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Observation of two sound modes in a binary superfluid gas

Joon Hyun Kim ,1 Deokhwa Hong,1 and Y. Shin1,2,*

1Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
2Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Korea

(Received 24 July 2019; revised manuscript received 15 April 2020; accepted 18 May 2020;
published 4 June 2020)

We study the propagation of sound waves in a binary superfluid gas with two symmetric components. The
binary superfluid is constituted using a Bose-Einstein condensate of 23Na in an equal mixture of two hyperfine
ground states. Sound waves are excited in the condensate by applying a local spin-dependent perturbation with
a focused laser beam. We identify two distinct sound modes, referred to as density sound and spin sound, where
the densities of the two spin components oscillate in phase and out of phase, respectively. The observed sound
propagation is explained well by the two-fluid hydrodynamics of the binary superfluid. The ratio of the two
sound speeds is precisely determined from a timescale analysis of the sound wave propagation, without the
need of absolute density calibration, and we find it in quantitatively good agreement with the known interaction
properties of the binary system.
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Sound propagation in a superfluid is a characteristic
transport phenomenon revealing the microscopic and ther-
modynamic properties of the superfluid system. In a long-
wavelength limit, a sound wave propagates without distortion,
reflecting the linear dispersion of the gapless Goldstone ex-
citation mode of the superfluid [1]. At finite temperatures,
containing a normal fluid within it, a superfluid system sup-
ports two types of sound waves, referred to as first and second
sounds [2,3], and their propagation speeds are determined
as functions of thermodynamic quantities such as superfluid
density, entropy density, and compressibility [4]. Thus, the
study of sound propagation measures our understanding of the
superfluid system.

A superfluid with two superflowing components has been
studied with great interest since the discovery of 3He–4He
mixtures [5]. This interest has continued through recent exper-
imental developments in ultracold atomic gas mixtures [6–9],
exciton-polariton condensate [10], and two-gap superconduc-
tors [11]. In the binary superfluid system, interactions be-
tween two components induce the mixing of the low-energy
excitation modes of each component, giving rise to two new
hybridized sound waves. A peculiar aspect in the mixing is
that the superflow of one component can experience a nondis-
sipative drag from the movement of the other component [12],
known as the Andreev-Bashkin (AB) effect. Such elements
of mutual entrainment affect the speed of sound and can be
important in the stability and robustness of the superfluidity
of the binary system, particularly in a strongly interacting
regime [13]. The quantitative understanding of the AB effect
has been pursued in recent theoretical works [14–18], stimu-
lating experimental efforts to measure the speed of sound in a
binary superfluid system.
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In this paper we investigate sound propagation in a bi-
nary superfluid gas comprised of a Bose-Einstein condensate
(BEC) of 23Na in an equal mixture of two hyperfine ground
states. Here the two components are identical in mass, density,
and intracomponent interactions. From the Z2 symmetry, it
is expected that the superfluid shows two modes of density
oscillations, i.e., sound waves, where the densities of the two
components oscillate in phase and out of phase, respectively
(Fig. 1). The in-phase oscillations correspond to an ordinary
pressure wave whose propagation speed is determined by the
compressibility of the system. Meanwhile, the out-of-phase
oscillations are a wave of the density difference between the
two components, which we refer to as spin sound, regarding
the two components as two opposite spin states, |↑〉 and
|↓〉 [19–21]. We observe two distinct sound waves propagat-
ing with different speeds in the condensate and identify the
fast wave with ordinary density sound and the slow wave
with spin sound. The measured propagation speeds of the two
sound waves are found to be well explained by the two-fluid
hydrodynamics of the binary superfluid. In particular, we
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FIG. 1. Sound waves in a symmetric binary superfluid. (a) Ordi-
nary density sound where the two superfluid components oscillate in
phase, and (b) spin sound wave where they oscillate out of phase. The
red solid and blue dashed lines indicate the spatial density profiles of
the two components. cn and cs denote the propagation speeds of the
density and spin sounds, respectively.
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precisely determine the ratio of the two sound speeds from
a timescale analysis of the sound wave propagation, with no
need for absolute density calibration. This work establishes
an experimental protocol to quantitatively study the sound
propagation in a binary superfluid system.

