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Experimental entropic test of state-independent contextuality via single photons
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4Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore

5Department of Physics, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
6Department of Physics, Sharif University of Technology, Tehran, Iran

7School of Science, Nanjing University of Science and Technology, Nanjing 210094, China

(Received 13 December 2019; accepted 18 May 2020; published 1 June 2020)

Recently, an inequality satisfied by noncontextual hidden-variable models and violated by quantum mechanics
for all states of a four-level system has been derived based on an information-theoretic distance approach to
nonclassical correlations. In this Rapid Communication, we experimentally demonstrate the violation of this
inequality with single photons. Our experiment offers a method to study a distinction between quantum and
classical correlations from an information-theoretic perspective.
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Quantum theory [1–6] outperforms classical ones for cer-
tain communication [7] and computational tasks [8]. Clas-
sical and quantum information processing scenarios differ
on a fundamental level [9]. If one performs a test X with
outcomes {x}, the information content of the test’s statistics
can be quantified via Shannon entropy H (X ) = −∑

x P(X =
x) log2 P(X = x), regardless of whether the tested system was
classical or quantum. In order to detect nonclassicality in
such tests, one should understand what the typical classical
properties, revealed by Shannon entropies, are and how quan-
tum ones differ. It is known that quantum correlations are
stronger than classical ones, but when it comes to entropies of
quantum tests, the differences are much more sophisticated.
For example, nonclassical features of entropies coming from
quantum experiments can be amplified if one postprocesses
measured data, e.g., mixes nonclassical and classical proba-
bility distributions [10].

Contextuality is one of the major differences between
quantum and classical physics [3]: It states that measurement
results of some physical property may depend on how this
property is measured. Tests of contextuality focused mainly
on the probability distribution of measurement results. Re-
cently, the entropic tests of quantum contextuality were intro-
duced [11–13] and further investigated experimentally [14].
However, these tests are state dependent, i.e., a departure
from classical behavior can be detected only if the sys-
tem is prepared in some special state. This paradigm was
changed in Ref. [15] where the entropic approach to the
state-independent contextuality was proposed, allowing non-
classical features to be observed for any state of the system.
This is done with the help of a recently discovered multipar-
tite information-theoretic distance for binary measurements.
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This distance measure uses Shannon entropy and yields a
state-independent, multipartite noncontextual inequality that
resembles the correlation-based inequality [5,16–18]. In this
Rapid Communication, we demonstrate its violations with
single photons.

The advantage of using entropies instead of linear proba-
bilistic inequalities is the fundamental interpretation of what
violations mean. If you violate a linear Bell-like inequality
you conclude that there are no noncontextual hidden variables.
Violations of entropic inequalities also tell you that there are
no noncontextual hidden variables but they also indicate that
there is an information deficit between contextual theories and
noncontextual ones. One can tell from our experimental data
that contextual theories such as quantum mechanics contain
“negative” information. Of course at this stage of our research
we do not know what this negative information really means,
but this is the stepping stone towards an experimental data
analysis using classical algorithmic entropies that do not use
probability theory (Shannon entropies are upper bounds on
algorithmic entropies). Classical algorithmic entropy is one
of the most fundamental descriptions of information and any
test of quantumness that uses them is the most primitive test
there is.

Now we present an entropic version of the state-
independent contextuality proof commonly known as the
Peres-Mermin square [4,19,20]. It is derived for a four-level
system that can be represented as a composition of two qubits
that are in the same place, or even encoded on the same
system. Therefore, nonlocality is of no importance in this case
as it is not in a nonlocal Bell scenario. There are nine binary
±1 observables that can be measured on this system. Based
on the compatibility relations, we perform these different
measurements in the following triples,

{A, a, α}, {B, b, β}, {C, c, γ }, {A, B,C}, {a, b, c}, {α, β, γ },
(1)
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FIG. 1. Illustration of compatibility relations among the nine
binary-outcome observables. Compatible observables are connected
by links of the same color.

as shown in Fig. 1. The classical reasoning based on the non-
contextuality hypothesis implies that we have the distribution
∏6

i=1 qi = 1 for measured products

q1 = Aaα, q2 = Bbβ, q3 = Ccγ ,
(2)

q4 = ABC, q5 = abc, q6 = αβγ .

