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Integrated induced-coherence spectroscopy in a single nonlinear waveguide
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We present a generalized understanding of the induced-coherence (IC) effect, aiming to find new strategies for
engineering and optimizing the IC response of nonlinear systems. We establish that sensing the cross density of
states (CDOS) of the field lies at the core of IC and that it is the spatial profile of the nonlinearity that determines
how this CDOS information is sampled. Based on our findings, we identify integrated nonlinear waveguides as
a versatile and suitable platform for spectroscopy based on IC and show that our generalized treatment allows us
to optimize the sensing performance. Our results open the way for the design of compact IC-based spectroscopic
devices with customized responses.
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I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) enables
the generation of signal and idler photon pairs from pump
photons of shorter wavelength by a spontaneous nonlinear
process. In general, signal photons from two coherently
pumped sources do not show first-order interference, but this
interference can be induced when the idler photons emitted
from both sources are indistinguishable [1,2]. The interfer-
ence contrast observed for the signal photons is directly
linked to the indistinguishability of the idler photons, which
also depends on the properties of the medium between the
sources, through which the idler photons propagate. This
effect is called induced coherence (IC) and can be used in a
nonlinear interferometer [3] with two photon-pair sources to
measure the idler-frequency transmission of objects placed in
the idler path between the sources by detecting only the signal
photons, as shown schematically in Fig. 1(a). The frequencies
of signal (s) and idler (i) photons are anticorrelated, governed
by the energy conservation law ωp = ωi + ωs, with the pump
frequency ωp. Thus, through the measurement of the signal
spectral intensity alone, one can obtain spectral information
about the objects in the idler photon path. Spectroscopic
measurement techniques based on IC with strongly different
signal and idler wavelengths are therefore particularly inter-
esting to access technologically challenging spectral ranges
like infrared and terahertz with detection only in the visible
[4–12].

Most implementations of IC-based systems have used
bulk nonlinear crystals, where generation and spectroscopy
or imaging take place in sequence [3,13,14], similar to the
scheme shown in Fig. 1(a). Here, IC is understood and treated
in terms of changes to the photon operators associated with
the plane-wave eigenmodes of the system at every stage
[2,3,15,16], where the sensing process is separated from
the SPDC. Alternatively, IC taking place during SPDC in a
single continuous structure was used to sense the properties
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of the nonlinear system itself [5,10,11,17,18]. Here, IC is
understood as the effect of the nonlinear system on the phase-
matching condition, where the sensing happens during SPDC
and cannot be separated from it. In general, it is not clear how
a more complex and intertwined sequence of pair generation
and IC sensing can take place, especially in structures with
complex spatial distribution of linear and nonlinear suscepti-
bilities or where photon operators cannot be defined, e.g., for
intrinsically lossy or decaying modes [19].

Here, we develop a generalized understanding of IC that
can be applied to any nonlinear system generating photon
pairs, with the goal of finding new strategies in engineering
and optimizing its response. We first identify a description
of photon-pair generation capable of treating IC in arbitrary
systems. Based on this, we explain the fundamental role of
the cross density of states (CDOS) and the spatial profile
of the nonlinearity in shaping the IC response and suggest
nonlinear waveguides (WGs) as highly suitable platforms
for engineering the IC response of a system, especially for
spectroscopic applications. In WGs, the analyte to be sensed
and measured modifies the CDOS when it interacts with the
evanescent tails of the guided modes by introducing additional
losses and changing the mode propagation constants. This
in turn affects the IC response of the nonlinear WG. In
particular, a change in the CDOS at a long idler wavelength
influences the measured intensity at a short-wavelength signal
generated through SPDC in the nonlinear WG. This effect
was demonstrated in experimental results [17,18], for which,
however, no rigorous analytical description exists to date.
Using the generalized description of the IC effect, we will
show that IC in waveguides can be used to extract both the real
and imaginary parts of the wavelength-dependent refractive
index of the analytes, thus realizing IC spectroscopy. Fur-
thermore, we show that by engineering the nonlinearity of
the WG, the performance of a spectroscopic device can be
controlled and optimized. Using a well-designed and prop-
erly calibrated sensing system based on a nonlinear WG,
IC could therefore be used to recognize specific substances
based on their spectroscopic fingerprint and determine their
concentrations.
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FIG. 1. (a) Sketch of induced coherence (IC) with two sequential
photon-pair sources. (b) Schematic for the generalized description
of IC based on Eq. (1). (c) Scheme for IC spectroscopy in a
nonlinear waveguide. Pump, signal, and idler are denoted by p, s,
and i, respectively. Different colors denote different materials, where
striped regions indicate that several materials can be distributed
inhomogeneously.

II. GENERALIZED DESCRIPTION OF IC

We describe IC rigorously using the Green’s function
(GF) quantization method [20], which has already been used
to describe pair generation in nanostructured systems with
complex dispersion and absorption properties [21–23]. In an
IC experiment, the spectral or spatial dependence of the signal
photon counts Ws(ωs, rs, n̂) is measured, i.e., the detection
rate of single photons with frequency ωs at position rs and
polarized along the unit-vector direction n̂ = ∑

σ nσ σ̂ , with
σ = {x, y, z}. The idler photon is undetected, meaning that it
is either absorbed or remains in the field. Ws(ωs, rs, n̂) is [21]

Ws(ωs, rs, n̂) ∝
∑

nσ nσ ′

∫∫
dr dr′ �αη(r)�∗

α′η′ (r′)

× Im[Gηη′ (r, r′, ωi )]Gσα (rs, r, ωs)

× G∗
σ ′α′ (rs, r′, ωs), (1)

where the sum is over indices σ , σ ′, α, η, α′, and η′. Here,
�αη(r) = ∑

γ χ (2)
αηγ (r)Ep,γ (r, ωp) is the effective nonlinearity

and includes the spatial profile of the material nonlinearity
χ (2)

αηγ (r) and the complex-valued vectorial profile of the single-
frequency pump beam E p(r, ωp). With a single-frequency
pump, the idler frequency is fixed to ωi = ωp − ωs.