Our experiment starts with the preparation of a BEC of
23Na in the |F = 1, mF = 0〉 hyperfine state [22]. The con-
densate, typically containing ≈3 × 106 atoms, is trapped in an
optical dipole trap with trapping frequencies of (ωx, ωy, ωz ) =
2π × (5.4, 8.0, 571) Hz and its Thomas-Fermi radii are
(Rx, Ry, Rz ) ≈ (168, 113, 1.6) μm. A binary superfluid is re-
alized by transferring the atoms in the |mF = 0〉 state to a
superposition of the two spin states, | ↑〉 ≡ |mF = 1〉 and
| ↓〉 ≡ |mF = −1〉, by applying a short radio-frequency (rf)
pulse so that the condensate comprises an equal mixture
of the two spin components. The s-wave scattering lengths
for the intra- and intercomponent collisions are given by
a = 54.54(20)a0 and a↑↓ = 50.78(40)a0, respectively, with
a0 being the Bohr radius [23]. The two components are misci-
ble for a > a↑↓ [24]. To prevent the spin-exchange process
generating the |mF = 0〉 component, we tune the quadratic
Zeeman energy to q/h ≈ −5.0 Hz using microwave field
dressing [25,26], and the binary superfluid is stabilized. The
thermal fraction of the sample is less than 10%. The external
magnetic field is Bz = 50 mG, and its gradient is controlled to
be less than 0.1 mG/cm [27].

Sound waves are generated by applying local potential
perturbations on the condensate using a focused Gaussian
laser beam, as in previous works [28–31]. The laser beam
penetrates along the z axis at the center of the condensate. We
adiabatically turn on the laser beam by increasing its intensity
over 200 ms and then rapidly switch it off in 1 ms. Sound
waves are generated through the sudden change of the optical
potential, and their subsequent propagation in the condensate
is probed by taking absorption or spin-sensitive phase-contrast
images at various hold times t after turning off the laser
beam [32].

The key feature of our experiment is that the optical
potential magnitudes V 0

↑(↓) for the spin–↑ (↓) components can
be differentiated by using a near-resonant laser beam. For
a near-resonant laser beam, many different transition lines
generating the optical dipole potential are spectroscopically
resolved, so the potential ratio, V 0

↑ /V 0
↓ , can be controlled with

the optical frequency and polarization of the laser beam [33].
In a linear regime with small optical potentials, the density
n↑(↓) of the spin-↑ (↓) component locally varies as gδn↑(↓) +
g↑↓δn↓(↑) + V 0

↑(↓) = 0, where g(↑↓) = 4π h̄2

m a(↑↓), with m being
the atomic mass. Then the deformations of the total density,
n = n↑ + n↓, and the spin density, ns = n↑ − n↓, are given by

�n = −V 0
↑ + V 0

↓
g + g↑↓

and �ns = −V 0
↑ − V 0

↓
g − g↑↓

, (1)

respectively. Therefore, when V 0
↑ �= V 0

↓ , �ns �= 0 and a
spin sound wave can be generated by the local potential
perturbation.

We first investigate the density perturbation with V 0
↑ =

V 0
↓ , where we use a 532-nm far-detuned laser beam which

produces identically repulsive dipole potentials for the two
spin states. The 1/e2 intensity radius of the laser beam is
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FIG. 2. Observation of the sound propagation in a binary super-
fluid. (a) In situ optical density (OD) images of the two-component
Bose-Einstein condensate at various hold times t after applying a
local density perturbation at the center of the condensate. A ring-
shaped rarefaction pulse is generated, and it propagates outwardly.
The bottom row shows the averaged radial profiles obtained from the
images. The dash-dotted line is a guide for an unperturbed sample.
(b) In situ magnetization (Mz) images of the condensate at various t
after applying a local spin perturbation and (c) the corresponding OD
images of the two spin components taken after a 19-ms time of flight
with Stern-Gerlach (SG) spin separation. The spin-↓ component
shows a density dip and the spin-↑ component a density lump at wave
pulse position.