In quantum theory, we take

A = X ⊗ 1, a = 1 ⊗ X, α = X ⊗ X,

B = 1 ⊗ Y, b = Y ⊗ 1, β = Y ⊗ Y,

C = X ⊗ Y, c = Y ⊗ X, γ = Z ⊗ Z, (3)

where X , Y , and Z are Pauli operators. In quantum theory
∏6

i=1 qi = −1 as q1 = · · · = q5 = 1 and q6 = −1 for any
quantum state. On the other hand, in any noncontextual re-
alistic theory (NRT), i.e., a theory where the outcomes of A,
B, etc., are predetermined (realism) and do not depend on
the context in which they are measured (noncontextuality),
one has

∏6
i=1 qi = 1. This is because each such an outcome

appears exactly twice in two different products qi and q j .
Interestingly, in both NRT and quantum theory, we have
H (qi ) = 0, since the products are well defined. In NRT, we
have P(qi = 1) = 1 for i = 1, . . . , 6, whereas, in quantum
theory, we have P(qi = 1) = 1 for i = 1, . . . , 5 and P(q6 =
−1) = 1. The products qi are well defined in Eq. (2). Thus in
both cases the entropy H (qi ) = 0 is satisfied.

The entropic noncontextual inequality derived in Ref. [15]
reads

H (αβγ ) � H (Aaα) + H (Bbβ )

+H (ABC) + H (abc) + H (Ccγ ), (4)

where

H (XiXjXk ) = − P(xix jxk = −1) log2 P(xix jxk = −1)

− P(xix jxk = 1) log2 P(xix jxk = 1) (5)

is the Shannon entropy of the probability distribution associ-
ated with the measurements Xi, Xj , and Xk and the correspond-
ing outcomes xi, x j , and xk . The distributions of outcomes
in both quantum and NRT do not violate the inequality.
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FIG. 2. Devices for measuring six sets of nine observables to test
inequality (4).

However, equal mixing of the quantum and NRT distributions
maximally violates the inequality for any quantum states.

We now demonstrate the experimental test of the entropic
state-independent noncontextuality inequality. The purpose of
the experiment is to test different quantum states of a single-
particle system. In the experiment we use a single photon
that simulates two qubits encoded in different degrees of
freedom—polarization and propagation modes. The basis for
our two qubits is encoded as {|0〉 = |UH〉, |1〉 = |UV 〉, |2〉 =
|DH〉, |3〉 = |DV 〉}, where U (D) denotes the upper (lower)
spatial mode of a single photon and H (V ) denotes their
horizontal (vertical) polarizations. The photon pairs are gener-
ated in the spontaneous parametric down-conversion process,
where one of the photons is a trigger heralding an arrival of the
signal photon that we use to test the inequality. A polarization
beam splitter (PBS), a beam displacer (BD), and half-wave
plates (HWPs) are used to prepare the photonic four-level
system in 27 different quantum states ready for testing.

Sequential measurements of three compatible observables
on the same photon are shown in Fig. 2. Mi (i = 1, 2, 3)
describes the setup for measuring one of the nine observables.
After the preparation stage, the photons enter the device M1

through the input and yield one of the two possible outcomes.
Next, the photon enters devices M2, then M3, and finally it is
detected at one of the eight outputs.

