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We explore the role of atomic correlations in a harmonically trapped Bose-Einstein condensate coupled to a
dissipative cavity where both the atoms and the cavity are blue-detuned from the external pumping laser. Using
a genuine beyond-mean-field many-body approach, we extract density distributions and many-body correlations
to unveil a pathway to chaos at large pump power through a hierarchical self-organization of the atoms where
the atoms transition from a single-well optical lattice to a double-well optical lattice. Correlated states of the
atoms emerge and are characterized by local superfluid correlations in phases which are globally superfluid or
Mott insulating. Local superfluid-Mott transitions are precluded by a dynamical instability to chaos which occurs
via quasiperiodic attractors. Our results explain the mechanism behind the dynamical instabilities observed in

experiments.
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Introduction. Experimental advances in the past decade
have heralded a new era in light-matter hybrid systems where
quantum light is used to engineer correlated phases of matter.
In the solid-state realm, coupling to light has been used to
activate phases of matter, such as ferroelectricity [1] and
superconductivity [2]. In the quantum engineering domain,
cavity-QED systems with their tunable light-matter couplings
provide a versatile platform to realize hybrid correlated quan-
tum fluids, such as polaritons [3,4], permit the encoding of
qubits through photons [5], and generate entangled quantum
many-body states for quantum computation [6].

A landmark example of a light-induced phase is super-
radiance [7-10] in strongly coupled cavity-Bose-Einstein
condensate (BEC) systems where the atoms in the BEC self-
organize onto a lattice dynamically generated by the cavity
field [11-13]. Cavity-BEC systems also host complex phases,
such as Mott insulators [14—18], supersolids [19-21], and spin
textures [22-26]. They additionally allow the simulation of
many-body Hamiltonians having no solid-state counterparts,
such as spin models with both short- and long-range interac-
tions [2,27], and the realization of exotic collective magnetic
phenomena [28].

Prior theoretical work highlighted the ability of blue-
detuned cavity-atom systems to stabilize limit cycles and
chaos [30,31]. Although the predicted limit cycles were not
seen in the first experimental study of this regime, interesting
dynamical instabilities were reported [32]. Motivated by this
study, we go beyond Refs. [30,31] and explore the atomic
correlations and dynamical instabilities in a realistic harmon-
ically trapped cavity-BEC system [Fig. 1(a)] and map the rich
phase diagram in Fig. 1(b). On the pathway to chaos, we re-
veal an unexpected hierarchical deformation of the optical lat-
tice into a double-well lattice, which generates new correlated
phases of the atoms. In the dynamically unstable regime, we
also observe that quasiperiodicity dominates instead of strict
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periodicity, which is compatible to experiments. Our proposed
phase diagram and methodology are relevant for different
experimental realizations, such as in Refs. [12,14,33].

Model and method. We consider a cavity-BEC system with
N bosonic atoms of mass m. From a computational perspec-
tive since the physics of the system does not qualitatively
depend on the dimensionality, we study a one-dimensional
version of the model and later discuss the validity of the
results obtained for the two-dimensional system. In the ro-
tating frame of the pump laser, the system is described by
the following coupled equations of motion for the cavity
expectation value o and the atomic field operators W™ (x)
[11,34]:
i W) = | — ha; 84t )W () + Vi ()

L 2m ok nor

+ Uy cos® (kex)|ae|> + 1 cos(kex)(a + a*):|\iJ(x).

(1a)
da = (iA. — iNU)B — k) — inNb. (1b)

Here, k. is the wave vector of the cavity field and
corresponds to the recoil frequency wg = hik?/2m. g is the
weak interatomic interaction, Uj is the atomic single-photon
light shift, n is the effective pump rate, A, is the cav-
ity detuning, and « is the cavity dissipation rate. The
blue-detuning of atoms and cavity is reflected in Up and
A, being positive, respectively. The atoms are confined
by a harmonic trap Vimp(x) = Ze2x?. Since we are inter-
ested in regimes far from the normal-superradiant boundary,
the cavity is in a coherent state with negligible fluctua-
tions [18,35-37] and can, thus, be represented by a com-
plex number «. The variables 6 = f dx p(x)cos(k.x) and