18.3(3) μm, and its potential height is approximately five
times the chemical potential μ of the sample, resulting in
a density-depleted hole in the condensate. In Fig. 2(a), the
in situ density images of the sample for various hold times
are displayed. We observe that a ring-shaped rarefaction pulse
is generated, and it propagates out in a radial direction. During
its propagation, the FWHM of the density dip is maintained at
≈22 μm, implying the dispersionless character of the sound
wave. Performing absorption imaging after a 19-ms Stern-
Gerlach (SG) spin separation [22,32], we find that both spin
components show density dips at the pulse position, which
indicates that the generated pulse wave is a sound wave in the
in-phase oscillating mode.

Next, we investigate the sound wave generation by spin-
dependent perturbation with V 0

↑ = −V 0
↓ , where we employ

a 589-nm near-resonant laser beam. To generate asymmetric
potentials for the two spin states, we tune the optical fre-
quency of the laser beam at 2π × 508.505 THz between the
D1 and D2 lines of 23Na and set its polarization to be σ−,
resulting in attractive and repulsive potentials for the spin–↑
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and ↓ components [33]. The 1/e2 radius of the beam is 11(1)
μm and its potential magnitude is V 0

↑(↓) ≈ ∓1.1μ.
Figure 2(b) shows the in situ magnetization images of the

sample for various hold times after turning off the 589-nm
laser beam [8]. A ring-shaped pulse wave carrying a positive
magnetization is observed as propagating out from the center
of the condensate. It is noticeable that the magnetization
pulse propagates much more slowly than the density wave
presented in the previous case, indicating that it is a different
type of sound wave. The FWHM of the magnetization pulse
is initially ≈9 μm and increases to ≈14 μm after 60 ms
propagation. From the absorption images taken after SG spin
separation, we observe that the spin–↓ component shows a
density dip at the position of the propagating pulse wave,
whereas the spin–↑ component shows a density lump at the
same position [Fig. 2(c)]. This clearly demonstrates the gen-
eration of a spin sound wave in the binary superfluid system.

In the spin sound generation experiment, the magnitude
of the asymmetric optical potential is high so that the spin-
↓ component is locally depleted in the perturbing region,
whereas the spin-↑ component is increased to have �n ≈
μ

g �= 0. This means that a density sound wave might be also
generated with the strong spin-dependent perturbation. When
|V 0

↑ − V 0
↓ | > 2 g−g↑↓

g+g↑↓
μ ≈ 0.1μ, the perturbing region becomes

fully spin-polarized and the asymmetric potential induces a
total density deformation. In our in situ measurement of sound
propagation, we employed strong perturbations to clearly
locate the position of the pulse wave. It was experimentally
checked using absorption imaging with SG spin separation
that no systematic effect on the sound propagation speed
arises from the strong perturbations.

In a long-wavelength limit, zero-temperature dynamics of a
binary superfluid is well described by two-fluid hydrodynamic
equations [21]:

∂t ni + ∇ · (niui ) = 0,

∂t ui + ∇
(

1

2
u2

i + g

m
ni + g↑↓

m
nj

)
= 0, (2)

where ui( j) is the velocity of the spin-i( j) component (i, j =
↑,↓ and i �= j). The first equation is the continuity equation,
and the second is the Euler equation with the chemical poten-
tial of the spin-i component, μi = gni + g↑↓n j . By linearizing
the equations for a stationary state with u↑(↓) = 0 and finding
the condition to have a traveling wave solution of δni =
Ai sin(k · r − ωt ), we obtain the wave velocity vs = ω/k as

v2
s± = 1

2m

[
gn ±

√
g2

↑↓n2 + (g2 − g2
↑↓)n2

s

]
. (3)

For g > g↑↓ > 0, there are always two sound modes with
different propagation speeds.