The experimental setup is shown in Fig. 3. Observables
a = 1 ⊗ X and B = 1 ⊗ Y are simply rotations on the polar-
izations of photons keeping the spatial mode unchanged. Ob-
servables X and Y can be written as M = ∑

i=H,V mi|mi〉〈mi|,
where |mi〉 is an eigenstate of M and mi is the corre-
sponding eigenvalue. A polarization rotation is defined UM =
|H〉〈mH | + |V 〉〈mV | and is applied on the polarization of the
photons, which can be implemented by wave plates at certain
setting angles following by a polarizing beam splitter (PBS).
The overlap between the initial state and |mi〉 is equal to the
probability of the photons being measured in the basis state
|i〉 ∈ {|H〉, |V 〉}.

Measurements A = X ⊗ 1 and b = Y ⊗ 1 are performed
only on the spatial modes. First, we use beam displacers
(BDs) to split and then combine the photons with certain
polarizations into the same spatial mode, which amounts to a
basis transformation between spatial and polarization modes.
Polarization rotations are done via wave plates followed by
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FIG. 3. Experimental setup. The heralded single photons are created via type-I spontaneous parametric down-conversion in a β-barium-
borate (BBO) nonlinear crystal and are injected into the optical network (see figure for acronyms). The first polarizing beam splitter (PBS),
half-wave plates (HWPs), and beam displacer (BD) are used to generate the pure qudit states. To prepare mixed states [21,22], we use a quartz
crystal (QC) with a thickness (longer than coherence length of photons) placed in front of the first BD to reduce the coherence of the photons
in different spatial modes. After the first BD, the photons are separated into the upper and lower path depending on their polarizations. Then
a QC is inserted into each path and reduces the coherence of the photons with different polarizations. The coherence length of the photons
is Lc ≈ λ2/�λ, where λ is the central wavelength of the source and �λ is the spectral width of the source. Hence the thickness of the QC
should be at least 23.97 mm. In our experiment, it is about 28.77 mm. The measurements are realized by wave plates and BDs. The photons
are detected by APDs. The measurements A, C, b, c, α, β, and γ can be realized by the setup involving a PBS, four BDs, and several wave
plates, whereas the setups for realizing a and B can be simplified.

a PBS as mentioned above. The measurements of the other
observables α, β, C, c, and γ , which are the products of two
Pauli operators, are implemented by a polarization rotation, a
basis transformation between spatial and polarization modes,
and another polarization rotation followed by a projective
measurement in the {|H〉, |V 〉} basis.

We need to apply sequential measurements of three com-
patible observables on the same photon. Before the next
measurement is done, we need to bring back the eigenstates
of the previously measured observable. For six sets of mea-
surements shown in (1), each set has eight different outcome

distributions {1, 1, 1}, {1, 1,−1}, {1,−1, 1}, {1,−1,−1},
{−1, 1, 1}, {−1, 1,−1}, {−1,−1, 1} and {−1,−1,−1}. With
a proper choice of devices and the wave plates’ angles (please
find the angles in the Supplemental Material [23]), we can
implement six sets of measurements with eight different
outcomes. Finally, photons are detected by single-photon
avalanche photodiodes (APDs). We only register coincidences
between APD (D1) and the trigger APD (D0). For each out-
come distribution of each measurement, we recorded clicks
for 2 s, and registered about 20 000 single photons. The
probability for more than one photon pair is less than 10−4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 270.0

0.2

0.4

0.6

0.8

1.0

Sh
an
no
n
En
tro
py

Quantum State

FIG. 4. State-independent violation of the entropic inequality (4). The inequality is tested for 27 different quantum states. The left-hand
and right-hand sides of the inequality are shown in orange (short) and green (tall) bars, respectively.. Error bars indicate the statical uncertainty
which is obtained based on assuming Poissonian statistics.
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TABLE I. Experimental results of each term of the entropic inequality for 27 different states being tested. Here, SD is an abbreviation for
standard deviation. Error bars indicate the statistical uncertainty which is obtained based on assuming Poissonian statistics. The last column
shows the distance

∑9
i (pi − p′

i )
2, where pi is the measured probability of the observable measured in one context and p′

i is the measured
probability of the same observable measured in the other context.