Based on this analytical description of the measured single-
photon counts, we now develop a general understanding of
the physics of IC. In Eq. (1), all the linear properties of the
system are taken into account in the classical GF for the signal
and idler frequencies. The information about the system at the
idler frequency is carried by Im[Gηη′ (r, r′, ωi )], describing the
CDOS ρ(r, r′, ωi ) between the two points r and r′[24] as

ρ(r, r′, ωi ) ∝ ωiIm[TrGηη′ (r, r′, ωi )], (2)

where Tr denotes the trace of the Green’s tensor. The CDOS
corresponds to the number of states connecting two points and
is a measure of the spatial coherence between them [24]. The
CDOS between each two points that can generate photon pairs
is the fundamental system property at the idler frequency that
is carried into the signal photon count rate through IC. The
two GFs at the signal frequency describe the propagation of

the signal radiation from r and r′ to the signal detector, as
schematically shown in Fig. 1(b). This happens for any pair
of points in the system that possesses a nonlinearity and is
taken into account by the volume integrals in Eq. (1), where
the effective nonlinearity �αη(r) determines how the CDOS
is sampled. Hence, by shaping the effective nonlinearity, we
can control how the system’s CDOS at the idler frequency is
imprinted on the signal photon properties.

We may better understand the phenomena of IC and its
connection to the CDOS by considering a simplified one-
dimensional system with coordinate z in which photon pairs
can be generated only in very thin sections at the two ends of
the system at positions z1 and z2, whereas the medium under
test is between these sources. In this case �(z, ωp) = �1δ(z −
z1) + �2δ(z − z2). This configuration resembles most IC ex-
periments [1–4,6]. The signal photon detection rate now be-
comes

Ws(ωs, zs) ∝ W1 + W2 + W3, (3)

where

W1/2 = Im[G(z1/2, z1/2, ωi )]|�1/2G(zs, z1/2, ωs)|2, (4)

W3 = 2 Im[G(z1, z2, ωi )]

× Re[�1�
∗
2G(zs, z1, ωs)G∗(zs, z2, ωs)]. (5)

W1 and W2 describe the individual responses of each of the
sources and include Im[G(z1/2, z1/2, ωi )], the idler local density
of states (LDOS) at each source. When all the waves are
forward propagating, the LDOS is not affected by the medium
between the sources, unless there is a reflection from the
medium back into the source. Hence, the first two terms do not
give any information about the medium between the sources.
On the other hand, W3 includes Im[Gi(z1, z2)], the CDOS
between the two sources at the idler frequency. W3 is affected
by the medium between the two sources, whose properties
contribute to the CDOS, and carries the information about it
into the signal photon spectrum.

The influence of CDOS and the effective nonlinearity on
IC can be used to engineer IC-based systems for optimized
responses and potentially new functionalities in platforms
that enable control over these parameters. Integrated WG
platforms are a suitable candidate for this task, specifically for
IC spectroscopy. They offer control over the CDOS through
nanostructuring, either enhancing [25–27] or suppressing
[22,28] pair generation. The effective nonlinearity in WGs can
be controlled through the phase-matching condition, which
can be tailored for shaping the biphoton state through periodic
nanostructuring [29,30] or periodic poling in χ (2) materials
[31,32]. Moreover, IC in integrated WG platforms has already
been demonstrated, either with two separated sources [33]
or with one source during the generation stage [17,18]. In-
tegrated WG platforms are already well established in linear
optical sensing and spectroscopy [34–39], where the analyte
is put in contact with the WG and the induced changes in its
modal properties are probed through excitation and detection
at the same wavelength. Hence, nonlinear WGs could be
highly suitable for IC spectroscopy, offering compactness,
controllability, stability, and cost-effectiveness. In the rest
of this paper, we analytically and numerically describe and
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investigate how IC spectroscopy can be performed in a single
nonlinear WG. We also use our general understanding of IC
to outline how a single WG can be engineered for an optimal
realization of IC spectroscopy.

III. IC SPECTROSCOPY IN A SINGLE NONLINEAR WG

Our proposed scheme for IC spectroscopy in a single
nonlinear WG is sketched in Fig. 1(c). Photon pairs are
generated in the nonlinear core of the WG, exciting the guided
signal and idler modes. Interaction with a potential analyte
happens simultaneously through the evanescent tails of these
modes, which can be designed so that only a long-wavelength
idler mode interacts with the analyte (see Appendix D).
Only the signal photons are detected. In the following, we
present a general description of IC spectroscopy in a single
nonlinear WG, regardless of its nonlinearity profile. We then
analytically and numerically investigate two specific cases of
nonlinearity profiles.

A. Analytical model

To describe IC in a single nonlinear WG, we use Eq. (1)
in a scalar form for a one-dimensional (1D) system, with
propagating modes along the z direction, which describes the
main physics in this case. The information about the polariza-
tion dependence and the transverse spatial profile of the WG
modes can be straightforwardly taken into account by using
the full three-dimensional vectorial formula. We assume a 1D
system with a z-invariant complex-valued dispersive refractive
index n(ω) and with a potentially varying nonlinearity profile
χ (2)(z) that extends only from z = 0 to z = L. The pump,
signal, and idler modes of the WG are characterized by their
complex-valued wave vectors βp, βs, and βi, respectively,
where β(ω) = β ′ + iβ ′′ = ωn(ω)

c . In a 1D system, the rate at
which signal photons are detected at the end of the WG is
given by [22]

Ws(ωs, ωp, L) ∝
∫ L

0
dz

∫ L

0
dz′�(z, ωp)�∗(z′, ωp)

× Im[G(z, z′, ωi )]G(L, z, ωs)G∗(L, z′, ωs),

(6)

with �(z, ωp) = χ (2)(z)Ep(z, ωp). Ep(z, ωp) denotes the com-
plex amplitude of the continuous-wave (cw) pump field at fre-
quency ωp. We take Ep(z, ωp) = exp(iβpz), where we assume
only a single pump mode is excited at the pump frequency. ωs

and ωi = ωp − ωs are the frequencies of the signal and idler
photons, respectively. The classical GF of the 1D system is
given by [20]

G(z, z′, ω) = iexp[iβ(ω)|z − z′|]/2β(ω), (7)

which fully describes the propagation of optical fields inside
the medium in the presence of dispersion and linear losses.
We insert this GF into Eq. (6) and after some straightforward
calculations (see Appendix A) find

