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The realization of advanced materials with strong, low-loss, and pure magnetic responses to radiation fields
both in linear and nonlinear regimes is an important and long-standing goal for fundamental physics and
practical applications. Here, we propose a physical scheme for obtaining such responses by using a metamaterial
constructed by an array of unit cells consisting of two coupled varactor-loaded split-ring resonators working
under the condition of plasmon-induced transparency (PIT). We show that the PIT in such metamaterial not only
significantly suppresses radiation absorption but also greatly enhances magnetic Kerr nonlinearity, which may
be many orders of magnitude larger than that obtained by conventional magnetic materials reported up to now.
Based on such a nonlinear metamaterial, we further show that stable magnetic solitons with ultraslow propagation
velocity and very low generation power can be created. Our research opens a route for designing novel
metamaterial devices with strong, low-loss, pure, and actively tunable magnetic responses and for obtaining
stable and low-power nonlinear magnetic pulses, which are promising for applications in information processing
and transmission.
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I. INTRODUCTION

In recent years, much attention has been paid to research
on metamaterials, which are artificial electromagnetic media
structured on subwavelength scales. Metamaterial research
has now become a paradigm for designing a new generation
of metadevices that may control the propagation properties of
electromagnetic waves with many desired, exotic properties
and unprecedented functionalities [1–6].

It is well known that conventional atoms and molecules
are rather restrictive for building effective magnetic materials,
which is particularly true at or above gigahertz frequencies.
The major reason for this is that the magnetic component
of electromagnetic radiation in this frequency region couples
to atoms or molecules much more weakly than the electric
component [3,7]. Thus it is a big challenge to acquire large
magnetic responses in microwave frequencies and higher. In
a pioneering work, Pendry et al. [8] suggested that a large
magnetic response may be achieved by using a metamaterial
consisting of an array of artificially fabricated photonic atoms
(meta-atoms), e.g., split ring resonators (SRRs).

It is a dream for scientists and engineers to obtain non-
linear materials that can outperform naturally available ones.
Pendry et al. [8] suggested that a metamaterial with enhanced
nonlinearity could be realized by doping nonlinear elements
at positions of meta-atoms where the radiation field is strong.
Based on such an idea, many authors have presented dif-
ferent schemes to enhance metamaterial nonlinearity by the
insertion of nonlinear elements, or by the use of nonlinear
host materials, etc. Related nonlinear phenomena, including
nonlinear self-action, frequency conversion and parametric

amplification, surface effects, nonlinear guided waves, and
solitons, have been explored. For details, see Refs. [6,9], the
review articles [10–12], as well as references cited therein.

Among various efforts, great interest has particularly fo-
cused on the investigation of nonlinear metamaterial con-
structed by an array of magnetic meta-atoms, i.e., varactor-
loaded split-ring resonators (VLSRRs) in which each meta-
atom consists of a SRR with packaged varactors embedded
in its capacitive gaps [13–21]. The main reason to do this
is that the meta-atoms in such metamaterial have a dominant
magnetic response, and the magnetic nonlinearity contributed
by the varactors can be manipulated actively. However, all
reported works on the linear and nonlinear magnetic responses
based on such metamaterials are confronted with some serious
problems, including large radiation loss and high input power
for radiation propagation over a long distance, etc.

In this work, we propose a scheme to realize strong, low-
loss, and pure magnetic responses in both linear and nonlinear
regimes by using a metamaterial constructed by an array
of magnetic meta-atoms consisting of two coupled VLSRRs
working under the condition of plasmon-induced transparency
(PIT). PIT [22–31] is an interesting classical analog of electro-
magnetically induced transparency (EIT) occurring typically
in there-level atomic systems [32–36]. We demonstrate that
the PIT in such metamaterials not only significantly suppress
radiation absorption but also greatly enhance the magnetic
Kerr nonlinearity of the system, which can be more than
ten orders of magnitude greater than those obtained by con-
ventional magnetic materials [6,9]. As a result, the problems
of large radiation loss and high input power for radiation
propagation in metamaterials can be satisfactorily avoided.
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Based on the giant magnetic Kerr nonlinearity obtained
in such metamaterials, we further demonstrate that nonlin-
ear magnetic pulses, i.e., magnetic solitons, with ultraslow
propagation velocity and very low generation power, can be
created and propagate stably in the system. Our research has
major significance because the results obtained can be used for
designing novel metamaterial devices with strongly nonlin-
ear, low-loss, pure, and actively tunable magnetic responses,
and for generating stable and low-power nonlinear magnetic
pulses, which are not only interesting for the exploration of
fundamental physics of metamaterials but also promising for
applications in information processing and transmission.

The remainder of the article is arranged as follows: In
Sec. II, we describe the physical model. In Sec. III, we
present the numerical and analytical results on linear magnetic
excitations, derive the nonlinear envelope equation for non-
linear magnetic pulses, and discuss the giant magnetic Kerr
nonlinearity of the system. In Sec. IV, we study the ultraslow
and low-power magnetic solitons and discuss their stability.
The last section (i.e., Sec. V) gives a summary of the main
results obtained in this work.

II. MODEL

The metamaterial structure proposed here is a periodic
array of unit cells (magnetic meta-atoms) consisting of two
SRRs (i.e., SRR1 and SRR2) with (nonlinear) varactors in-
serted into their slits (capacitive gaps) [see Fig. 1(a)]. The
geometry of each SRR is assumed to be l × l = 8 × 8 mm2;
aluminum strips with thickness w = 0.5 mm that form the
SRR-pair pattern can be etched, for example, on a Si-on-
sapphire wafer comprised of a 1-mm-thick undoped Si film
and a 2.1-mm-thick sapphire substrate. To realize a nonlin-
ear magnetic response, a varactor is assumed to be inserted
in each capacitive gap of the SRR1 and SRR2 with size
h = 0.2 mm. A schematic of the metamaterial structure is
illustrated in Fig. 1(c).

