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Distinguishability theory for time-resolved photodetection and boson sampling
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We study the distinguishability of photons in multiphoton interference on a multiport when fast detectors,
capable of precise time resolution, are employed. Such a setup was previously suggested for experimental
realization of boson sampling with single photons. We investigate if fast photodetection allows us to circumvent
distinguishability of realistic single photons in mixed states. To this goal, we compare distinguishability of
photons in two setups: (a) with photons in the same average (temporal) profile on a spatial interferometer and
photodetection incapable of (or with strongly imprecise) time resolution and (b) with photons in generally
different average temporal profiles on the same spatial interferometer and photodetection with precise time
resolution. Exact analytical results are obtained for Gaussian-shaped single photons with Gaussian distribution
of photon arrival time. Distinguishability of photons in the two setups is found to be strikingly similar. For the
same purity of photon states, only the same quality experimental boson sampling can be achieved using either of
the two setups. The upshot of our results is that distinguishability due to mixed states is an intrinsic property of
photons, whatever the photodetection scheme.
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I. INTRODUCTION

We have witnessed enormous experimental progress [1]
toward the experimental realization of boson sampling [2]
for demonstration of a quantum advantage over classical
computations. A recent experiment with 20 input photons on
a 60-mode interferometer [3] is a big step toward the ultimate
goal of demonstrating this quantum advantage. For such a
quantum device, scaled up beyond possibility to exhaust all
outputs in an experiment, it is of paramount importance to es-
tablish to what extent the quantum advantage survives sources
of noise and/or imperfections of an experimental setup and
whether one could circumvent at least some imperfections
in some way. One important source of noise or imperfection
is, of course, photon distinguishability [4], which has an
effect exponential with number of photons [5–7], allowing
at a certain scale efficient simulation of experimental boson
sampling on classical computers [8]. Besides distinguisha-
bility of photons, there are many other sources of noise or
imperfections affecting optical boson sampling devices, such
as noise in interferometers [9–11], photon losses, and random
counts of detectors [12–14]. The quality of an experimen-
tal boson sampling device will depend on all such sources
of noise, recently shown to satisfy equivalence relations
[15].

With respect to the distinguishability of photons in a large-
scale multiphoton interference experiment, such as boson
sampling with single photons, notwithstanding many theoret-
ical and experimental results [6,16–29], there still remains
an issue lacking a detailed investigation. Namely, to what
extent it is possible to circumvent the distinguishability by
using photodetection capable of resolution of internal states
of photons, for instance, by photodetection with precise res-
olution in time (i.e., by using fast detectors as compared to
photon pulse duration). It was previously suggested [21,23]
that such time-resolved photodetection can compensate for

distinguishability of photons, though the result is limited to
photons in pure states only.

In this work, we investigate the above issue by extending
the theory of partial distinguishability [6,19] to the case
of photodetection with precise time resolution. We consider
multiphoton interference in general with application of the
results to boson sampling with single photons. Here we note
that the effect of internal state discrimination at the detection
stage was briefly considered in Ref. [27], without full analysis
of the effect on distinguishability, whereas Ref. [28] analyzed
mixed-state distinguishability within an approach based on
symmetry expansion of multiphoton state, not equivalent to
that adopted below. We account for realistic single photons
in mixed states, in contrast to related works [21,23] limited
only to pure-state photons. Pure-state photons, however, are
not available in experiments [30] due to unavoidable sources
of noise. For instance, the standard spontaneous parametric
down-conversion sources of single photons [31,32] as well
as the quantum dot sources [33] lead to random emission
times (for instance, in the former case only single pho-
tons in the “thermal-difference” mixed state can be achieved
[34]). Additionally, realistic detectors act by projection onto
mixed states [35,36], with probabilities of outcomes given by
positive-operator valued measures. We use mixed-state single
photons with random arrival times to model such sources of
noise in experiments. Single photons with near-unity purity
and indistinguishability have been recently experimentally
demonstrated [37,38]. It remains to establish if the achieved
purity is good enough when scaling up to a large number of
photons [39], as required for quantum advantage with boson
sampling.