Ws(ωs, ωp, L) ∝ exp(−2β ′′
s L)

8|βs|2|βi|2
∫ L

0
dz

∫ z

0
dz′

×χ (2)(z)χ (2)(z′)Re[T1(z, z′) + T2(z, z′)], (8)

with T1(z, z′) and T2(z, z′) given by

T1(z, z′) = βie
i(βp−βs−β∗

i )ze−i(βp−βs−βi )∗z′
, (9)

T2(z, z′) = β∗
i ei(βp−βs+βi )ze−i(βp−βs+β∗

i )∗z′
. (10)

Equation (8), along with Eqs. (9) and (10), describes the rate
of signal photon counts at the end of a single nonlinear WG.
By looking at the wave-vector mismatch terms in Eqs. (9)
and (10), it can be interpreted that T1 and T2 correspond to
two different phase-matching processes that can result in the
detection of a signal photon at the end of the structure. In both
these processes the signal photon propagates in the forward
z direction. However, in T1 the idler photon is copropagating
with the signal photon, while in T2 it is counterpropagating
with the signal photon in the backward direction. In general,
both these processes would contribute to the final signal inten-
sity detected at the end of the system, and their contributions
are systematically accounted for in Eq. (8). In practice, only
one of these phase-matching processes (usually the copropa-
gating one) has a dominant contribution. This is determined
by the spatial modulation of the nonlinearlity profile χ (2)(z).

The signal spectral intensity function in Eq. (8) can ac-
count for the dispersion and losses of the pump, signal,
and idler modes through their frequency-dependent complex-
valued propagation constants. Furthermore, it encapsulates
the spatial variation of the nonlinearity χ (2)(z) in a general
manner. Therefore, it can be used to analyze different variants
of nonlinear interferometers, which may contain engineered
χ (2)(z) profiles. Here, we look at two specific cases. In the
first design, the whole length of the WG is phase matched for
a single copropagating pair-generation process. In the second
design, we consider a case where two separated sections of the
WG are phase matched for the same copropagating process.

B. WG with a homogeneous nonlinear section

We first consider the case of a single nonlinear WG of
length L, phase matched for a single copropagating process.
The process is phase matched all along the WG, where
one way of achieving this is through periodically poling the
nonlinearity profile of the WG. We refer to this case as having
a homogeneous nonlinear section. We consider a case where
the signal and pump do not interact with the analyte; hence,
βp and βs are assumed to be real-valued quantities. The idler
mode is assumed to be influenced by interaction with the
external medium; hence, its propagation constant is complex
valued, βi = β ′

i + iβ ′′
i , where β ′′

i accounts for the loss. In
essence, we are considering a common WG source of photon
pairs, in which only the idler mode is interacting with a
potentially lossy analyte and we are detecting only the signal
photon counts at the output, as sketched in Fig. 1(c).

Implementing these assumptions in Eq. (8) and after some
simplifications (see Appendix B), we find the spectrum of the
signal single-photon counts has the following simple form:

Ws(ωs) ∝ 2Re[(1 + i�βL − ei�βL )/(�β )2], (11)

where �β = (βp − βs − β ′
i − K ) + iβ ′′

i is the complex phase
mismatch. Here, 2π/K is the period of periodic poling of
nonlinearity χ (2)(z), which is potentially needed to reach
phase matching. The proportionality factor in Eq. (11) is
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chosen such that for the case of a lossless idler mode, β ′′
i =

0, it produces the well-known sinc-shaped spectral function
sinc2(�βL/2)L2. Equation (11) shows that IC in a WG
system is mainly controlled by �β and is shaped by the
interference of photon pairs generated at different positions.
The CDOS at the idler frequency between different points of
generation depends on the complex wave vector of the idler
mode, and it is this information that is carried to the signal
photon spectra via �β. In the following, we show, using a
numerical example, how this configuration can be used to gain
information about the properties of the idler mode.

For our numerical implementation, we consider a high-
index-contrast ridge WG in lithium niobate [40] (see
Appendix D) with a length of L = 1 mm, where phase match-
ing is achieved by periodic poling, although modal phase
matching without poling is also a possibility in these struc-
tures [40]. We choose the poling period such that a cw pump
laser at λp ≈ 662 nm wavelength is phase matched to the
signal mode at λs ≈ 900 nm and the idler mode at λi ≈
2500 nm wavelength, where we want to probe the optical
properties. In our example these three optical modes are the
fundamental quasi-TM modes of the WG. In implementations
of IC spectroscopy using bulk optical components such as
nonlinear crystals, the pump is commonly fixed to a single-
frequency, and the angular and spectral distribution of the
signal photons is collected to gain information about the idler
[3]. In a 1D WG system, the angular degree of freedom does
not exist. However, the dispersion of the optical modes of the
WG, specifically at the pump and signal frequency, can be
utilized to gain a degree of freedom in WG-based realization
of IC spectroscopy. This is illustrated through the numerical
example we provide here, where we use the pump frequency
as an extra degree of freedom to show that IC in single WGs
can be used for spectroscopic measurements.

We assume a spectrally localized loss induced in the idler

mode by the analyte, described by β ′′
i = γi × e−[(λi−λ)/�λ]

2

,
with central wavelength λ = 2500 nm, width �λ = 15 nm,
and magnitude γi. Figure 2(a) shows the signal spectrum
Ws(ωs) for different pump wavelengths. Clearly, the spectrally
localized idler loss induces a dip in the signal intensity. In
Fig. 2(b), we plot the signal intensity for λp = 661.76 nm,
indicated by the red dashed line in Fig. 2(a). At this pump
wavelength, the center of the phase-matching curve coincides
with the center of the idler absorption line. The corresponding
signal spectrum is shown for three idler loss magnitudes,
γiL = 0, 2, 4 (blue, red, and green curves). Modification of
the signal spectral intensity due to the idler loss is evident, as it
shows a dip in its intensity. The central wavelength and width
of this dip correspond to the idler absorption line, through
which the loss spectrum can be derived from Eq. (11).