For convenience, we assume the incident (microwave)
radiation field is along z direction, with the electric field
E (magnetic field H) along x (y) direction. For obtaining a
dominant magnetic response, H is chosen to be parallel to
the normal direction of the SRR1 (functioning as a mag-
netic dipole), i.e., along the y direction [see Fig. 1(a)]. In
this situation, the incident radiation field couples with SRR1
directly and stimulates a localized surface-plasmon resonance,
and hence the SRR1 manifests as a bright magnetic oscillator
to the radiation field [15]. However, because of the normal
direction perpendicular to H, SRR2 does not manifest as
a bright magnetic oscillator but instead as a dark magnetic
oscillator; it can only have an indirect weak coupling to the
radiation field through the coupling with SRR1 [24].

According to the need for a practical design, one can vary
the spatial dimensions of the SRR1 and SRR2 to tune their
resonance frequencies. Here we assume that the resonance
frequency of the dark oscillator SRR2 coincides nearly with
that of the bright oscillator SRR1. When the varactors are
inserted in capacitive gaps of the SRR1 and SRR2, each
meta-atom (i.e., the VLSRR) can still be well modeled as
an RLC circuit model with external excitation, as sketched
in Fig. 1(b), where two RLC circuits [i.e., the left circuit

FIG. 1. (a) Metamaterial element (magnetic meta-atom) de-
signed to obtain large magnetic responses, where two varactor-
loaded SRR1 and SRR2 are arranged to be perpendicular to each
other. Propagation direction of the incident radiation is chosen to
make the SRR1 (SRR2) perform as a bright (dark) magnetic oscil-
lator. Dimensions of the two SRRs are l = 8 mm, w = 0.5 mm,
and h = 0.2 mm. (b) RLC-circuit analog of the meta-atom, with the
left circuit RLC1 (right circuit RLC2) representing SRR1 (SRR2).
(c) Schematic of the PIT metamaterial consisting of a periodic
array of magnetic meta-atoms. Inset shows the coordinate system
indicating the electric field E, magnetic field H, and wave vector
k, which are respectively along the x, y, and z directions. (d) Giant
magnetic Kerr nonlinearity of the metamaterial working under PIT
condition. Real part [i.e., Re(χ (3) ), with the value up to 385 m2 A−2

near δ = 0] and imaginary part [i.e., Im(χ (3) ), with vanishing value
near δ = 0] of the third-order nonlinear magnetic susceptibility χ (3)

as functions of the frequency detuning δ. The system parameters used
are given in the text.

RLC1 (bright oscillator) and the right circuit RLC2 (dark
oscillator)] have their capacitance, resistance, and inductance
respectively given by C1, R1, L1 and C2, R2, L2, with one
shared capacitance Cs (for simplicity L1 = L2 = L is assumed
in our consideration). The external excitation is described
by the electromotive voltage V (t ) induced by the incident
radiation field. The capacitance C1 (C2) is a function of the
voltage across the SRR1 (SRR2), which is nonlinear due to
the insertion of the varactors (see Appendix A for detail).

Introducing renormalized voltage [13] qα = Qα/C0 [α =
1, 2; C0 is the capacitance value in the linear regime for both
the capacitances C1 and C2, Qα = ∫ t

0 Iα (t ′)dt ′ is the charge
with Iα being the electric current in circuit α] and applying
the Kirchhoff voltage law, we obtain the equations of motion

q̈1 + γ1q̇1 + ω2
0q1 − �2q2 + α1q2

1 + β1q3
1 = ω2

1V (t ),

(1a)

q̈2 + γ2q̇2 + (ω0 + 	)2q2 − �2q1 + α2q2
2 + β2q3

2 = 0, (1b)

where γ1 and γ2 are respectively the damping rates of q1 (the
bright oscillator) and q2 (the dark oscillator), �2 is the cou-
pling coefficient between SRR1 and SRR2, ω2

1 is the coupling
coefficient between the bright mode and the external magnetic
field, ω0 (≈5.63 GHz) and ω0 + 	 (	 is frequency detuning)
are respectively the resonance (natural) frequencies of the
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FIG. 2. Linear absorption spectrum of the magnetic PIT metamaterial. Panels (a)–(c) are numerical results of the linear absorption spectrum
[i.e., the imaginary part Im(K ) of the linear dispersion relation K = K (δ)] versus the frequency detuning δ for different separations (between
the two SRRs) d = 4.5, 3.7, and 2.9 (in mm), respectively. Panels (d)–(f) are the corresponding analytical results based on Eq. (6) obtained by
solving model (1) in the linear regime.

bright and dark oscillators, αα and βα (α = 1, 2) represent
respectively the second-order and third-order nonlinear coef-
ficients (contributed by the varactors). A detailed derivation of
model (1a), (1b) and explicit expressions of γ1, γ2, ω0, ω1, �,
α1, α2, β1, and β2 are given in Appendix A.

III. RESULTS AND DISCUSSION

A. Numerical result for linear magnetic excitations

To support our analytical approach given below, a nu-
merical simulation of the linear magnetic response of the
system based on the Maxwell equations is carried out first.
Figures 2(a)–2(c) illustrate the results of the normalized
linear absorption spectrum Im(K ) as a function of the fre-
quency detuning δ respectively for d (the separation between
the two SRRs) taken to be 4.5, 3.7, and 2.9 mm, obtained
numerically by using a commercial finite difference time-
domain software package (CST Microwave Studio). In our
simulation, periodic boundary conditions are adopted and
the substrate is assumed to be made of a FR4 circuit board
material [15] with dielectric constant ε = 4.4(1 + 0.02i); a
perfect electric conductor is assumed for the metal, whose
loss is partially included into the complex dielectric constant
of the metamaterial [37]. A standard retrieval procedure is
employed for finding the frequency-dependent constitutive
parameters of the metamaterial based on the transmission and
reflection coefficients of metamaterial elements. The damping
rates γ1, γ2, and the resonance frequency ω0 in the model
Eqs. (1a) and (1b) are obtained by fitting the numerical result
[i.e., Figs. 2(a)–2(c)] and the analytical one given in the next
section [i.e., Figs. 2(d)–2(f)] on the linear absorption spectrum
of the metamaterial.

From Fig. 2, we see that a PIT transparency window opens
in the absorption spectrum; moreover, the PIT transparency
window becomes wider and deeper when d decreases. The
physical reason for the occurrence of the PIT transparency

window is due to the destructive interference between the
bright and dark oscillators, which can be controlled actively
by changing the separation d between the two SRRs.