B = f dx p(x) cos?(k.x) in Eq. (1b) are the order parameters
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FIG. 1. (a) Schematic of a trapped cavity-BEC. (b) Phase dia-
gram. For cavity detuning 0 < § < 1/2, the system transitions from
the normal phase (NP) to the dynamically unstable region via super-
radiance with increasing pump rate A « 1. The strongly correlated
phases are a self-organized superfluid (SSF), a self-organized Mott
insulator (SMI), a self-organized dimerized superfluid (SDSF), and
a self-organized second-order superfluid (2-SSF) phase. The orange
dotted line separates superfluid phases and globally Mott insulating
phases, whereas the green dash-dotted line marks the onset of
the hierarchical self-organization to dimerized phases. Pronounced
sensitivity to the ramping protocol is seen in the hatched dark green
region. At higher A, the system is dynamically unstable to the
formation of quasiperiodic attractors (QA) followed by chaos. The
QAs only exist in the region represented by the thick gray line,
whereas the thin dashed section represents a direct transition to the
chaos. The dimensionless detuning § and the potential strength A are
normalized with respect to NUj and ,/wg, respectively [see Eq. (2)].
(c) Sketch of the SSE, SMI, SDSF, and 2-SSF phases.

associated with superradiance, where p(x) = ()W (x)) /N
is the position space density distribution.

The main characteristic features of the system are direct
results of the cavity-induced potential. For our analytical
considerations, we neglect the atomic interactions, atomic
correlations, and the harmonic trap and adiabatically eliminate
the cavity field via setting d,a = 0. We find that the atoms are
effectively subject to the potential [11],

Veav (%) = A%Tiwg[2(8 — B)O cos(kex) + 6% cos®(k.x)], (2)

with A = nN/Uy//[(A. — NUyB)? + k2]wg as the dimen-
sionless overall effective potential strength and § = A./NUj
as the dimensionless cavity detuning. The cavity dynamically
creates an optical lattice potential comprising two sinusoidal
terms cos®(k.x) and cos(k.x), whose amplitudes are deter-
mined by the instantaneous atomic state via 6 and B.

With blue-detuned atoms Uy > 0, self-organization takes
place in both a red-detuned cavity § < 0 and a blue-detuned
cavity 0 <8 < 1/2 [11,12,38]. In the former case, the
cos(k.x) term dominates, and the atoms are localized at the
lattice sites x,, = nm /k. with all n either even or odd. How-
ever, in the latter case, the two terms in V,, can be equally
significant, forming a local double well at each site. This

double-well lattice can realize the Su-Schrieffer-Heeger
model in a cavity-fermion system [39]. This analysis provides
the first glimpse of intrinsically different physics in the blue-
detuned region.

Most phenomena in the blue-detuned cavity-BEC system,
including the atomic self-organization, the double-well lattice,
and the dynamical instabilities, can be revealed by the sys-
tem’s evolution in the (B, 6) phase space in discretized time.
This evolution can be found by noting that the instantaneous
potential [Eq. (2)] is controlled by the two order parameters
from the past step (B;, 6;) and, subsequently, determines the
quantum state and, thus, the parameters in the next step
(Bi+1, 6:+1). Using a Gaussian ansatz for the quantum states,
the two parameters are found to evolve as follows:

1 =e Uy, Byy=14 17257 — 1), (a)

with
9 ={AJ|@|<&—6—|9t|>/2, B—82 0l g
T AVIeE -6 -B)2/2, B -8 <16/
_ sgn(6;), B, — 38 > 16
X = {(B, —5)/6,, B —8<I6. (%)

Beyond the mean-field limit, the combination of the
double-well optical lattice and weak atomic interactions re-
sults in hierarchical transitions to a series of correlated phases
of matter. We investigate the full phase diagram described by
Eq. (1) using the multiconfigurational time-dependent Hartree
method for indistinguishable particles (MCTDH-X) [40-45].
The simulated N = 50 atoms are initialized in a Thomas-
Fermi-like state. Then the many-body state of the atoms
coupled to the cavity is propagated in real time. The pump
rate n is linearly ramped up at fixed detunings to reach a
desired value. The simulation parameters correspond to those
realized experimentally in Ref. [12] and are given in detail in
the Supplemental Material [29].

The phase diagram is extracted from the observables: 6, B,
the position space density distribution p(x), the momentum
space  density  distribution  p(k) = (¥F (k)W (k))/N,
and the Glauber one-body correlation function
gV (e, x) = (I W) /YN p()p(x)  [4647], whose
behaviors are summarized in Fig. 2. The simulation results
from MCTDH-X will be compared to the analytical results
from Eq. (3) (see Fig. 3).