State H (Aaα) H (Bbβ ) H (Ccγ ) H (ABC) H (abc) H (αβγ ) SD
∑9

i=1(pi − p′
i )

2

|�1〉 = |0〉 0.03441(243) 0.04503(267) 0.05584(290) 0.04615(271) 0.06022(298) 0.99988(1) 124 0.00023(15)
|�2〉 = |1〉 0.04155(259) 0.04921(277) 0.04537(269) 0.03879(253) 0.05758(292) 0.99993(1) 127 0.00058(24)
|�3〉 = |2〉 0.05467(287) 0.06471(304) 0.04739(272) 0.06575(307) 0.05731(292) 0.99991(1) 108 0.00043(19)
|�4〉 = |3〉 0.03834(253) 0.05590(291) 0.04805(272) 0.05295(285) 0.03568(244) 0.99990(1) 128 0.00035(18)
|�5〉 = (|0〉 + |1〉)/

√
2 0.05146(281) 0.06297(303) 0.05843(295) 0.04875(275) 0.05298(285) 0.99977(2) 113 0.00209(46)

|�6〉 = (|0〉 + |2〉)/
√

2 0.03811(252) 0.06311(305) 0.05173(282) 0.06159(299) 0.05473(286) 0.99974(3) 115 0.00230(48)
|�7〉 = (|0〉 + i|1〉)/

√
2 0.05566(286) 0.05792(289) 0.05925(297) 0.05766(295) 0.06177(300) 0.99983(2) 108 0.00447(66)

|�8〉 = (|0〉 + i|2〉)/
√

2 0.05871(292) 0.04536(260) 0.07411(314) 0.05590(295) 0.04792(276) 0.99970(3) 111 0.00161(39)
|�9〉 = (|1〉 + |3〉)/

√
2 0.05254(281) 0.05410(287) 0.06923(310) 0.03832(253) 0.05248(284) 0.99990(1) 116 0.00217(47)

|�10〉 = (|2〉 + |3〉)/
√

2 0.04617(271) 0.04837(276) 0.05828(293) 0.05866(294) 0.04302(263) 0.99984(2) 119 0.00346(59)
|�11〉 = (|1〉 + i|3〉)/

√
2 0.04520(267) 0.05823(298) 0.07497(318) 0.05412(288) 0.06347(301) 0.99976(2) 107 0.00349(59)

|�12〉 = (|2〉 + i|3〉)/
√

2 0.04606(271) 0.05062(286) 0.07166(316) 0.05692(296) 0.05170(282) 0.99985(2) 111 0.00451(66)
|�13〉 =
(|0〉 + |1〉 + |2〉 + |3〉)/2

0.05151(282) 0.05975(298) 0.05688(290) 0.03355(242) 0.03762(251) 0.99984(2) 124 0.00023(14)

|�14〉 =
(|0〉 + i|1〉 + i|2〉 − |3〉)/2

0.03465(241) 0.05502(283) 0.04541(271) 0.05303(281) 0.04487(269) 0.99969(3) 127 0.00111(29)

|�15〉 =
(|0〉 + |1〉 + i|2〉 + i|3〉)/2

0.02958(229) 0.05632(290) 0.08011(330) 0.06789(309) 0.06646(309) 0.99974(3) 106 0.00059(23)

|�16〉 =
(|0〉 + i|1〉 + |2〉 + i|3〉)/2

0.04131(256) 0.03732(249) 0.04559(270) 0.05769(297) 0.07529(322) 0.99973(3) 119 0.00159(35)