The proposed IC spectroscopy scheme in a single WG can
measure changes in β ′′

i and β ′
i , as both quantities influence

the CDOS. However, extracting both simultaneously for a
specific idler wavelength λ∗

i is not possible from the spectrum
shown in Fig. 2(b), as only a single point corresponds to that
specific idler wavelength, which cannot uniquely determine
two quantities. To enable this, a signal spectrum with a
pump wavelength constrained by λ−1

p = λ−1
s + (λ∗

i )−1 should
be obtained, which corresponds to a fixed λ∗

i . An example

FIG. 2. (a) Normalized signal spectral intensity Ws(ωs ) from
Eq. (11) for a single WG in the presence of an idler loss spectrally
localized around λi = 2500 nm as a function of different cw pump
wavelengths. (b) Signal intensity with a cw pump at λp = 661.76 nm
for different idler loss magnitudes. (c) Signal intensity for a fixed
idler wavelength λi = 2500 nm. For each λs, λp is varied to corre-
spond to the fixed λi. (d) Comparison of single-WG IC spectroscopy
(ICS) with linear absorption sensing or spectroscopy (LAS).

for λ∗
i = 2500 nm is indicated by the white dotted line in

Fig. 2(a). The signal spectrum along this line is displayed
in Fig. 2(c) for a lossless reference WG (�β ′′

i = �β ′
i = 0,

blue), a WG with loss (�β ′′
i L = 2,�β ′

i = 0, red), and a WG
with changed idler propagation constant (�β ′′

i = 0,�β ′
i L =

π , black). Clearly, the signal spectrum for the WG with idler
loss shows reduced fringe visibility; its maximum is reduced
together with the increase in its minima. This behavior is
similar to IC spectroscopy using bulk crystals [6] and can
be attributed to imperfect IC due to idler loss [2]. A change
in the real part of the propagation constant spectrally shifts
the interference pattern. In general, both �β ′

i and �β ′′
i for

a specific idler wavelength could be nonzero and can be
extracted from the signal spectra collected by varying the
pump wavelength.

In Fig. 2(d) we compare the normalized signal intensity
measured in IC spectroscopy at 900 nm with the transmitted
intensity at 2500 nm that would be measured in linear absorp-
tion spectroscopy for increasing loss. Whereas in linear spec-
troscopy the intensity decreases exponentially, the IC signal
has a slower decay. This indicates a larger sensitivity for linear
spectroscopy compared to IC spectroscopy. On the other hand,
the signal in linear spectroscopy becomes increasingly smaller
than the one in IC spectroscopy, leading to a more challenging
detection. Hence, IC spectroscopy in principle could offer a
larger dynamic range.

To investigate the length and loss-dependent properties
of IC spectroscopy in the limits of large and small idler
losses, we examine the signal intensity function in Eq. (11)
in more detail. Under the condition of exact phase matching
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Re(�β ) = 0, it can be expressed as

Ws(β
′′
i ) ∝ 2

{
exp(−β ′′

i L) + β ′′
i L − 1

(β ′′
i )2

}

=
[

1 − (β ′′
i L)

3
+ (β ′′

i L)2

12
+ · · ·

]
L2, (12)

where Ws is Taylor expanded in the normalized idler loss
β ′′

i L. It can be noted that Eq. (12) produces the quadratic
dependence of the signal intensity on the length, Ws(β ′′

i =
0) ∝ L2, for a lossless idler. Such a dependence originates
from the perfect induced coherence in the structure in this
case, which allows the coherent addition of signal photon
amplitudes produced in the elemental photon-pair sources
that constitute the extended source of length L. However, the
induced coherence is reduced when the idler mode experi-
ences loss, and the resulting signal intensity is affected. In
particular, for small losses Ws(β ′′

i ) ≈ [1 − (β ′′
i L)/3]Ws(β ′′

i =
0), which reveals that the decrease in signal intensity due
to small idler losses in the first order is simply proportional
to β ′′

i L/3, where we have neglected the higher-order terms
in the Taylor expansion. This characteristic dependence of
Ws(β ′′

i ) on the length of the WG explains why linear absorp-
tion spectroscopy is more sensitive than IC spectroscopy at
small losses. For linear spectroscopy, the transmitted intensity
would be given by I (β ′′

i ) = e−2β ′′
i LI (β ′′

i = 0), which for low
losses can be approximated as I (β ′′

i ) ≈ [1 − 2β ′′
i L]I (β ′′

i = 0).
Therefore, the decrease in intensity for linear spectroscopy
is faster than the decrease in the signal intensity for IC
spectroscopy in the regime of low idler losses. The origin
of the particular length dependence of Ws(β ′′

i ), namely, its
decrease being proportional to L/3, can be understood by
noting that the decrease in signal intensity arises from reduced
coherence due to the idler loss and not from the absorption
of the signal intensity itself. One would therefore expect the
length dependence of Ws(β ′′

i ) to reflect the dependence of
average coherence on the length of the WG. Since the WG
can be thought of as being composed of elemental photon-pair
sources of infinitesimal length, the extent of the reduction in
average coherence for the whole WG is determined by the
average separation between a pair of these elemental sources,
which is smaller than the total length of the WG; in particular
it is L/3 for a homogeneous waveguide. This explains the slow
decrease of signal intensity with idler loss compared to linear
spectroscopy as long as the losses are small. On the other
hand, in the limit of large losses (β ′′

i L � 1) it is easy to see
from Eq. (12) that Ws(β ′′

i ) ∝ 2L/β ′′
i . In this case the signal

intensity increases linearly with the length of the WG because
the signal amplitudes from individual elemental sources in the
WG add up incoherently as the induced coherence between
any pair of these elemental sources is negligibly small. At the
same time, if we compare the behavior of IC spectroscopy
with linear absorption spectroscopy at large losses, we find
that signal intensity for IC spectroscopy decreases inversely
with β ′′

i , while the intensity in linear spectroscopy decreases
exponentially. This explains why IC spectroscopy can work
better at large idler losses than linear absorption spectroscopy.
This is simply because linear spectroscopy is characterized
by an exponential decrease of the signal with increasing loss,
whereas in IC spectroscopy the signal intensity decreases

more slowly with increasing losses so its detection can be less
challenging.