Results. Our results for the blue-detuned cavity-BEC are
summarized in the phase diagram [Fig. 1(b)] along with a
schematic of the different phases [Fig. 1(c)]. The system self-
organizes at a critical pump rate 1, roughly consistent with the
mean-field prediction A(n,) = 1/+4/1 — 28 [11]. We plot p(x)
and p(k) at two representative detunings in Figs. 2(a)-2(d).
The self-organized superfluid (SSF) phase is characterized
by a continuous density distribution p(x) with pronounced
peaks at the sites of the emergent lattice with spacing A, =
27 /k.. The corresponding p(k), measurable by time-of-flight
experiments, is characterized by a principal peak at the center
k = 0 straddled by two satellite peaks at k = +k, stemming
from the superfluid correlations between the atoms at different
lattice sites [14,17,18]. At lower detunings § < 0.2 and larger
pump rate, the system transitions from the superfluid into
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FIG. 2. (a)-(d) The momentum and position space density distributions p(k) and p(x) as a function of pump rate A o 7 at two detunings
8 = 0.14 and § = 0.28. At lower detuning § = 0.14, the system starts from the normal phase and then enters the SSF phase at A = 1.4, the
SMI phase at A = 2.7, and the 2-SSF phase sequentially. At higher detuning § = 0.28, the system starts from the normal phase, then enters
the SSF phase at A = 1.9, and the SDSF phase sequentially. The dotted lines are guides to the eye. (e)—(j) The position and momentum space
density distributions and the Glauber one-body correlation function of an SDSF state (first row) and a 2-SSF state (second row). In panels (g)
and (j), the color code follows the function — In(1 — g"). The double-well splitting is seen in the central lattice site but not in the other two
lattice sites because only M = 4 orbitals are used in the numerical simulations (see the Supplemental Material [29]).

a self-organized Mott insulator (SMI) phase. This phase is
characterized by the disappearance of the peaks at k = +k,
and the broadening of the central peak at k =0 in p(k)
[14,18,48-50]. These superfluid and Mott insulating phases
are analogs to the ones in a standard Bose-Hubbard model
[18]. In the (B, ) phase space, these two phases with single-
well lattices are characterized by stable fixed points with
B —§ > |0| [Figs. 3(b) and 3(g)]. Such phases always appear
first as A passes a critical value and the system leaves the
normal phase (B = 1/2, 6 = 0) [Figs. 3(a) and 3(f)].

As the pump rate increases further, the fixed point moves
in phase space. As B — § becomes smaller than |9 [Figs. 3(c)
and 3(h)], local double-well potentials are formed at lattice
sites according to Eq. (2). This is unique to blue-detuned
systems. Depending on the degree of correlations between
the atoms at different sites, we obtain either a self-organized
dimerized superfluid (SDSF) phase where global superfluid
correlations persist across the double-well dimers or a self-

organized second-order superfluid (2-SSF) phase where su-
perfluid correlations exist only within each double-well dimer.
The signatures of these two states lie in the distributions p(x)
and p(k) and the correlation function g (x, x’) as shown in
Figs. 2(e)-2(j). The double-well optical lattice is confirmed
by the two-humped density distribution in p(x) at each lattice
site [Figs. 2(e) and 2(h)] and the concomitant reduction of
the one-body correlation from unity within one lattice site
[Figs. 2(g) and 2(j)]. Within each double-well dimer, local
superfluidity exists and manifests itself as two peaks in p(k)
appearing at k = £k* [Figs. 2(f) and 2(i)], where

_ ke,
~ arccos[(B — 8)/10]]

*

“)

corresponds to the distance between the minima of the double-
well potential. As the pump rate increases, k* approaches 2k,
from above, and the peak height increases as the double well
becomes deeper.