In a symmetric binary superfluid with ns = 0, the two

sound velocities are given by vs± =
√

1
2m (g ± g↑↓)n. The

fast wave is density sound for A↑ = A↓ and the slow wave
is spin sound for A↑ = −A↓, which is consistent with our
experimental observations. The mass current jm = n↑u↑ +
n↓u↓ and spin current js = n↑u↑ − n↓u↓ are decoupled in
the superfluid, which reflects a peculiar consequence of the
Z2 symmetry of the binary system, and the Bogoliubov
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FIG. 3. Time evolution of the radius of the ring-shaped wave
pulse, rn (red circles) for the density sound wave and rs (blue
squares) for the spin sound wave. Each data point consists of five
measurements of the same experiment and its error bar indicates
their standard deviation. The solid lines are the model curves of
r(t ) = R sin(ct/R + θ0 ), fitted to the experimental data, where R is
the condensate radius, c is the speed of sound at the sample center,
and R sin(θ0) is the initial position of the sound wave. The inset
shows the constructed data {ts, tn} for the timescale analysis of the
sound wave propagation (see text for details). The error bar of each
data point shows the uncertainty from its determination using linear
interpolation, and the solid line is a linear function fit to the data.

quasiparticles are thus given by pure phonons and
magnons [34]. Our observation of the spin sound propagation
demonstrates the existence of the gapless magnon mode
associated with the relative phase of the two spin components
and corroborates the spin superfluidity of the binary
system [35–37].

We measure the sound propagation speed from the time
evolution of the radius r of the ring-shaped pulse wave
(Fig. 3). The averaged radial profile is obtained from the
in situ image, and r is determined with the radial position for
the local density minimum (magnetization maximum) of the
pulse wave for the density (spin) sound. Taking into account
the inhomogeneous density profile of the trapped sample,
we model the radial dependence of the propagation speed as
vr (r) = c

√
1 − r2/R2, with the peak speed c at the sample

center and R = √
RxRy, and obtain a model function of r(t ) =

R sin(ct/R + θ0) for the ring radius by integrating vr (r) over
time. From the model function fit to the experimental data, we
determine the speed c and the initial position r(0) = R sin(θ0)
of the sound wave. In our measurements, the sound velocities
are given by cn = 3.23(18) mm/s for density sound and
cs = 0.70(4) mm/s for spin sound, which are found to be
in agreement with the estimations of vs+ = 3.22(5) mm/s
and vs− = 0.61(4) mm/s from Eq. (3). In the calculation of
vs±, we use the effective density n = (2/3)n0, with n0 being
the peak density of the condensate, under the assumption
of the hydrodynamics equilibrium along the tight confining
z direction of the highly oblate sample [38–41]. The initial
positions rn(s)(0) of the sound waves are measured to be
≈13 μm, which are comparable to the spatial sizes of the used
laser beams.

Here we remark that, although the individual velocities of
cn and cs depend on the details of the sample condition such
as the particle density and the trapping geometry, the ratio
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γ = cs/cn is a quantity that faithfully reflects the intrinsic
properties of the binary superfluid because both velocities
have the same density dependence. The measurement results
of cn and cs give γ = 0.217(17). However, we find that γ

can be directly measured by a timescale analysis of the two
experimental data sets for the density and spin sound waves,
which requires no assumption concerning the density profile
of the sample. We perform the scale analysis as follows: For
each data point {ts, rs} in the spin sound measurement we
determine the corresponding time tn for the density sound
wave to have the same radius rn = rs using linear interpolation
of the density sound measurement data. We then obtain γ

by fitting a linear function tn = γ ts + β to the constructed
data {ts, tn} (Fig. 3, inset). Here the offset β accounts for the
difference of the initial positions of the two sound waves.
In the scale analysis, we obtain γ = 0.193(22), which is in
quantitatively good agreement with the predicted value of

γ0 = vs−
vs+

=
√

a−a↑↓
a+a↑↓

= 0.189(11).