ρ17 = (|0〉〈0| + |1〉〈1|)/2 0.05109(280) 0.05873(295) 0.06309(302) 0.08482(331) 0.05938(294) 0.99983(2) 101 0.00205(45)
ρ18 = (|0〉〈0| + |2〉〈2|)/2 0.05583(289) 0.04845(274) 0.05832(294) 0.06057(298) 0.06926(311) 0.99981(2) 108 0.00138(37)
ρ19 = (|0〉〈0| + |3〉〈3|)/2 0.06085(298) 0.05591(289) 0.05506(290) 0.05101(281) 0.06898(312) 0.99982(2) 108 0.00035(19)
ρ20 = (|1〉〈1| + |2〉〈2|)/2 0.06748(311) 0.06960(312) 0.05140(281) 0.07073(315) 0.07581(322) 0.99987(2) 96 0.00041(20)
ρ21 = (|1〉〈1| + |3〉〈3|)/2 0.05623(291) 0.06646(308) 0.07303(317) 0.06852(310) 0.08076(329) 0.99978(2) 94 0.00145(38)
ρ22 = (|2〉〈2| + |3〉〈3|)/2 0.06200(302) 0.06095(297) 0.07231(315) 0.06083(299) 0.05911(295) 0.99985(2) 101 0.00203(45)
ρ23 =
(|0〉〈0| + |1〉〈1| + |2〉〈2|)/3

0.05917(295) 0.06265(301) 0.05262(283) 0.07067(313) 0.06372(301) 0.99984(2) 103 0.00108(33)

ρ24 =
(|0〉〈0| + |1〉〈1| + |3〉〈3|)/3

0.04312(263) 0.05509(288) 0.06152(298) 0.08014(329) 0.05773(292) 0.99979(2) 107 0.00112(33)

ρ25 =
(|0〉〈0| + |2〉〈2| + |3〉〈3|)/3

0.05330(285) 0.06296(300) 0.07202(316) 0.06612(307) 0.06202(301) 0.99976(3) 101 0.00082(29)

ρ26 =
(|1〉〈1| + |2〉〈2| + |3〉〈3|)/3

0.05467(287) 0.06193(301) 0.08139(329) 0.05878(296) 0.06957(314) 0.99981(2) 99 0.00069(26)

ρ27 = (|0〉〈0| + |1〉〈1| +
|2〉〈2| + |3〉〈3|)/4

0.07377(321) 0.06236(301) 0.07873(325) 0.07640(324) 0.07578(318) 0.99974(3) 89 0.00068(26)

and thus it can be neglected. The coincidence counts are used
to calculate the measured probabilities of eight outcomes of
the each set of measurements.

In principle, entropic inequalities only provide a necessary
but not sufficient criterion for noncontextuality [10]. However,
entropic inequalities turn also to be sufficient, since any
contextual probabilistic model will display entropic violations
if properly mixed with a classical model. To find such a
noncontextual and realistic distribution, we first define

α = Aa, β = Bb, C = AB, c = ab, γ = ABab.
(6)

Under this definition, we have the classical distribution satis-
fying q′

1 = · · · = q′
6 = 1 which is analogous to (2), but takes

into account the definition (6). With a similar experimental
setup, we can implement four sets of measurements {A, a},
{B, b}, {A, B}, and {a, b} and obtain the classical distribution.

By equally mixing the quantum and classical distributions,
one obtains a distribution q̃i = 1

2 (qi + q′
i ). Note that quantum

theory predicts

H (q̃1) = · · · = H (q̃5) = 0, H (q̃6) = 1, (7)

therefore for this mixed distribution the entropic inequality is
maximally violated (1 � 0).

The experimental results are shown in Fig. 4. We repeat
the experiment on 27 qudit states including 16 pure states
as a tomographically complete set of qudit states and 11
mixed states. The reason why we choose mixed states to
test the inequality is that experimentally it is not easy to
generate pure states with perfect purity. We test mixed states
to make a better case for the state-independent property. The
results in Table I show that a state-independent violation
of the entropic noncontextuality inequality (4) occurs by 89
standard deviations (at least). Due to the imperfections in the
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experiment there is a bit of difference between experimental
results and theoretical predictions. The differences between
the experimental data and theoretical predictions are caused
by the fluctuations of photon numbers, the accuracy of wave
plates, and the dephasing introduced via the misalignment of
BDs, two of which form a Mach-Zehnder interferometer. We
show the error analysis in the Supplemental Material [23]. On
the other hand, the derivation of entropy near probability 0
or 1 is infinite, which makes the entropy extremely sensitive
to the noise of probability when it should be 0 theoretically.
There is also a bit of difference between the score for different
states (pure states and mixed states). That is because com-
pared to pure states, the generation of desired mixed states
is a little complicated and the unideal fidelities of the states
influence the experimental results as well.