A=0.5 A=1 A=5 A=12 A=17
MCTDH-X
0.5 (a) (b) (C) (d) (k) T simulation
° Discretized
] \ ’\ / © m4. o Disotn
@
0.5
0.0
0.5 1T A s - ] === == == =
Vs PN~ .
S | | R S | (S S e | (S S
o ATIIIToIIZ|AeNTIToIzIf||ZIzzCs S Nl It P
| LI S L SR NN NN N - - P A A P A /,-_,}
@ RSN NN NN W ow boaox NN NN W~ Y ave PP Y S P P },
[ NN [N NN A A RN P P S &
NN (IR t FPVN -« - PR AV i &é)
0.0 T 0NN NN N N~ NN NN N N N x PN N N o L
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.4 0.8
6 6

FIG. 3. (a)—(e) The trajectory of the parameter pair (B, #) on phase space evolving according to Eq. (3) with randomly chosen initial
values marked by triangles and fixed points marked by crosses. (f)—(i) The corresponding flow vector plots with normalized arrows showing
only the flow directions. In all panels, we choose § = 0.14. As A increases, the system is in (a) and (f) a normal phase at A = 0.5, (b) and (g) a
single-well lattice at A = 1, (c) and (h) a double-well lattice at A = 5, (d) and (i) an attractor phase at A = 12, and (e) and (j) chaos at A = 17.
(k) The trajectory of the fixed points as A changes. The solid brown square, blue diamonds, and orange points are stable fixed points for NP,
single-well lattices, and double-well lattices, respectively. The red empty points show the unstable fixed points. A black line is superposed to
show the trajectory in the MCTDH-X simulation in dynamically stable phases.
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In the SDSF (2-SSF) phase, global superfluid correlations
between different pairs of double wells are present (absent).
This corresponds to the presence (absence) of the peaks at &,
in p(k) [Figs. 2(f) and 2(i)], and a finite (vanishing) correlation
in g1 between different lattice sites [Figs. 2(g) and 2()].
In a 2-SSF state, superfluidity has a completely different
length scale from the SSF and SDSF states since coherence
exists only locally within each double-well dimer. Although
superfluidity usually refers to long-range coherence, it can
also be used to describe coherence within a double well [51].
These two new phases realize a variant of the Bose-Hubbard
model with degenerate double-well lattices with Hamiltonian,

N A A A A
Hpy = — Z(Ilc,;LCi,R + 0¢8] géiprL + He.)

+ Y [%(eige,-,nz 4 ucTc] 5)
i,o=L.R

where LR denote the subsites, U the on-site atomic interac-
tion, u; the local chemical potential, and #; and #, the intra-
dimer and inter-dimer hoppings, respectively [52].

The single-well optical lattice smoothly deforms to the
double-well lattice, and it is hard to numerically establish if
the system transitions or crosses over during the dimerization
(see the Supplemental Material [29]). Nonetheless, clear hys-
teretic behavior is seen across the boundary between SDSF
and 2-SSF phases, shown by the hatched dark green region
in Fig. 1(b). This implies a first-order transition between the
globally superfluid and the globally Mott insulating phases.

At higher pump rates, the fixed points of Eq. (3) become
unstable through a Hopf bifurcation [53,54] as attested by the
trajectory and flow in Figs. 3(d) and 3(i), and the appearance
of dynamical instabilities in the cavity-BEC system. Such
instabilities preclude Mott insulation within a double well
[Fig. 1(b)]. In the presence of the atomic interactions and the
harmonic trap, the limit cycles predicted in a noninteracting
trapless system [30,31] are reduced to quasiperiodic attractors
(QAs5). Similar to the limit cycles, the QAs are shown to be ro-
bust against ramping protocols in Figs. 4(a) and 4(b): The tra-
jectories are always confined in the same region in the (B, 6)
phase space [Fig. 4(b)], and they exhibit roughly the same
amplitude and frequency profile of oscillations [Fig. 4(a)].
In contrast to limit cycles, QAs are highly sensitive to initial
conditions, reflecting their connection to chaos. Nevertheless,
the double-well configuration of the atomic density is well
preserved in a QA state [Fig. 4(c)].

As the pump rate further increases, the discretized-time
model predicts 6, and thereby the optical lattice will repeat-
edly vanish transiently [Figs. 3(e) and 3(j)]. In the cavity-BEC
system, the atoms become loosely confined, and higher mo-
mentum modes are easily excited, leading to a rapid increase
in system energy and resulting in full chaos and thermalization
[Fig. 4(d)]. In this thermalized regime, the atomic density
distribution eventually becomes completely fluctuative, and
the system becomes fully chaotic [Fig. 4(c)]. Tightly trapped
systems are more prone to thermalization (see the Supplemen-
tal Material [29]).