B. Analytical result on linear magnetic excitations

To acquire a deep understanding of the physical property of
the system, we now consider the linear and nonlinear magnetic
response by using an analytical approach. Note that, when the
two SRRs are arranged in the manner shown in Fig. 1(a),
the electric-dipole moments contributed by the two SRRs
in the meta-atom cancel each other. As a result, not only
the meta-atom [Fig. 1(a)] but also the whole metamaterial
[Fig. 1(c)] exhibit a predominantly magnetic response to the
external radiation field [3,15]. In this situation, the radiation
dynamics of the system is governed by the equation of motion
for the magnetic field H, given by

∇2H − 1

c2

∂2H
∂t2

= 1

c2

∂2M
∂t2

, (2)

where M = χ
(1)
D H − N0SC0(∂q1/∂t )e is the magnetic polar-

ization intensity, with χ
(1)
D being the magnetic susceptibility of

the background material (i.e., the substrate, which is assumed
to be linear), N0 the meta-atom density, S the area of the SRRs,
and e the direction of the magnetic moment contributed by
the bright oscillator SRR1. Note that, due to the fact that the
dark oscillator SRR2 can only be excited through its coupling
to the bright oscillator SRR1, and that the direction of the
radiation field at the dark oscillator SRR2 is perpendicular
to the magnetic polarization, the contribution of the dark
oscillator SRR2 to the magnetic polarization intensity is very
small and hence can be safely neglected. In addition, when
obtaining Eq. (2) a magnetic-dipole approximation is used;
this is reasonable because the wavelength of the incident
radiation field (≈100 mm) is much larger than the thickness

053859-3



XU, BAI, AND HUANG PHYSICAL REVIEW A 101, 053859 (2020)

of the meta-atom (≈1 mm), and hence the radiation field seen
by the meta-atom is nearly homogeneous.

We employ a method of multiple scales [30,31,38–40] to
analytically solve the nonlinear magnetic oscillator Eq. (1)
and the Maxwell Eq. (2). We assume the incident radiation
has frequency ω f (which is near the resonance frequency
ω0 of the SRRs), and take qα = qdα + [q f αei(k0z−ω0t ) +
c.c.] + [qsαe2i(k0z − ω0t ) + c.c.] + [qtαe3i(k0z − ω0t ) + c.c.],
H = Hd + [Hf ei(k f z − ω f t ) + c.c.] + [Hsei(ksz−ωst ) + c.c.] +
[Ht ei(kt z−ωt t ) + c.c.]. Here “c.c.” means complex conjugate;
qdα , q f α , qsα , and qtα are respectively the amplitudes of the
longwave (rectification field), shortwave (fundamental wave),
second-harmonic wave, and third-harmonic waves of the os-
cillator α (α = 1, 2), with k0 (ω0) being the wave number
(frequency) of the fundamental wave; Hd , Hf , Hs, and Ht

are respectively the amplitudes of the longwave, shortwave,
second-harmonic wave, and third-harmonic waves of the mag-
netic field. By using the rotating-wave and slowly varying
envelope approximations, from Eqs. (1) and (2) we can obtain
a series of equations for qμα and Hμ (μ = d, f , s, t) (see
Appendix B).

Take the asymptotic expansion q f α = λq(1)
f α + λ2q(2)

f α +
λ3q(3)

f α + · · · , qdα = λ2q(2)
dα

+ λ3q(3)
dα

+ · · · , qsα = λ2q(2)
sα +

λ3q(3)
sα + · · · , qtα = λ3q(3)

tα + · · · , Hf = λH (1)
f + λ2H (2)

f +
λ3H (3)

f + · · · , where λ is a small dimensionless parameter
characterizing the amplitude of the incident magnetic field.
All quantities on the right-hand side of the expansion are
assumed as functions of the multiscale variables x1 = λx,
y1 = λy, z j = λ j z ( j = 0, 1, 2), and t j = λ jt ( j = 0, 1).
Substituting this expansion into the equations for qμ j and Hμ

and comparing powers of λ, we obtain a chain of linear but
inhomogeneous equations (see Appendix C), which can be
solved order by order.

At the first-order we obtain the solution for the shortwave
field

H (1)
f = Fexp[i(Kz0 − δt0)], (3)

q(1)
f 1 = − igω0D2(δ)H (1)

f

D1(δ)D2(δ) − �4
, (4)

q(1)
f 2 = − igω0�

2H (1)
f

D1(δ)D2(δ) − �4
. (5)

Here F is a yet to be determined envelope function depend-
ing on the slow variables x1, y1, z1, z2, t1; δ = ω f − ω0 is
the frequency detuning; and K is linear dispersion relation,
given by

K = nD

c
δ + κ0gω0D2(δ)

D1(δ)D2(δ) − �4
, (6)

where Dj (lδ) =ω2
0 − l2(ω0 + δ)2 − ilγ j (ω0 + δ) ( j, l = 1, 2),

κ0 = N0SC0ω
2
0/(2cnD), nD = (1 + χ

(1)
D )1/2, and g= μ0ω

2
1S

(μ0 is the vacuum permeability).
Shown in Figs. 2(d)–2(f) are the normalized absorption

spectrum Im(K ) (i.e., the imaginary part of K) as a function
of δ for the separation between the two SRRs d = 4.5, 3.7,
and 2.9 (in mm), respectively. Comparing with the upper and
lower parts of Fig. 2, we see that the analytical result on the
PIT spectrum and the related transparency windows based on

Eqs. (1) and (2) (the lower part of the figure) agrees quite well
with the one based on the numerical simulation using CST
Microwave Studio (the upper part of figure). When plotting
the figure by using Eq. (6), the system parameters used are
obtained by fitting the numerical result, which are given
as follows: damping rates are γ1 ≈ 0.2602 GHz and γ2 ≈
0.071 GHz; the parameter of the coupling strength between
SRR1 and SRR2 (i.e., �) is varied from 0.7 to 1.7 GHz
(corresponding to the variation of d from 4.5 to 2.9 mm).