To better understand the effect of photon distinguishability
due to mixed states in the case of photodetection with precise
time resolution, we compare with the well-studied case of
photodetection incapable of (or with strongly imprecise) time
resolution, first considered in Ref. [6]. We therefore compare
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distinguishability of photons in two setups of multiphoton
interference: (a) with single photons of the same central
frequency on a spatial interferometer with photodetection
incapable of time resolution (slow detectors as compared to
pulse duration of photons) and (b) with single photons of
generally different central frequencies on the same spatial in-
terferometer and photodetection with precise time resolution
(fast detectors). Our approach is applicable to any mixed states
of photons; however, for explicit analytical results we use
Gaussian-shaped photons with Gaussian distributed photon
arrival times.

We also generalize a previously considered measure [7] of
quality of photon indistinguishability to the case of photode-
tection with precise time resolution. Our measure coincides
with the total probability that bosons behave as completely
indistinguishable particles in multiparticle interference on a
multiport. It turns out that the two considered setups corre-
spond to the same value of this measure of indistinguishability.

The upshot of our work is that the (overall) distinguishabil-
ity due to impure (mixed) states of photons cannot be circum-
vented by any photodetection scheme, even if it is capable
of precise photon state resolution. This means, for instance,
that using photons of different frequencies and photodetection
with strongly precise time resolution, as compared to photon
pulse duration, will not allow for a better quality (i.e., closer
to ideal) boson sampling in comparison with photons of the
same frequency and photodetection with strongly imprecise
time resolution.

The text is organized as follows. In Sec. II, we introduce
our model of Gaussian single photons, briefly recall known
facts on distinguishability of photons, directly applicable to
our setup (a), with photodetection incapable of time reso-
lution, Subsec. II A, and then discuss the effect of photon
distinguishability in setup (b), with photodetection capable of
precise time resolution, Subsec. II B. In Sec. III, we generalize
to setup (b) a measure of quality of photon indistinguisha-
bility, introduced previously for setup (a), and compare the
quality of approximation to the ideal boson sampling by the
two setups. In Sec. IV, we discuss implications of our results.
Some mathematical details of derivations are relegated to
Appendixes A and B.

II. TWO SETUPS OF MULTIPHOTON INTERFERENCE:
WITH AND WITHOUT PHOTON ARRIVAL TIME

RESOLUTION BY DETECTORS

We consider two setups of multiphoton interference with
single photons on the same spatial interferometer, with and
without photon arrival time resolution by detectors, respec-
tively, Figs. 1(a) and 1(b), where in setup (a) single photons
have the same central frequency, whereas in setup (b) they
have, in general, different central frequencies. We assume that
a unitary linear spatial interferometer, with M input and output
ports, has all paths of equal optical length (independent of the
frequency range of photons). Such an interferometer can be
described by a unitary transformation between the M input
and output spatial modes (ports)

â†
k (t ) =

M∑
l=1

Ukl b̂
†
l (t ), (1)

FIG. 1. A schematic depiction of our two setups with single
photons: (a) N photons of the same central frequency � interfere on
a unitary spatial M-port interferometer U and are detected at output
ports without photodetection times resolution (slow detectors), with
the output data being l1, . . . , lN (order is irrelevant); (b) N photons
of frequencies �1,�2, . . . , �N interfere on the same spatial interfer-
ometer U and are detected with precise resolution of photodetection
times, with the output data being (l1, t1), . . . , (lN , tN ). In general,
N � M and lk = l j and/or tk = t j for some k �= j.

where U is a unitary matrix and âk (t ) and b̂l (t ) are boson
creation operators of the input and output ports at time t .
Below we will always employ index k for the input port of
an interferometer (or for the photon originating from input
port k), whereas the output ports will be labeled by l . We
will also use ml for the number of photons detected at output
port l and denote m = (m1, . . . , mM ), m1 + · · · + mM = N ,
an output configuration of N detected photons. Note that, in
general, l1, . . . , lN is a multiset of output ports (i.e., contain-
ing repetitions), where the order is not significant, since the
probability of detecting photons is symmetric in l1, . . . , lN ,
being dependent only on m. Let us fix the input ports of single
photons to be k = 1, . . . , N .