C. WG with two separated nonlinear sections

After analyzing IC spectroscopy in a homogeneous non-
linear WG, in this section we show how the response can
be engineered through the spatial profile of the effective
nonlinearity, which can be changed by using an inhomoge-
neous poling profile. This does not change the CDOS but
changes how it is sampled along the WG. We consider a
structure where two sections of the WG of length l are
similarly poled to have �β ≈ 0 for a copropagating process
for the wavelengths of interest. Between these sections exists
a central section of length L − 2l , which is not poled and
hence not phase matched and therefore acts effectively as
a linear WG connecting two photon-pair sources of length
l . The analyte is distributed along the complete length of
the WG as in the homogeneous case discussed before. This
geometry resembles closely the common implementation of
nonlinear interferometers using two separated bulk sources
[3], except for the fact that the analyte is assumed to be
distributed homogeneously along the complete length of the
interferometer instead of being present only in the region
between the two sources. We find the signal intensity Ws(ωs)
analytically for this scenario (see Appendix C):

Ws(ωs) ∝ 2Re

[
2

{
1 + i�βl − ei�βl

(�β )2

}

+ ei�β(L−l )

{
2 − ei�βl − e−i�βl

(�β )2

}]
. (13)

The two terms contributing to the signal intensity in
Eq. (13) have different origins. While the first term can be
identified as the contribution originating from each nonlin-
ear section individually and hence is identical to the signal
intensity expression for a single source given by Eq. (11),
the second term reflects the interference between two-photon
amplitudes arising from different nonlinear sections.

Like for the homogeneous single-source design case, we
inspect the behavior of the signal intensity Ws by considering
Eq. (13) under the phase-matching condition Re(�β ) = 0.
Here, we assume a case where at phase matching the out-
puts from two sources interfere constructively to produce
the largest signal intensity. Taylor expanding Ws(β ′′

i ) around
β ′′

i = 0 results in Ws(β ′′
i ) ∝ [1 − β ′′

i (3L − 2l )/6 + · · · ](2l )2.
Therefore, for small idler loss β ′′

i L � 1, the decrease in
signal intensity is characterized by the length (3L − 2l )/6,
which is, like in the homogeneous single-source design case,
the average separation between two elemental photon-pair
sources constituting the interferometer. On the other hand, in
the limit of large idler loss the induced coherence becomes
negligible, and the resulting signal intensity simply becomes
Ws(β ′′

i ) ∝ 4l/β ′′
i . This linear dependence on the length l of

the nonlinear section reflects the incoherent nature of signal
intensity generation in the WG interferometer at large idler
loss.

We plot Ws for different pump wavelengths in Fig. 3(a)
for a geometry with total length L = 2.8 mm and sources of
length l = 0.5 mm. Now, the spectra show densely spaced
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FIG. 3. (a) Normalized signal intensity Ws(ωs) for a single WG
with two phase-matched sections separated by a non-phase-matched
one. (b) Signal intensity for a fixed idler wavelength of λ∗

i =2500 nm
for the lossless and lossy idlers.

fringes caused by the interference between the separated
source sections. Such fringes have been observed in the angu-
lar domain for separated bulk sources [6,7]. The interferences
within the two equal sources determine the fringe envelope,
similar to what occurs for homogeneous nonlinear WGs.
Again, losses at the longer idler wavelength modify the signal
interference pattern. A cut through Fig. 3(a) along the dotted
white line corresponding to a fixed idler wavelength of λ∗

i =
2500 nm is shown in Fig. 3(b) for a lossy case and the lossless
case. Addition of loss results in an increase of the minima
in the interference pattern and a reduction of the interference
visibility, as described in the original IC experiment [1].

Controlling the effective nonlinearity to influence how
the tested system properties manifest in the measured signal
enables optimization of the measurement device. Here, we
investigate the sensitivity of IC spectroscopy in WGs for
varying lengths of the linear section L − 2l , where L = 2l
results in the configuration with homogeneous nonlinearity.
We consider two measurement schemes. The sensitivity of
intensity measurements at a single wavelength in one of the
maxima is defined as S = 1

Ws (β ′′
i )

∂Ws
∂β ′′

i
. Alternatively, the loss

can be determined by measuring the visibility V = (W max
s −

W min
s )/(W max

s + W min
s ) using the adjacent peak (marked by

the blue square) and minimum (marked by the green circle)
signal intensities, as shown in Fig. 3(b). In contrast to intensity
measurements, the visibility measurement can reveal the ab-
solute value of loss at a single idler wavelength without prior
calibration as it is independent of the nonlinear conversion
efficiency. The sensitivity of such a measurement is defined
as Q = ∂V

∂β ′′
i
. The intensity and the visibility sensitivities for

a fixed idler loss of β ′′
i = 1 mm−1 depending on the lengths

of linear and nonlinear sections are shown in Figs. 4(a) and
4(c), respectively. The white region in Fig. 4(c) corresponds
to a parameter range where visibilities cannot be defined as
the spectral minima vanish.

Increasing the length of the nonlinear sections 2l always
increases the intensity sensitivity in Fig. 4(a), whereas the
visibility sensitivity in Fig. 4(c) decreases for L − 2l � β ′′

i
−1.

For a fixed length of the nonlinear sections 2l , there ex-
ists an optimal length of the linear section L − 2l between
the sources for maximizing the sensitivity, which for the S
measurement is zero if 2l � β ′′

i
−1. Here, the configuration

with homogeneous nonlinearity becomes optimal. For fixed
total length of the structure, an optimum combination of the

FIG. 4. Sensitivity of IC spectroscopy using WG configurations
with varying lengths of the linear section L − 2l and the nonlinear
sections 2l in the presence of fixed idler loss β ′′

i = 1 mm−1. (a) The
intensity sensitivity S and (b) a cut through it for a constant total
length L = 1.5 mm. (c) and (d) Similar data for the visibility sensi-
tivity Q.

linear and nonlinear sections that maximizes the sensitivity
exists for both measurements. This can be seen in Figs. 4(b)
and 4(d), where S and Q are plotted for a constant total
structure length of L = 1.5 mm as a function of the total
length of the nonlinear sections, 2l . Hence, the type of mea-
surement has a defining effect on the optimal configuration.
Nonetheless, the theoretical formulation combined with our
presented analysis provides a systematic way to identify the
optimum configuration for IC spectroscopy in WGs.