To obtain a clear understanding of the variation of the
width of the transparency window for different d and of the
character of the interference between the bright and dark
oscillators, we make a spectrum decomposition (based on the
method developed in Ref. [38]) on the absorption spectrum
Im(K ) for different coupling strength �2 between the bright
and dark oscillators, which can be divided into the following
regimes:

(i) PIT regime. This is a weak absorption regime occurring
in the case of weak coupling for �2 < (γ1 − γ2)ω0/2. The
absorption spectrum Im(K ) in this regime can be decomposed
to the sum of two Lorentzians terms:

Im(K ) = GC+W+
δ2 + W 2+

− GC−W−
δ2 + W 2−

, (7)

where W± = −(γ1 + γ2)/4 ± [(γ1 − γ2)2/16 − T 2]
1
2 , T =

�2/(2ω0), and C± = ±(γ2/2 + W±)/[(γ1 − γ2)2/4 − 4T 2]
1
2 .

Illustrated in Fig. 3(a) is Im(K ) as a function of δ for
� = 0.7 GHz, where the dashed (dotted-dashed) curve shows
the result of the first (second) Lorentzian term, which takes
a negative (positive) value. Because of the destructive inter-
ference between bright (SRR1) and dark (SRR2) oscillators,
the superposition of the two curves results in the appearance
of a small dip in Im(K ) curve (i.e., the solid line), a typical
character of PIT.

(ii) PIT-ATS crossover regime. This regime occurs in the
case of intermediate coupling where �2 > (γ1 − γ2)ω0/2. In
this regime, the spectrum decomposition gives

Im(K ) = G(γ1 + γ2)/8

(δ − δ0)2 + (γ1 + γ2)2/16

+ G(γ1 + γ2)/8

(δ + δ0)2 + (γ1 + γ2)2/16

− GJ (δ − δ0)

(δ − δ0)2 + (γ1 + γ2)2/16

+ GJ (δ + δ0)

(δ + δ0)2 + (γ1 + γ2)2/16
, (8)

where δ0 = [T 2 − (γ1 − γ2)2/16]1/2 and J = (γ2 − γ1)/(8δ0).
One sees that Im(K ) consists of four terms. The first two terms
are Lorentzians that give two resonance peaks belonging to the
SRR1 and the SRR2, respectively. The dip between the two
Lorentzian peaks is a frequency gap between two resonances,
a typical character of Autler-Townes splitting (ATS). How-
ever, the third and fourth terms (which are interference terms)
lower significantly the dip formed by the first two terms,
giving the system some characteristics of PIT. Since both the
PIT and the ATS occur simultaneously, such a phenomenon is
called a PIT-ATS crossover [38]. Illustrated in Fig. 3(b) are
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FIG. 3. Crossover from PIT to Autler-Towns splitting (ATS).
(a) The dashed (dotted-dashed) curve is the result of the first (second)
Lorentzian term in Eq. (7) as a function of detuning δ. The solid
curve is the absorption spectrum Im(K ) in the weak-coupling (PIT)
regime (d = 4.5 mm). (b) The dashed-dotted lines are results of the
first two Lorentzian terms in Eq. (8); the dashed lines are results of
the third and fourth terms in Eq. (8). The solid line is the sum of all
the four terms, which gives Im(K ) curve in the intermediate coupling
(PIT-ATS crossover) regime (d = 0.37 mm). (c) The same as panel
(b) but with d = 2.9 mm, giving Im(K ) in the strong-coupling (ATS)
regime. (d) A “phase” diagram shows the transition from PIT to ATS
when the coupling strength �2 is varied, where a non-PIT (strong
absorption) regime for very small �2 is also plotted (leftmost side).

results of various terms in Eq. (8) and the total absorption
spectrum Im(K ) for � = 1.2 GHz.

(iii) ATS regime. It appears for the case of strong coupling
where �2 � (γ1 − γ2)ω0/2. The spectrum decomposition of
Im(K ) in this regime is still given by Eq. (8), but the de-
structive interference effect contributed by the last two terms
plays a negligible role. Shown in Fig. 3(c) are results for

� = 1.7 GHz. One sees that, in this strong-coupling regime,
the absorption spectrum curve Im(K ) displays mainly the
character of ATS.

Figure 3(d) shows the phase diagram from PIT to ATS for
different coupling strengths �2, where three regimes (i.e., PIT,
PIT-ATS crossover, and ATS) are indicated clearly. For com-
pleteness, a non-PIT regime (or called as strong absorption
regime), where radiation absorption is strong, occurring in
the case of very weak coupling [i.e., �2 � (γ1 − γ2)ω0/2],
is also plotted; see the leftmost side of the figure.

C. Nonlinear envelope equation and giant magnetic
Kerr nonlinearity

To reveal the nonlinear propagation property of the radi-
ation field, we need to investigate the solution to Eqs. (1)
and (2) at high-order approximations. Based on the linear
(first-order) solution obtained above, we find that, at the
second-order approximation, the envelope function F satis-
fies the equation i[∂F/∂z1 + (1/Vg)∂F/∂t1] = 0, with Vg =
(∂K/∂δ)−1 being the group velocity of the envelope. Explicit
expressions for solutions q(2)

μα and H (2)
μ at this order are pre-

sented in Appendix C.
With these results, we can go to third-order approximation.

A solvability condition yields another envelope equation for
F , which, combined with the envelope equation obtained from
the second-order approximation, has the form

i
∂F

∂z2
− 1

2
K2

∂2F

∂τ 2
1

+ c

2ω0nD

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
F

+ ω0

2cnD
χ (3)|F |2Fe−2ᾱz2 = 0. (9)

Here τ1 = ε(t − z/Vg); K2 = ∂2K/∂δ2 is the coefficient de-
scribing the group-velocity dispersion; the second term

c
2ω0nD

( ∂2

∂x2
1

+ ∂2

∂y2
1
)F describes diffraction effect; ᾱ = λ−2Im(K )

is the coefficient describing linear absorption (which is small
due to the PIT effect illustrated above); χ (3) is the third-order
nonlinear magnetic susceptibility that results from the self-
phase modulation, with the expression given by

χ (3) = −iN0Sω0C0

D1(δ)D2(δ) − �4

{
2α2

1g2ω2
0D2(δ)

[
D2(δ)2D2(2δ)E∗

1

A
− 2ω2

0|D2(δ)|2E1

B

]
+2α1α2g2ω2

0�
4

[
D2(δ)�2E∗

1 + D2(δ)2E∗
2

A
− 2D2(δ)2�2E1 + 2|D2(δ)|2E2

B

]
+2α2

2g2ω2
0�

6

[
D1(2δ)E∗

2

A
− ω2

0E2

B

]
+ 3D2(δ)β1|E1|2E1) + 3�2β2|E2|2E2

}
. (10)

Here A=[D1(2δ)D2(2δ)−�4][D1(δ)D2(δ)−�4]2, B=(ω4
0−

�4)|D1(δ)D2(δ) − �4|2, E1 = −[igω0D2(δ)]/[D1(δ)D2(δ) −
�4], and E2 = −[igω0�

2]/[D1(δ)D2(δ) − �4]. The explicit
derivation of Eqs. (9) and (10) are presented in Appendix
C. One sees that χ (3) is proportional to the parameters α1,
α2, β1, and β2, which means that they are contributed by the
quadratic and cubic nonlinear terms in Eq. (1) (originated by

the nonlinear property of the varactors inserted in the gaps of
the SRRs).