Because the timescale analysis of the two sound waves is
free from systematic errors associated with absolute density
calibration, the measurement of γ can be a powerful method
for probing the subtle interaction effects in binary superfluid
systems. In Ref. [15] it was shown that the AB entrainment
effect modifies only the speed of spin sound, not density
sound, thus resulting in a direct shift in γ . In our weakly inter-
acting system with n0a3 ≈ 1.4 × 10−6, the fractional weight
of the superfluid drag is predicted to be ≈4 × 10−4 [14], and
the corresponding shift in γ is too small to be resolved for the
current uncertainties of the scattering lengths, a and a↑↓ [23].
The precise measurement of γ with strongly interacting sys-
tems would provide an interesting opportunity to observe the
AB effect [15,17]. It should be noted that the Lee-Huang-Yang
(LHY) corrections arising from quantum fluctuations also can
cause a shift in γ . In our sample, for instance, the relative
shift of cn due to the LHY corrections is estimated to be about
0.5% [42], which is one order of magnitude larger than that
of cs due to the AB effect. Therefore, the LHY corrections
need to be taken into account for a quantitative understanding
of γ .

Finally, we explore the general case of |V 0
↑ | �= |V 0

↓ |, where
both density and spin sound waves would be generated simul-
taneously. In Fig. 4, we display density and magnetization
images of the sample that is perturbed with V 0

↑ ≈ −3μ and
V 0

↓ ≈ μ. The images were taken with a 19-ms time of flight
to enhance the detection of sound waves. It is clearly shown
that both density and spin sound waves are generated but
propagate separately in the condensate, highlighting their
different speeds. The density wave appears as a density lump
because V 0

↑ + V 0
↓ < 0, and the spin sound wave carries posi-

tive magnetization because V 0
↑ − V 0

↓ < 0.
A notable observation is that a solitonlike magnetized

object is created together with the two sound waves (Fig. 4,
lower row). The magnetized object moves slower than the spin
wave, with preserving its spatial size and shape. We interpret
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FIG. 4. Simultaneous generation of density and spin sound
waves with strong spin-dependent perturbation. OD images (upper
row) and magnetization images (lower row) for various hold times,
taken with a 19-ms time of flight. A fast density wave and a slow
spin wave propagate radially from the center. A solitonic object with
a magnetized core is created together with the two sound waves,
moving slower than the spin wave.

it as a small dipole of half-quantum vortices (HQVs) with the
same core magnetization, which explains the bending shape
of the object and its linear motion [43]. HQVs are the defects
involving both mass and spin circulations, so their creation
reveals that there was nonlinear coupling between mass and
spin currents in the sound wave generation via the strong
spin-dependent perturbation. The dipole’s moving velocity of
≈ cs/2 suggests that the separation between the two HQVs is
≈2ξs, where ξs is the spin healing length, implying that their
magnetized cores are almost coalesced [8]. In the experiment,
the generation of the solitonic object was near deterministic,
and we reason that it must be due to the asymmetric shape of
the optical potential.

In conclusion, we have investigated sound propagation in
the symmetric binary superfluid and observed two distinct
sound modes in density and spin channels, respectively. The
ratio γ of the two sound velocities was precisely measured
from a timescale analysis without absolute density calibration.
An interesting extension of this work would be to investigate
the temperature dependence of γ and its evolution in the di-
mensional crossover to two and one dimension (Refs. [16,17],
respectively). In particular, in our highly oblate sample, the
density and spin healing lengths, ξn and ξs, respectively, give a
length hierarchy such that ξn < Rz < ξs. Thus, thermal effects
might have different dimensional characteristics for the den-
sity and spin channels, possibly resulting in a variation of γ .
We also expect that the spin-dependent potential of the near-
resonant laser beam can be extensively used to investigate
the dynamics of various topological objects in the spinor
superfluid, such as HQVs [8,43], skyrmions or merons [22],
and magnetic solitons [44].
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Technology Foundation (Project No. SSTF-BA1601-06) and
the National Research Foundation of Korea (Grant No. NRF-
2018-2018R1A2B3003373).
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