Our discussion of the visibility of the signal interference
and its dependence on the idler loss up to now assumed that
the loss in the pump and signal modes is zero. However,
in practical realizations of IC spectroscopy, finite losses will
always be present at these spectral components due to either
waveguide imperfections, absorption in the waveguide mate-
rial, or absorption due to weak interaction with the analyte.
We analyzed the sensitivity of the effects discussed before
(see the detailed discussion in Appendix E) and found that for
moderate signal or pump losses the visibilities will not notably
change. Interestingly, if signal and pump losses are equal, the
interference visibility will always remain the same, regardless
of their magnitude. A similar loss-matching condition has
been discussed in the context of biphoton spectral correlations
in SPDC [41,42].

IV. CONCLUSION

In this work, we presented a generalized analysis of the
IC effect, demonstrating the fundamental role of the CDOS
and nonlinearity profile in controlling IC. From this under-
standing, we proposed the use of integrated nonlinear WGs as
suitable platforms for performing IC spectroscopy. Through
analytical formulations and numerical investigations of a re-
alistic WG system, we showed how IC spectroscopy can be
performed and also engineered for an optimized response. Our
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work establishes the potential of nonlinear WGs as compact
and controllable platforms for performing IC spectroscopy,
especially for the infrared range. Our analysis also opens the
way for the design of more complex IC-based systems, e.g.,
by using periodically nanostructured WGs, which provide
an even stronger control over the density of states and the
phase-matching condition compared to ridge WGs.
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APPENDIX A: STEPS IN DERIVING EQUATION (8) FOR
SIGNAL PHOTON DETECTION RATE IN A 1D WG

Here, we show how the result in Eq. (8) is derived starting
from Eq. (6). By looking at the structure of the GF in Eq. (7),
it can be easily verified that the integrand I (z, z′) in Eq. (6)
satisfies I (z, z′) = I∗(z′, z). We can use this fact to let go of
the absolute value expression in the GF formula to allow for a
simpler integration of the expression. We have

Ws ∝
∫ L

0
dz

∫ z

0
dz′I (z, z′) +

∫ L

0
dz

∫ L

z
dz′I (z, z′)

=
∫ L

0
dz

∫ z

0
dz′I (z, z′) +

∫ L

0
dz′

∫ L

z′
dzI (z′, z)

=
∫ L

0
dz

∫ z

0
dz′I (z, z′) +

∫ L

0
dz′

∫ L

z′
dzI∗(z, z′).

The two integrals in the last equation have equivalent integra-
tion ranges. Consequently, we can restrict the range of integra-
tion such that L � z � z′ � 0 and Ws = ∫ L

0 dz
∫ z

0 dz′I (z, z′) +
c.c. = 2Re[

∫ L
0 dz

∫ z
0 dz′I (z, z′)]. In this integration range, we

can put |z − z′| = z − z′, |L − z′| = L − z′, and |L − z| = L −
z in the GF expressions appearing in Eq. (6). Using this and
inserting the expressions for the GFs and the pump field into
Eq. (6), we find the following expression:

Ws(ωs, ωp, L)

∝ exp(−2β ′′
s L)

8|βs|2|βi|2 Re

[ ∫ L

0
dz

∫ z

0
dz′

×χ (2)(z)χ (2)(z′)exp{i(βp − βs)z}exp{−i(βp − βs)∗z′}

× [
β∗

i exp{iβi(z − z′)} + βiexp{−iβ∗
i (z − z′)}]

]
. (A1)

Rearranging the terms in this equation bring us to Eq. (8).

APPENDIX B: STEPS IN DERIVING EQUATION (11) FOR A
WG WITH A HOMOGENEOUS NONLINEAR SECTION

Here, we show how Eq. (11) is derived from the more gen-
eral Eq. (8) for the special case of a WG with a homogeneous

nonlinear section. For this, we assume the following spatial
profile of the nonlinearity:

χ (2)(z) = sin (Kz)rect

(
z − L

2

L

)

= [exp{iKz} − exp{−iKz}]
2i

rect

(
z − L

2

L

)
. (B1)

This is a periodic profile of period 2π/K , which is restricted
only to the range between zero and L by the rectangular func-
tion. Such a χ (2)(z) profile is realized in practice through peri-
odic poling of the nonlinear media where periodic modulation
of homogeneous χ (2) produces several Fourier components.
Out of these, a single Fourier component, here denoted by
the wave vector K , is usually employed to achieve quasiphase
matching for the down-conversion process. We assume that
this Fourier component results in satisfying the copropa-
gating phase-matching condition; hence, we keep only the
contribution from the term T1(z, z′) in Eq. (8). Furthermore,
the propagation constants |βs| and |βi| usually do not vary
drastically over the bandwidth of the down-conversion. So the
spectral variations in the amplitude of the factor 1

|βs|2|βi|2 can
be neglected. Finally, it is reasonable to assume that β ′

i � β ′′
i

and hence the approximation βi

|βi| ≈ 1 can be made, so that the
spectral variations of βi appearing as a factor in the amplitude
of T1 can be neglected. It should be noted that if we are in a
highly dispersive regime of material properties that strongly
varies these propagation constants, these approximations are
not valid, and the more general formula in Eq. (8) must be
used. Using the above approximation in Eq. (8), we arrive at

Ws(ωs, ωp, L) ∝ 8e−2β ′′
s L Re

[ ∫ L

0
dz

∫ z

0
dz′χ (2)(z)

×χ (2)(z′)ei(βp−βs−β∗
i )ze−i(βp−βs−βi )∗z′

]
. (B2)

We have included the factor of 8 here so that the final result for
a lossless and phase-matched structure of length L becomes
L2, as will be seen in the following.

Inserting the nonlinearity profile of Eq. (B1) into Eq. (B2)
leads to four terms which correspond to the four expo-
nential terms in the product χ (2)(z)χ∗(2)(z′) = 1

4 [exp(iKz) −
exp(−iKz)][exp(−iKz′) − exp(iKz′)], where 0 � z, z′ � L.