Shown in Fig. 4 are curves of the real part of the third-order
nonlinear magnetic susceptibility χ (3) (i.e., Re[χ (3)]; solid red
line) and the imaginary part of linear magnetic susceptibility
χ (1) (i.e., Im[χ (1)]; dashed blue line) as functions of the
coupling strength �, for four different coupling (i.e., non-PIT,
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FIG. 4. Giant magnetic Kerr nonlinearity of the PIT metamate-
rial. The real part of the third-order nonlinear magnetic susceptibility
χ (3) (i.e., Re[χ (3)]; solid red line) and the imaginary part of the
linear magnetic susceptibility (i.e., Im[χ (1)]; dashed blue line), as
functions of the coupling strength � for S = 5 × 10−5 m2, C0 =
1.6 pF, Vp = 1.5 V, and M = N = 0.8 (other system parameters used
have been given in the text). Four different regimes (i.e., non-PIT,
PIT, PIT-ATS, and ATS regimes) are indicated which occur as � is
increased.

PIT, PIT-ATS, and ATS) regimes. The system parameters used
for plotting the figure are S = 5 × 10−5 m2, C0 = 1.6 pF,
Vp = 1.5 V, M = N = 0.8, κ0 = 2.817 m−4 kg−1 s3 A2, and
δ = 0.05 GHz. Values of the nonlinear parameters are derived
to be α1 = α2 = −0.2667 V−1 and β1 = β2 = 0.0356 V−2.
From the figure, we can obtain the following conclusions:

(i) For � = 0 (for which the dark oscillator plays no role,
i.e., the system works in the non-PIT regime), Re[χ (3)] can
reach the value of −569 m2 A−2, which agrees with the result
of previous work by Poutrina et al. [15] for the magnetic
metamaterial with each meta-atom containing only a single
SRR. However, in this strong absorption regime the linear
absorption Im[χ (1)] is also quite large, which hinders most
practical applications for radiation propagations.

(ii) In the PIT region, the linear absorption (i.e., Im[χ (1)])
can be largely eliminated (for convenience in the figure the
crossover from the non-PIT regime to the PIT regime is
indicated by a vertical black dashed line). Except for this,
the real part of the nonlinear magnetic susceptibility (i.e.,
Re[χ (3)]) can reach to a very large value. For example, for
� = 0.89 GHz we obtain

Re[χ (3)] = 3.85 × 102 m2 A−2. (11)

At the same time, the imaginary part of nonlinear magnetic
susceptibility (i.e., Im[χ (3)]) may be made very small [see
Fig. 1(d), where Re[χ (3)] and Im[χ (3)] are plotted as functions
of the frequency detuning δ]. Note that the value given in
Eq. (11) is equivalent to 2.4 × 106 in units of esu. Thus the
third-order nonlinear magnetic susceptibility in the present
PIT system is 16 orders of magnitude larger than those
obtained by using conventional magnetic materials, where
the typical value is given by χ (3) ≈ 2.5 × 10−10 esu [41].
The physical reason for such a large third-order magnetic
Kerr nonlinearity obtained in our system is due to the fact
that the magnetic field H is resonant with the bright and
dark oscillators q1, q2 and the system works under the PIT
condition. Interestingly, the sign of Re[χ (3)] flips from neg-

ative to positive around � = 0.53 GHz, which means that
the magnetic Kerr nonlinearity of the system may experience
a transition from self-defocusing to self-focusing, which is
promising for practical applications based on pure magnetic
nonlinear responses.

(iii) In the PIT regime, the value of Re[χ (3)] may acquire
its largest enhancement near the transition point between
the non-PIT (strong absorption) regime and the PIT regime,
i.e., Re[χ (3)] ≈ −12.0 × 102 m2 A−2 for � = 0.351 GHz.
However, this enhancement accompanies a very large linear
absorption (i.e., Im[χ (1)] is also large), thus it is not applicable
for low-loss radiation propagation.

(iv) For larger �, the system works in the intermediate-
coupling (i.e., PIT-ATS) regime, where Im[χ (1)] is suppressed
significantly by the dark oscillator but Re[χ (3)] is also de-
creased. By increasing large � further, the system enters into
the strong-coupling (i.e., ATS) regime, for which Im[χ (1)]
can be completely suppressed by the dark oscillator; however,
Re[χ (3)] tends to vanish, and thus is not useful for realizing
large magnetic Kerr nonlinearity.

From these results obtained from the non-PIT, PIT, PIT-
ATS, and ATS regimes obtained for different � (i.e., from
the very-weak-coupling to the strong-coupling regimes), we
see that there is a trade-off between the suppression of large
absorption and the acquirement of large Kerr nonlinearity in
the system. Only in the weak-coupling PIT regime does the
system supports large Kerr nonlinearity and small absorption
simultaneously.