Our principal results and conclusions apply for general
(mixed) states ρ̂1, . . . , ρ̂N of input photons; however, we illus-
trate the approach by utilizing the simplest Gaussian model,
where each photon has a Gaussian shape and photon arrival
times are distributed according to a Gaussian. Besides al-
lowing explicit analytical results, the Gaussian-shaped single
photons are optimal for multiphoton interference experiments
[40]. Thus, we consider N single photons in the following
mixed states:

ρ̂k =
∫

dτ pk (τ )|�k,τ 〉〈�k,τ |,

pk (τ ) = 1√
π�τk

e
− τ2

�τ2
k ,

|�k,τ 〉 =
∫

dt �k,τ (t )â†
k (t )|0〉,

�k,τ (t ) = 1

π1/4
√

Tk
exp

[
−i�kt − (t − τ )2

2T 2
k

]
, (2)

where �τk is the standard deviation of arrival time of photon
k, Tk is the temporal width of the photon pulse, and �k is
its central frequency. In Eq. (2), we have assumed that the
Gaussian distributed arrival times of photons have the same
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average (τ = 0), since our main objective is to study the
effect of randomness (in photon arrival times) in the two
setups of Fig. 1. On the other hand, constant bias in the
average arrival times of single photons can be compensated
for with delay lines. Photons in Figs. 1(a) and 1(b) differ in
central frequency in Eq. (2): In setup (a) photons have the
same central frequency �k = �, whereas in setup (b) central
frequencies are generally different, �k �= �l for k �= l .

A. Setup (a): No time resolution by detectors

Here we briefly recall the partial distinguishability theory
[6,19] directly applicable to setup (a) in Fig. 1. We therefore
set the same central frequency �k = � in Eq. (2). An explicit
expression for the distinguishability function of our Gaussian
model and an exponential approximation [see Eqs. (11), (12),
and (14) below] have not been reported before. Photodetection
without arrival time resolution is described by the following
positive operator valued measure (POVM) [6]:

�̂m = 1

m!

∫
dt1 . . .

∫
dtN

[
N∏

k=1

b̂†
lk

(tk )

]
|0〉〈0|

N∏
k=1

b̂lk (tk ),

(3)

where m = (m1, . . . , mM ), ml is the number of photons in
output port l , and m! = m1! . . . mM!. The probability p̃m of
a given output configuration m is

p̃m = Tr{�̂mρ̂1 ⊗ · · · ⊗ ρ̂N }. (4)

To compute the probability, we observe that Eq. (1) leads to
the following identity [6]:

〈0|
[

N∏
k=1

b̂lk (tk )

]
N∏

k=1

â†
k (t ′

k )|0〉 =
∑

σ

N∏
k=1

Uσ (k),lk δ(t ′
k − tσ−1(k) ),

(5)

where σ is a permutation of N objects. Identity (5) allows
straightforward computation of the inner products involving
boson operators in Eq. (4). In particular, for the integrand∏N

k=1 |�k,τk 〉〈�k,τk | in the integral over τ1, . . . , τN in the input
state ρ̂1 ⊗ · · · ⊗ ρ̂N , with ρ̂k of Eq. (2), we get the following
inner product (and a similar conjugated one):∫

dt ′
1 . . .

∫
dt ′

N 〈0|
[

N∏
k=1

b̂lk (tk )

]
N∏

k=1

�k,τk (t ′
k )â†

k (t ′
k )|0〉

=
∑

σ

N∏
k=1

Uσ (k),lk �k,τk (tσ−1(k) ). (6)

The probability p̃m becomes [6,19]

p̃m = 1

m!

∑
σ1,σ2

J
(
σ1σ

−1
2

) N∏
k=1

U ∗
σ1(k),lkUσ2(k),lk , (7)

with a distinguishability function J (σ ), given in this case by

J (σ ) = Tr(P†
σ ρ1 ⊗ · · · ⊗ ρN ), (8)

where we have used the unitary operator representation Pσ

(P†
σ = Pσ−1 ) of permutation σ , defined by

Pσ |x1〉 ⊗ · · · ⊗ |xN 〉 = |xσ−1(1)〉 ⊗ · · · ⊗ |xσ−1(N )〉, (9)

and introduced the internal state ρk of photon k, defined as
follows:

ρk ≡
∫

dτ pk (τ )|φk,τ 〉〈φk,τ |, |φk,τ 〉 =
∫

dt φk,τ (t )|t〉,

φk,τ (t ) = 1

π1/4
√

Tk
exp

(
− (t − τ )2

2T 2
k

)
, (10)

where |t〉 is the time-basis state 〈t |t ′〉 = δ(t − t ′) and pk (τ ) is
given by Eq. (2) (note that �k,τ (t ) = e−i�ktφk,τ (t )).