We keep only a single term out of these four which corre-
sponds to phase-matched SPDC. Effectively, we substitute
χ (2)(z)χ∗(2)(z′) by 1

4 exp(−iKz)exp(iKz′) in Eq. (B2), and this
leads to

Ws(ωs, ωp, L)

2e−2β ′′
s L

∝ Re

[ ∫ L

0
dz

∫ z

0
dz′eipze−iqz′

]

= Re

[
1

q

{(
ei(p−q)L − 1

p − q

)
−

(
eipL − 1

p

)}]
,

(B3)

with p and q defined as p = βp − βs − β∗
i − K and q = β∗

p −
β∗

s − β∗
i − K . Considering lossless pump and signal modes,

β ′′
p = β ′′

s = 0, and a lossy idler mode, we have p = q = �β =
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(βp − βs − β ′
i − K ) + iβ ′′

i . In this case exp{i(p−q)L}−1
p−q → iL,

and we get Eq. (11) as the result.

APPENDIX C: STEPS IN DERIVING EQUATION (13) FOR A
WG WITH TWO SEPARATED NONLINEAR SECTIONS

Here, we show how Eq. (13) is derived from the more gen-
eral Eq. (8) for the special case of a WG with two separated
nonlinear sections. We consider a structure consisting of two
nonlinear sections, each of length l , in which the structure is
periodically poled and hence phase matched. We consider a
case where both nonlinear sections are poled similarly and
phase matched for the same copropagating process. The whole
WG has the length L, and there is an unpoled section of
length L − 2l between the two poled sections. Since the phase

matching is not satisfied in this region, we take it to be
effectively linear. The effective χ (2)(z) for such a system can
be modeled as

χ (2)(z) = sin (Kz)rect

[(
z − l

2

)/
l

]

+ sin {K[z − (L − l )]}rect

{[
z −

(
L − l

2

)]/
l

}
.

(C1)

The signal spectral function for this case can be calculated
in a manner analogous to the homogeneous nonlinear sec-
tion case by inserting the χ (2)(z) profile from Eq. (C1) into
Eq. (8) and keeping only the terms dominant through the
phase-matching condition. Such a calculation gives Ws ∝
8exp(−2β ′′

s L)Re[F1 + F2 + F3], where

F1 =
∫ l

0
dz

∫ z

0
dz′ sin (Kz) sin (Kz′)ei(βp−βs−β∗

i )ze−i(βp−βs−βi )∗z′ ≈ 1

4

∫ l

0
dz

∫ z

0
dz′eipze−iqz′

,

F2 =
∫ L

L−l
dz

∫ l

0
dz′ sin {K[z − (L − l )]} sin (Kz′)ei(βp−βs−β∗

i )ze−i(βp−βs−βi )∗z′

≈ 1

4
ei(βp−βs−β∗

i )(L−l )
∫ l

0
dz

∫ l

0
dz′eipze−iqz′

,

F3 =
∫ L

L−l
dz

∫ z

L−l
dz′ sin {K[z − (L − l )]} sin {K[z′ − (L − l )]}ei(βp−βs−β∗

i )ze−i(βp−βs−βi )∗z′

≈ 1

4
e−2(β ′′

p−β ′′
s )(L−l )

∫ l

0
dz

∫ z

0
dz′eipze−iqz′

, (C2)

with p and q defined as before. We note that contributions F1

and F3 to the total signal intensity are similar to the intensity
expression given in Eq. (B3). They originate from the first and
second nonlinear sections, respectively, and can be thought
of as coming from the interference of signal amplitudes from
within these two sources separately. The sum of these terms
therefore represents the incoherent addition of signal intensity
from these sources. The remaining term, F2, results from the
interference of signal amplitude produced in the first source
with that from the second source. If the pump and signal
modes are lossless, F1 = F3, and thus, Ws ∝ 8Re[2F1 + F2].
Explicitly,

Ws(ωs, ωp, L) ∝ 2Re

[
2

{
1 + i�βl − ei�βl

(�β )2

}

+ ei(�β+K )(L−l )

{
2 − ei�βl − e−i�βl

(�β )2

}]
,

(C3)

with wave-vector mismatch �β defined as before. We can
use the expression in Eq. (C3) and calculate signal intensity
in the limit of vanishing wave-vector mismatch, �β = 0, to
be Ws ∝ 2l2[1 + cos {K (L − l )}]. This clearly illustrates the
interferometric nature of the two-source design. Depending
on the value of the phase K (L − l ), the signal amplitude
from the first source interferes constructively or destructively

with the signal amplitude generated in the second source.
We restrict the choice of lengths in our designs such that
K (L − l ) = m2π , with m ∈ N. This ensures that interference
is constructive when wave-vector mismatch is zero and results
in the maximum of the interference fringes coinciding with the
maximum of the phase-matching spectrum, as can be seen in
Fig. 3(b). It is for this reason that K does not appear explicitly
in the signal intensity expression in Eq. (13).

A case of particular interest is when the nonlinear length
l is small enough that the approximation |�βl| � π is valid
while �βL is non-negligible. This would be applicable for
interferometers employing broadband sources of photon pairs.
Under this condition,

Ws ∝ 2l2{1 + exp(−β ′′
i L) cos (Re[�β]L)}. (C4)

Essentially, in arriving at Eq. (C4) we have assumed that the
losses in the two nonlinear sources that generate the photon
pair are negligible and thus the signal intensity generated by
any one of them alone is proportional to l2. However, the
linear medium separating the two sources has losses, and thus,
the interference of signal amplitudes generated by these two
sources can get washed out. We note that Eq. (C4) describes
nonlinear interferometers where the losses are present exclu-
sively in the linear region between the sources, with sources
themselves being lossless.
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FIG. 5. Waveguide design for investigating proposed induced-coherence spectroscopy. (a) Design for ridge waveguide in a z-cut LiNbO3

on an insulator sample. Considered (b) pump, (c) signal, and (d) idler fundamental quasi-TM modes of the waveguide.