IV. ULTRASLOW AND LOW-POWER
MAGNETIC SOLITONS

We now turn to consider the formation and propagation of
nonlinear magnetic pulses in the system. For simplicity, we
focus on the regime where the transverse spatial distribution
of radiation is large enough so that the diffraction effect (i.e.,
the dependence on the transverse coordinates x and y) can be
neglected. In this case, the nonlinear envelope equation [i.e.,
Eq. (9)] reduces to the nonlinear Schrödinger equation,

i

(
∂

∂z
+ αm

)
U − 1

2
K2

∂2U

∂τ 2
− W |U |2U = 0, (12)

when returning to the original variables, where
W = −[ω0/(2cnD)]χ (3), τ = t − z/Vg, αm = λ2ᾱ, and
U = λF exp(−αmz). Generally, Eq. (12) has complex
coefficients and hence is a Ginzburg-Landau equation.
However, due to the PIT effect, the imaginary part of the
complex coefficients can be made much smaller than their
real part. When converted into the dimensionless form,
Eq. (12) becomes

i
∂

∂s
u + 1

2

∂2u

∂σ 2
+ |u|2u = id0u, (13)

with z = −LDs, τ = τ0σ , U = U0u, and d0 = LD/LA. Here
τ0, LD ≡ τ 2

0 /K̃2, LA ≡ 1/αm, and U0 ≡ (1/τ0)(K̃2/W̃ )1/2 are
respectively typical pulse length, dispersion length, absorp-
tion length, and pulse amplitude (the tilde symbol means
taking real part). Notice that, in order to form solitons, LD

has been set to equal typical nonlinearity length, defined by
LNL [≡ 1/(U 2

0 W̃ )].
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If d0 is small (this is the case we have here due to the
PIT effect), the term d0u can be taken as a perturbation.
One can use a perturbation method to solve the Eq. (13) to
obtain single and multiple soliton solutions [42]. The single
bright soliton solution is given by u = η sech[2ηed0s(σ −
σ0 + 4ςs)]e−2iςσ−4i(ς2−η2 )s+d0s−iφ0 , where η, ς , σ0, and φ0 are
real free parameters determining the amplitude (as well as the
width), propagating velocity, initial position, and initial phase
of the soliton, respectively. When taking η = 1/2, ς = σ0 =
φ0 = 0, and noting that s = −z/LD, we obtain the expression
of the magnetic field corresponding the single-soliton solution

H = 1

τ0

√
K̃2

W̃
sech

[
1

τ0

(
t − z

Ṽg

)]
eiφ(z,t )−z/LA + c.c., (14)

with φ(z, t ) ≡ [K̃ + k f − 1/(LD)]z − w f t , which describes a
localized nonlinear magnetic pulse with velocity Ṽg and a
small damping during propagation.

For δ = 0.1 GHz and with the other parameters given
above, we obtain numerical values of the coefficients in
Eq. (12), given by αm = 0.051 cm−1, K2 = (4.1 + 0.12i) ×
10−17 cm−1 s2, and W = (5.2 + 0.13i) × 105 cm A−2. We see
that, as expected, the imaginary part of these coefficients are
indeed much smaller than their real part. By taking τ0 = 1 ×
10−9 s, we obtain U0 = 8.9 × 10−3 cm−1 A−1, LD = LNL =
2.4 × 10−2 cm, and LA = 19.6 cm. Thus one has d0 = 1.2 ×
10−3 and hence the dissipation in the system can be indeed
taken as a perturbation.

The power associated with the magnetic soliton is given
by Poynting’s vector integrated over the cross section of the
radiation in the transverse directions, i.e., P = ∫

(E × H) ·
ezdS, where ez is the unit vector along the propagation (i.e.,
z) direction. Substituting the expressions of H and E into P,
we obtain the peak power of the soliton, given by P̃max =
2μ0cnpSK̃2/(W̃ τ 2

0 ). Here np = 1 + cK̃/ω0 is the refractive
index and S0 is the area of the intensity distribution of the
radiation field in the transverse directions. Using the above
parameters and taking S = 5 × 10−5 m2, the peak power for
generating the soliton is found to be

P̃max 	 29.7 mW, (15)

which means that to create such a soliton in the system
a very low input power is needed. This is different from
conventional media (such as optical fibers), where picosecond
or femtosecond laser pulses are required to reach a much high
power (usually on the order of several hundred kW or above)
to produce enough nonlinearity to form solitons.

Based on the system parameters given above, the group
velocity of the magnetic soliton is estimated to be

Ṽg 	 7.3 × 10−3c, (16)

which is much smaller than the light speed c in vacuum.
From Eqs. (15) and (16), we see that the magnetic soliton
obtained in the present magnetic PIT system has ultraslow
propagation velocity and ultraslow generation power, which
is also different from those obtained in conventional magnetic
metamaterials considered before [43–45].

To test the stability of the magnetic soliton in the PIT
system, a numerical simulation is carried out. Shown in

10
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z/LDz/LD

(a) (b)

FIG. 5. Ultraslow and low-power magnetic solitons and their
interaction in the PIT metamaterial. (a) Propagation of the magnetic
soliton by taking the dimensionless intensity |H/U0|2 as a function
of t/τ0 and z/LD. (b) Collision between two magnetic solitons.

Fig. 5(a) is the result of the dimensionless radiation intensity
|H/U0|2 of the magnetic soliton as a function of dimensionless
time t/τ0 and dimensionless distance z/LD. The solution is
obtained by numerically solving Eq. (12) with the complex
coefficients taken into account, with the initial condition given
by H (0, t )/U0 = sech(t/τ0). We see that the shape of the soli-
ton undergoes no apparent deformation during propagation.

The collision between two magnetic solitons is also in-
vestigated numerically, with the result shown in Fig. 5(b).
In the simulation, the initial condition used is H (0, t )/U0 =
sech[(t − 3.0)/τ0] + 1.2sech[1.2(t + 3.0)/τ0]. We see that
the both solitons can resume their original shapes after the
collision, indicating that solitons in the PIT-metamaterial are
robust during interaction.