Discussion and extension to two-dimensional systems. In
terms of the renormalized parameters § and A [cf. Eq. (2)],
the phase diagram is rather general and relevant for multiple
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FIG. 4. (a) The order parameter 6 as a function of time for
three different ramping protocols from the stable region into the
QA phase (6§ =0.14, A =11.8). In the blue and green trajecto-
ries, the detuning is fixed at 6 = 0.14, and the pump rate A «x
is ramped up linearly at rates of (blue) dA/dt =4 x 10~*wg and
(green) dA/dt = 8 x 10wy, respectively. In the orange trajectory,
the pump rate is fixed at A = 11.8, and the detuning is ramped
up linearly at a rate of d§/dt = 1.5 x 10~*wg. (b) For all three
cases, the system converges to the same attractor in the (B, 0)
phase space. (c) Density distribution p(x) of (blue) a QA state and
(orange) a thermalized state. (d) Evolution of the system energy as
the system becomes thermalized. The reference time ¢ = 0 is set
roughly when the thermalization starts. (e) and (f) The position space
density distribution p(x, y) of (e) a single-well lattice state and (f) a
double-well lattice state in a two-dimensional cavity-BEC system as
described by Eq. (6).

experimental setups [12,33,55]. At the mean-field level, we
have seen that the discretized mapping Eq. (3) qualitatively
predicts various phenomena observed in simulations. In addi-
tion, its fixed points also roughly track the simulated system
trajectory in phase space [Fig. 3(k)].

We now discuss the dependence of the phase diagram
on the atom number N and the trap. There are two kinds
of phase boundaries in Fig. 1(b): the mean-field ones, and
the nonmean-field ones. The first kind (self-organization and
dynamical stability boundaries) is governed by the cavity-
induced effective potential in Eq. (2), which solely depends on
8 and A. Thus, these phase boundaries, given as functions of §
and A, remain unchanged for any particle number and are only
weakly sensitive to the trap [18]. The second kind delineates
the phases SSF, SMI, 2-SSF and SDSF. These transitions are
driven by Bose-Hubbard physics and are determined by the
filling factor at lattice sites. As N increases and the harmonic
trap tightens, the filling factor increases and these phase
boundaries move towards larger A. Based on these observa-
tions, we have made a computationally judicious choice of
particle number and trapping frequency to effectively simulate
the experimentally relevant phase diagram.
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The phase diagram for the one-dimensional system can
be straightforwardly extended to the experimentally relevant
two-dimensional systems. In this case, the atoms are subject
to three light-induced effective potentials which we require to
be as follows:

Viight (x, ¥) = fin? /Uy cos? (key) + hUpla|* cos? (k.x)
+hn(a + a*) cos(k.x) sin(k.y). (6)

Compared to the one-dimensional version [Eq. (1a)], the first
term is an additional term stemming from the transverse
pumping laser. The cavity field « follows the equation of
motion Eq. (1b) where the lattice order parameter is gener-
alized to 6 = [dxdy(¥'(x, y)¥(x, y)) cos(kex) sin(k.y)/N.
Compared to the effective potential realized very re-
cently in experiment [32], the essential difference in the
above system [Eq. (6)] is an extra phase shift of 7 /2
along the pump (y) axis in the last term. This phase
shift is necessary to observe our phase diagram and
can straightforwardly be implemented in the experimental
setup.

The two-dimensional system is expected to qualitatively
possess the same phase diagram shown in Fig. 1(b). All
the phases should be accessible for reasonable values of the
detuning and pump rate. In Figs. 4(e) and 4(f), we plot two
representative examples of spatial density distributions based

on mean-field simulations, (i) the standard self-organization
on a checkerboard lattice corresponding to an SSF or an SMI,
and (ii) self-organization on the double-well optical lattice
structures. The latter would lead to extra peaks in momentum
space at k = (xk*, 0) superposed over the underlying su-
perfluid or Mott-insulator momentum distribution, which can
serve as the smoking-gun evidence of dimerization in experi-
ment. The oscillatory phase reminiscent of our quasiperiodic
attractors has already been observed experimentally [32].
Despite the phase shift between the experimental setup and
the one discussed in this Rapid Communication, we expect
the same mechanism driving the dynamical instabilities. To
clearly observe the quasiperiodicity in an experiment, a loose
trap along the cavity axis with w, ~ 1073wy, is suggested (see
the Supplemental Material [29]).

Our Rapid Communication illustrates the potential of blue
detuning to realize exotic phases of matter and should stimu-
late future studies of complex cavity-cold atom platforms.
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