APPENDIX D: WAVEGUIDE DESIGN FOR INDUCED
COHERENCE SPECTROSCOPY

We propose to use a high-index contrast ridge waveguide
in lithium niobate (LiNbO3) to implement the concept of
infrared spectroscopy based on induced coherence in down-
conversion in the nonlinear waveguide. The waveguide design
that we consider to demonstrate this is shown in Fig. 5(a). It
is similar to the waveguides demonstrated recently in LiNbO3

on an insulator platform [40,43,44]. Here, we assume a z-cut
LiNbO3 sample such that the c axis of the crystal lies along
the y axis shown in the figure. Such a configuration can allow
making use of the largest second-order susceptibility element,
d33, of LiNbO3 by making use of the quasi-TM modes of
the waveguide. We calculate the effective index of the fun-
damental TM modes for this structure using COMSOL MULTI-
PHYSICS (shown in Fig. 6). In the plot we have marked the
wavelengths and corresponding effective indices for the pump
(p), signal (s), and idler (i) modes considered for performing
the calculations in this work. The corresponding mode profiles
are shown in Figs. 5(b), 5(c) and 5(d), respectively. It can be
noted that the pump and signal modes are confined within the
waveguide due to their smaller wavelengths compared to the
dimensions of the waveguide. On the other hand, the longer
wavelength idler mode can be noted to have a long evanescent
tail that appreciably extends outside the waveguide into the
air above it. This feature can be controlled by appropriately
designing the waveguide so that the idler mode can be used to
sense the medium above the waveguide, as proposed here. We
mention that to realize quasiphase-matched down-conversion

FIG. 6. Effective index neff of the fundamental quasi-TM mode
of the waveguide shown in Fig. 5(a) as a function of wavelength.

in the waveguide using fundamental TM-like modes, the
waveguide needs to be periodically poled with a period of
4.61 μm. Such periodically poled waveguide structures with
comparable poling periods were recently demonstrated in
ridge LiNbO3 waveguides [44].

APPENDIX E: EFFECT OF PUMP AND SIGNAL LOSSES
ON INDUCED COHERENCE SPECTROSCOPY

OF THE IDLER

So far, we have restricted ourselves to the discussion of
induced coherence under lossless pump and signal modes.
Although we showed in Appendix D how a judicious design of
the waveguides for implementing integrated IC spectroscopy
can minimize the interaction of the pump and signal modes
with the analytes surrounding these waveguides, it is never-
theless important to consider the effects of pump and signal
losses because, in practice, the waveguides could exhibit some
inherent losses due to fabrication imperfections or residual
interaction with the analyte substance.

The general signal intensity expression given by Eq. (C2)
can account for the pump and signal losses in addition to the
idler loss. Using this expression, we display the behavior of
signal intensity for different pump and signal loss values in
Fig. 7. In the different cases discussed here the magnitude of
idler loss is kept fixed at the value β ′′

i L = 2.0, which is the
same as the idler loss value used in Fig. 3(b) for the lossy
idler case. Therefore, the signal intensity fringes shown by
the red solid curves in Figs. 7(a) and 7(b) are essentially the
same fringe that we included in Fig. 3(b) in the main text for
lossless signal and pump modes. They serve as the reference
for the discussion presented here. Signal fringes shown by
the green dash-dotted and blue dotted curves in Fig. 7(a)
are calculated assuming lossy signal with loss magnitudes
β ′′

s L = 0.5 and β ′′
s L = 2.0, respectively. The pump is assumed

to be lossless in both these cases. The black dashed fringe
in the plot results when both the pump and signal become
lossy (β ′′

pL = β ′′
s L = 1.0). Clearly, the overall signal intensity

decreases when signal and pump modes become increasingly
lossy. However, it is interesting to note the behavior of signal
fringe visibility in these cases. To make this explicit we
display the signal intensity spectrum corresponding to lossy
signal and pump modes in Fig. 7(b) after rescaling them
such that their peak intensity values become equal to that
of the lossless (signal and pump) case. Remarkably, we find
that the visibility of signal fringes does not suffer much as
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FIG. 7. (a) Signal intensity fringes in the presence of pump and signal losses. These losses are taken as constant over the whole signal
spectrum; that is, their dispersive nature is ignored here. Idler loss is taken to be β ′′

i L = 2.0 for all four cases shown. (b) Rescaled versions of
the signal fringes shown in (a) reflect that the visibility of the fringes does not decrease substantially for moderate pump and signal losses.

long as pump and signal losses remain moderate [see the
green dash-dotted spectrum in Fig. 7(b) for an example]. The
fringe visibility does reduce substantially, as indicated by the
blue dotted curve when the signal or pump losses become
large. A case of particular interest arises when the pump
and signal losses become equal, β ′′

pL = β ′′
s L. This situation

is depicted by the black dashed spectrum in Fig. 7(b). Here,
even though the overall signal intensity is low, the interference
visibility in the signal spectrum is the same as that in the
case of a lossless pump and signal (red solid curve). This
characteristic behavior of the signal fringe visibility can be
attributed to the fact that when β ′′

p = β ′′
s , absorption of pump

photons (or generated signal photons) along the waveguide
does not add any additional distinguishing information about
the position of photon pair creation within the waveguide. As
a consequence, balanced pump and signal losses leave the
visibility of the signal intensity fringes unaffected, and it is
determined only by the idler loss. Mathematically, this effect
can be understood by examining the complex phase mismatch

parameters p = βp − βs − β∗
i − K and q = β∗

p − β∗
s − β∗

i −
K used in the signal intensity expression in Eq. (C2). We
can clearly see that pump and signal complex propagation
constants counter each other in p and q both.

In summary, signal and pump losses can limit the lengths
of the waveguides for IC spectroscopy because the absolute
signal intensity decreases due to these losses. However, the
induced coherence and therefore the resulting fringe visibility
do not diminish dramatically for moderate pump and sig-
nal losses. Furthermore, we discover a loss-matching con-
dition for pump and signal modes, β ′′

p = β ′′
s , under which

the visibility of the signal photon spectral fringe is exclu-
sively controlled by the idler loss. We note that the au-
thors of [41,42] reported a similar loss-matching condition,
β ′′

p = β ′′
s + β ′′

i , in pair generation through SPDC but for
the biphoton spectral correlations. The loss-matching condi-
tion we find here results in signal photon spectral intensity
fringes whose visibility is unaffected by signal and pump
losses.
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