V. SUMMARY

In this work, we have presented a scheme for realizing
strong, low-loss, and pure magnetic responses both in the
linear and nonlinear regimes by using a metamaterial con-
structed by an array of meta-atoms consisting of two cou-
pled VLSRRs working under the condition of PIT. We have
demonstrated that the PIT in such metamaterial can not only
significantly suppress radiation absorption but also greatly
enhance the magnetic Kerr nonlinearity, which may be many
orders of magnitude larger than those obtained by conven-
tional magnetic materials reported up to now. Based on such
new nonlinear metamaterial, we have further demonstrated
that stable magnetic solitons with ultraslow propagation ve-
locity and very low generation power can be generated in the
system. Our research opens an avenue for the design of novel
metamaterial devices with strong, low-loss, pure, and actively
tunable magnetic responses and for the realization of stable
and low-power nonlinear magnetic pulses, which is promising
for applications in information processing and transmission.
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APPENDIX A: DERIVATION OF THE COUPLED
NONLINEAR OSCILLATOR EQUATIONS

The geometric structure of the meta-atoms, i.e., the
varactor-loaded split-ring resonators (VLSRRs) [13,15], is
illustrated in Figure 1(a) of the main text. Each meta-atom
can be well modeled as an RLC circuit model with external
excitation [as shown in Figure 1(b) of the main text], where
two RLC circuits [i.e., RLC1 (bright oscillator) and RLC2
(dark oscillator)] have different capacitance, resistance, and
inductance, respectively given by C1, R1, L1 and C2, R2, L2,
with one shared capacitance CS (for simplicity L1 = L2 = L
is assumed in our consideration). The external excitation (i.e.,
the incident radiation field) gives an electromotive voltage
V (t ) = −μ0S∂H/∂t (μ0 is the permeability of vacuum) to
the bright oscillator (i.e., the circuit RLC1), which generates
currents Iα in the circuit RLCα (α = 1, 2). Based on the
formula Cα ≡ dQα/dVα with Qα (time-dependent charge)
≡ ∫ t

0 Iα (t ′)dt ′ and adopting Kirchhoff voltage law, we obtain
the equations of motion

L
dI1

dt
+ R1I1 + Q1

CS
+ V1 − Q2

CS
= V (t ), (A1a)

L
dI2

dt
+ R2I2 + Q2

CS
+ V2 − Q1

CS
= 0, (A1b)

where Ïα ≡ d2Iα/dt2, V1 (V2) is voltage across the varactor in
SRR1 (SRR2).

The nonlinear capacitances (originated from the varactors)
in the circuits RLC1 and RLC2 can be respectively described
by formulas [13] C1 = C0(1 − V1/Vp)−M and C2 = C0(1 −
V2/Vp)−N , with C0 being the value of the capacitance in the
linear regime and Vp an intrinsic potential parameter. For
simplicity, we assume M = N , i.e., the capacitances of the two
varactors have the same nonlinear response (which generally
can be actively designed and manipulated). We expect that, at
a moderate power level, the nonlinear responses of the both
varactors are weak, so that C1 and C2 can be respectively
Taylor expanded as power series of V1 and V2, and only the
first three terms are kept. Then by introducing the normalized
charges qα ≡ Qα/C0 (α = 1, 2) and taking V1 and V2 as func-
tions of q1 and q2, we obtain

V1(q1) ≈ q1 − M

2VP
q2

1 + M(2M − 1)

6V 2
P

q3
1, (A2a)

V2(q2) ≈ q2 − N

2VP
q2

2 + N (2N − 1)

6V 2
P

q3
2. (A2b)

By inserting the expression (A2) into Eq. (A1), we obtain
equations of motion for q1 and q2 as follows:

q̈1 + γ1q̇1 + ω2
0q1 − �2q2 + α1q2

1 + β1q3
1 = ω2

1V (t ),

(A3a)

q̈2 + γ2q̇2 + (ω0 + 	)2q2 − �2q1 + α2q2
2 + β2q3

2 = 0,

(A3b)

where γ1 and γ2 (γα = Rα/L, α = 1, 2) are respectively the
damping rates of the bright oscillator q1 and dark oscillator q2,
�2 ≡ 1/(LCS ) is the coupling coefficient between the bright
and dark oscillators, ω2

1 = 1/(LC0) is the coupling coefficient
between the bright oscillator and the external magnetic field,
ω0 ≡ (ω2

1 + �2)1/2 and ω0 + 	 (	 is frequency detuning) are
respectively the natural frequencies of the bright and dark
oscillators, α1 ≡ −(ω2

1M )/(2Vp), α2 ≡ −(ω2
1N )/(2Vp), β1 ≡

[ω2
1M(2M − 1)]/(6V 2

p ), and β2 ≡ [ω2
1N (2N − 1)]/(6V 2

p ) are
respectively the second-order and third-order nonlinear co-
efficients, contributed by the varactors. For simplicity, the
frequency detuning 	 will be taken to be zero since the two
SRRs are assumed to have the same structure.

APPENDIX B: EQUATIONS OF MOTION FOR VARIOUS
FREQUENCY COMPONENTS OF THE BRIGHT AND
DARK OSCILLATORS AND THE MAGNETIC FIELD

We assume that the incident radiation has frequency ω f ,
which is near ω0. Thus, there is a resonant interaction between
the magnetic field and the bright and dark oscillators q1 and
q2. To solve such a resonant nonlinear problem analytically,
we assume

qα = qdα + [q f αei(k0z−ω0t ) + c.c.]

+ [qsαe2i(k0z−ω0t ) + c.c.] + [qtαe3i(k0z−ω0t ) + c.c.],

(B1a)

H = Hd + [Hf ei(k f z−ω f t ) + c.c.] + [Hse
i(ksz−ωst ) + c.c.]

+ [Ht e
i(kt z−ωt t ) + c.c.]. (B1b)

Here qdα , q f α , qsα , and qtα (α = 1, 2) are respectively the
amplitudes of the longwave (or called the rectification field),
shortwave (fundamental wave), second-harmonic wave, and
third-harmonic waves of oscillator α, with k0 (ω0) being the
wave number (frequency) of the fundamental wave. Hd , Hf ,
Hs, and Ht are respectively the amplitudes of the longwave,
shortwave, second-harmonic wave and third-harmonic waves
of the magnetic field. By using the rotating-wave and slowly
varying envelope approximations, from Eq. (A3) we obtain a
series of equations for the motion for qμα:

q̈ f 1 + (γ1 − 2iω0)q̇ f 1 − iγ1ω0q f 1 − �2q f 2 + 2α1(qd1q f 1 + qs1q∗
f 1) + 3β1|q f 1|2q f 1 = −igω f Hf ei(k f z−ω f t ), (B2a)

q̈ f 2 + (γ2 − 2iω0)q̇ f 2 − iγ2ω0q f 2 − �2q f 1 + 2α2(qd2q f 2 + qs2q∗
f 2) + 3β2|q f 2|2q f 2 = 0, (B2b)

q̈d1 + γ1q̇d1 − ω2
0qd1 − �2qd2 + 2α1|q f 1|2 = g

∂Hd

∂t1
, (B2c)

q̈d2 + γ2q̇d2 − ω2
0qd2 − �2qd1 + 2α2|q f 2|2 = 0 (B2d)

q̈s1 + (γ1 − 4iω0)q̇s1 − (
3ω2

0 + 2iγ1ω0
)
qs1 − �2qs2 + α1q2

f 1 = −igωsHse
i(ksz−ωst ), (B2e)
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q̈s2 + (γ2 − 4iω0)q̇s2 − (
3ω2

