereby the
chaoticity for different modal overlap regimes ranging from
low modal overlap (d < 1) to very high modal overlap (d �
20 
 1) [67]. For each frequency window, we compare as be-
fore the measured ECDF of the normalized field intensity with
the theoretical cumulative distribution function FI;d , given by
Eq. (10) using the corresponding experimentally measured
value of d . The results are shown in Fig. 3 where each
continuous and dashed curve with the same color corresponds,
respectively, to the complementary ECDF, 1 − F (I ), of exper-
imental data, and the RMT prediction 1 − FI;d (I ) [Eq. (10)]
with d extracted from the experimental data. From the very
low modal overlap regime with d = 0.4 (dark blue curves in
Fig. 3) to the very high modal overlap regime with d = 19.81
(light blue curves in Fig. 3), we observe very good agreement
over four decades between the ECDF of the normalized field
intensity of the ensemble of cavity configurations and the
RMT prediction for chaotic cavities. Hence, the cavity in
Fig. 1 displays the universal statistical behavior expected in
chaotic cavities when we randomly modulate its boundary
conditions.

We note that, for higher values of d , the ECDFs of the
experimental data are increasingly close to the cumulative
distribution function for the Hill-Ericson-Schroeder regime
(dotted purple curves in Fig. 3). The latter corresponds to the
limit of very high modal overlap [5,45,57,58]. Nevertheless,
because of the large size of the statistical uncorrelated sample
(∼5 × 105 transmission parameters per frequency window
obtained by modulating the boundary condition of the cavity
with ERMs), we can still discriminate between the RMT
prediction and the Hill-Ericson-Schroeder regime—mainly
on the tail of the distribution [73]. This is the case even
for the largest modal overlap regime with d ∼ 20 studied
here. We note that having an equivalent size of an uncorre-
lated statistical sample with conventional mechanical stirring
is much more difficult. Generally, the size of the statisti-
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FIG. 3. For different regimes of modal overlap d , we compare
the measured ECDF of normalized field intensity F (I ) (continu-
ous curves) with the RMT prediction FI;d (I ) given by Eq. (10)
(dashed curve). The colors, in ascending order, correspond to d =
19.81, 6.45, 3.47, 1.98, and 0.40. For reference, the cumulative
distribution of the Hill-Ericson-Schroeder regime is also indicated
(dotted purple). For the two extreme cases of d = 0.4 and d = 19.81,
the two insets show the relative error εr between the ECDF and
the RMT prediction (continuous red) as well as the Hill-Ericson-
Schroeder regime (dotted purple).

cal ensemble is between one and two orders of magnitude
smaller [57,74].

Concluding remarks. Our Rapid Communication shows
that a regular cavity equipped with reconfigurable metasur-
face reflect arrays can both (i) be tuned to wave chaos
and (ii) stirred using an ensemble of random metasurface
configurations. In the EMC community, a related proposal
for an electronically reconfigurable RC has previously been
proposed [44,75] and is experimentally demonstrated here.
Reference [76] recently proposed to use a metasurface to
improve the field uniformity in a reverberation chamber, an
objective closely related to that of tuning a cavity to wave
chaos [21,22,46]; however, the ability to simultaneously stir
the field is lacking in Ref. [76] since the considered metasur-
face was not reconfigurable. At the same time, several papers
in the area of sensing [31,34,35,38,39] used an ensemble
of random configurations of an electronically reconfigurable
chaotic cavity to stir the field but did not tune a regular cavity
to wave chaos.

To summarize, we experimentally showed that random
modulations of a regularly shaped cavity’s boundary con-
ditions with simple metasurfaces constitute an approach to
construct a chaotic RC without mechanical modifications.
Although mechanical modifications that do not sufficiently
impact the overall geometry can lead to a nonfully chaotic
cavity [21,22,24], our approach ensures that chaotic behavior
can be observed provided that the amount of pixels in distinct
states is sufficiently large. Furthermore, we have demonstrated
that our approach enables the observation of chaotic behavior
for a wide range of modal overlap regimes. Simultaneously,
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we have thereby also presented an experimental verification
of the validity of the RMT prediction of field intensity dis-
tribution [Eq. (6)] for modal overlaps much larger than unity.
Originally, this prediction was proposed for weak-to-moderate
modal overlap regime (d � 1) [20].

From a practical point of view, in a forthcoming paper [77],
we will demonstrate how our approach offers access to a
large number of uncorrelated cavity configurations which is
an important feature for many applications leveraging chaotic
reverberation chambers from computational imaging [31,32]
or wave-based analog computation [41] via wireless envi-

ronments [37,78–80] and antenna characterization [81–85] to
EMC tests [86–89]. From a more fundamental point of view,
thanks to our technique’s ability to easily and rapidly access a
very large amount of realizations, these reconfigurable chaotic
cavities will enable a fuller study of RMT and could be used
to verify recent predictions [68,90].
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