In our experiment photon loss opens up a detection effi-
ciency loophole. Thus, a fair-sampling assumption is taken
here which assumes that the event selected out by the pho-
tonic coincidence is an unbiased representation of the whole
sample [14,24–26].

The compatibility of measurements in contexts is an im-
portant issue in the experimental test of contextuality. We
calculate the distance

∑9
i=1(pi − p′

i )
2, where pi is the mea-

sured probability of the observable measured in one context
and p′

i is the measured probability of the same observable

measured in the other context. As shown in Table I (last
column), the distances for all the states being tested are
small enough (<0.005), which indicates (almost) perfectly
compatible measurements are realized in our experiment.

In summary, we experimentally demonstrate an entropic
test of state-independent contextuality on a single photonic
four-level system. We show that 27 different single photonic
states violate an entropic inequality which involves correla-
tions between results of sequential compatible measurements
by at least 89 standard deviations. Our results show that, even
for a single system, and independent of its state, there is a uni-
versal set of tests whose results do not admit a noncontextual
interpretation.

This work has been supported by the Natural Sci-
ence Foundation of China (Grants No. 11674056 and No.
U1930402) and the startup fund from Beijing Computa-
tional Science Research Centre. D.K. is supported by the
National Research Foundation, Prime Minister’s Office, Sin-
gapore and the Ministry of Education, Singapore under the
Research Centres of Excellence program. P.K. is supported
by the National Science Centre in Poland (NCN Project
No. 2016/23/G/ST2/04273). S.R. is supported by the re-
search grant system of Sharif University of Technology
(G960219).

[1] E. Specker, Dialectica 14, 239 (1960).
[2] J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).
[3] S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967).
[4] N. D. Mermin, Rev. Mod. Phys. 65, 803 (1993).
[5] A. Cabello, Phys. Rev. Lett. 101, 210401 (2008).
[6] P. Badziag, I. Bengtsson, A. Cabello, and I. Pitowsky, Phys.

Rev. Lett. 103, 050401 (2009).
[7] C. H. Bennett and G. Brassard, Theor. Comput. Sci. 560, 7

(2014).
[8] P. W. Shor, SIAM J. Comput. 26, 1484 (1997).
[9] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press, Cam-
bridge, UK, 2010).

[10] R. Chaves, Phys. Rev. A 87, 022102 (2013).
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[15] S. Raeisi, P. Kurzyński, and D. Kaszlikowski, Phys. Rev. Lett.

114, 200401 (2015).
[16] E. Amselem, M. Rådmark, M. Bourennane, and A. Cabello,

Phys. Rev. Lett. 103, 160405 (2009).

[17] G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O.
Gühne, A. Cabello, R. Blatt, and C. F. Roos, Nature (London)
460, 494 (2009).

[18] C. Zu, Y.-X. Wang, D.-L. Deng, X.-Y. Chang, K. Liu, P.-Y.
Hou, H.-X. Yang, and L.-M. Duan, Phys. Rev. Lett. 109, 150401
(2012).

[19] A. Peres, Phys. Lett. A 151, 107 (1990).
[20] N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990).
[21] K. Wang, G. C. Knee, X. Zhan, Z. Bian, J. Li, and P. Xue, Phys.

Rev. A 95, 032122 (2017).
[22] K. Wang, X. Wang, X. Zhan, Z. Bian, J. Li, B. C. Sanders, and

P. Xue, Phys. Rev. A 97, 042112 (2018).
[23] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.101.060101 for the details of the configura-
tions of the optical circuits for the measurements and the error
analysis.

[24] R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow,
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