0 + 2iγ2ω0
)
qs2 − �2qs1 + α2q2

f 2 = 0, (B2f)

q̈t1 + (γ1 − 6iω0)q̇t1 − (
8ω2

0 + 3iγ1ω0
)
qt1 − �2qt2 + β1q3

f 1 = −igωt Ht e
i(kt z−ωt t ), (B2g)

q̈t2 + (γ2 − 6iω0)q̇t2 − (
8ω2

0 + 3iγ2ω0
)
qt2 − �2qt1 + β2q3

f 2 = 0, (B2h)

with g = μ0ω
2
1S (μ0 is the vacuum permeability). Under the slowly varying envelope approximation, the Maxwell Eq. (2) in the

main text is converted into the form

i

(
∂

∂z
+ nD

c

∂

∂t

)
Hf + c

2ω0nD
∇2

⊥Hf + iκ0q f 1 = 0, (B3a)

where ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2, the coupling coefficient κ0 = N0SC0ω

2
0/(2cnD) with nD = (1 + χ

(1)
D )1/2 being the refractive

index of the background (substrate) material.

APPENDIX C: MULTISCALE EXPANSION AND THE DERIVATION OF THE NONLINEAR ENVELOPE EQUATION

We solve the equations for qμα and Hμ (μ = d, f , s, t) by using the method of multiple scales [30,31,42]. Take the asymp-
totic expansion q f α = λq(1)

f α + λ2q(2)
f α + λ3q(3)

f α + · · · , qdα = λ2q(2)
dα

+ λ3q(3)
dα

+ · · · , qsα = λ2q(2)
sα + λ3q(3)

sα + · · · , qtα = λ3q(3)
tα +

· · · , and Hf = λH (1)
f + λ2H (2)

f + λ3 H (3)
f + · · · , where λ is a dimensionless small parameter characterizing the amplitude of

the incident magnetic field. All quantities on the right-hand side of the expansion are assumed as functions of the multiscale
variables x1 = λx, y1 = λy, z j = λ j z ( j = 0, 1, 2), and t j = λ jt ( j = 0, 1). Substituting this expansion into the Eqs. (B2) and
(B3) and comparing the coefficients of λ j ( j = 1, 2, 3, . . . ), we obtain a chain of linear but inhomogeneous equations which can
be solved order by order.

The first-order ( j = 1) solution is given by

H (1)
f = Fei(kz0−δt0 ), (C1a)

q(1)
f 1 = −igω0D2(δ)F

D1(δ)D2(δ) − �4
ei(kz0−δt0 ), (C1b)

q(1)
f 2 = −igω0�

2F

D1(δ)D2(δ) − �4
ei(kz0−δt0 ), (C1c)

where Dj (lδ) = ω2
0 − l2(ω0 + δ)2 − ilγ j (ω0 + δ) ( j, l = 1, 2), F is a yet to be determined envelope function, and K is the linear

dispersion relation [see Eq. (6) in the main text] given by

K = nD

c
δ + κ0gω0D2(δ)

D1(δ)D2(δ) − �4
. (C2)

At the second order ( j = 2), we get the solution

q(2)
f 1 = −igω0D2(δ)2[2i(ω0 + δ) − γ1] − igω0�

4[2i(ω0 + δ) − γ2]

(D1(δ)D2(δ) − �4)2

∂F

∂t1
ei(kz0−δt0 ), (C3a)

q(2)
f 2 = −igω0D1(δ)�2[2i(ω0 + δ) − γ2] − igω0D2(δ)�2[2i(ω0 + δ) − γ1]

(D1(δ)D2(δ) − �4)2

∂F

∂t1
ei(kz0−δt0 ),

q(2)
d1 = − 2g2ω2

0

(
α1ω

2
0|D2(δ)|2 + α2�

6
)(

ω4
0 − �4

)|D1(δ)D2(δ) − �4|2 |F |2e−2ᾱz2 , (C3b)

q(2)
d2 = −2g2ω2

0

(
α1�

2|D2(δ)|2 + α2ω
2
0�

4
)(

ω4
0 − �4

)|D1(δ)D2(δ) − �4|2 |F |2e−2ᾱz2 ,

q(2)
s1 = g2ω2

0[α1(D2(δ)2D2(2δ) + α2�
6]

[D1(2δ)D2(2δ) − �4][D1(δ)D2(δ) − �4]2
F 2e2i(kz0−δt0 ), (C3c)

q(2)
s2 = g2ω2

0[α1(D2(δ)2�2 + α2D1(2δ)�4]

[D1(2δ)D2(2δ) − �4][D1(δ)D2(δ) − �4]2
F 2e2i(kz0−δt0 ), (C3d)
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where ᾱ = λ−2αm and αm ≡ Im(K ). A solvability (i.e., divergence-free) condition requires the envelope function F to satisfy
the equation

i

(
∂F

∂z1
+ 1

Vg

∂F

∂t1

)
= 0, (C4)

with Vg = (∂K/∂δ)−1 being the group velocity of the envelope F .
With the above solutions, we can go to third order. By the solvability condition at this order, we obtain

i
∂F

∂z2
− 1

2
K2

∂2F

∂t2
1

+ c

2ω0nD

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
F + ω0

2cnD
χ (3)|F |2Fe−2ᾱz2 = 0, (C5)

where K2 ≡ ∂2K/∂δ2 is dispersion coefficient and χ (3) is the third-order nonlinear magnetic susceptibility that results from the
self-phase modulation, with the explicit expression given by Eq. (10) of the main text. By combining Eqs. (C4) and (C5) and
returning to the original variables, we obtain Eq. (9) of the main text.
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