1. Identical mixed internal states: ρk = ρ

Distinguishability due to mixed internal states, e.g., as in
Eq. (10), is similar to the usual pure-state-overlap distin-
guishability [4]; e.g., for two photons with internal states ρ1

and ρ2 the average absolute value squared of the state overlap
is Tr(ρ1ρ2). However, unlike the pure-state distinguishability,
taking two photons in the same mixed internal state ρ1,2 =
ρ does not make them indistinguishable, since Tr(ρ2) �= 1.
Therefore, the effect of distinguishability is already witnessed
in the simplest case, when the internal mixed states are the
same, which we consider in what follows. In calculations, we
will use �τk = �τ and Tk = T [see Eqs. (2) and (10)], so that
ρk = ρ, for all k = 1, . . . , N . In this case, the expression for
distinguishability function J (σ ) of Eq. (8) simplifies consid-
erably [6,19]:

J (σ ) =
N∏

n=2

Tr(ρn)Cn(σ ), (11)

where Cn(σ ) is the number of permutation cycles of length n
in the disjoint cycle decomposition of σ , i.e., permutations of
the type i1 → i2 → · · · → in → i1 (for more information see
Ref. [41]). The higher order purities Tr(ρn) for n = 2, . . . , N
govern partial distinguishability of N single photons in the
same (mixed) internal state ρ. For the Gaussian model of
Eq. (10), moreover, the purities can be evaluated explicitly,
as this amounts to evaluating multidimensional Gaussian in-
tegrals. Let us introduce the relative uncertainty in time of
arrival by dividing the standard deviation of photon arrival
time by its pulse duration η ≡ �τ

2T . From Eqs. (8) and (10),
we obtain for n � 2 (for more details, see Appendix A)

Tr(ρn) = (1 + 2η2)−
n
2 (X n

+ − X n
−)−1,

X 2
± = 1

2

(
1 ±

√
1 + 4η2

1 + 2η2

)
. (12)

When η → 0 we get Tr(ρn) = 1 and thus J (σ ) = 1, i.e.,
the ideal case with completely indistinguishable bosons. For
small η � 1, by expanding ln(1 + 2η2) = 2η2 + O(η4) and
X n

+ − X n
− = 1 + O(nη4), we arrive at an exponential approxi-

mation

Tr(ρn) = e−n(η2+O(η4 )) ≈ e−nη2
(13)

[see also Fig. 2 in Appendix A for a numerical comparison of
the expressions in Eqs. (12) and (13)]. Substituting approxi-
mation (13) into Eq. (11) gives

J (σ ) ≈ exp(−η2[N − C1(σ )]), (14)
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where we have used that the cycle lengths add up to N :∑N
n=1 nCn(σ ) = N .

2. Rescaling the output probability of setup (a)

Below we will compare the output probability in two setups
of Fig. 1. Setup (b) involves continuous basis of states in time
(see the next section), with the usual problem of normaliza-
tion for continuous bases. Instead of introducing an arbitrary
countable state basis [42] for setup (b), it is more convenient to
use the unnormalized symmetric basis states. For comparison
of the two setups, we have to rescale the output probability of
setup (a) in such a way that similar unnormalized symmetric
basis states at the output are used, instead of the usual Fock
states.

Let us rescale the output probability of Eq. (7) as fol-
lows: p� ≡ m!

N! p̃m, where a multiset of output ports � =
(l1, . . . , lN ) corresponds to output configuration m. Observe
that, due to the summation identity for any symmetric function
f (l1, . . . , lN )

∑
m

f (l1, . . . , lN ) =
M∑

l1=1

. . .

M∑
lN =1

m!

N!
f (l1, . . . , lN ), (15)

the normalization of probability
∑

m p̃m = 1 becomes

M∑
l1=1

. . .

M∑
lN =1

p� = 1;

i.e., instead of occupation numbers m (output configuration)
the multiset of output ports l1, . . . , lN is formally considered
as the output data. From now on, we will also employ the su-
perscript, (a) or (b), to distinguish the probability distributions
of the two setups in Figs. 1(a) and 1(b). We obtain for the setup
in Fig. 1(a)

p(a)
� = Tr{��ρ̂1 ⊗ . . . ⊗ ρ̂N }

= 1

N!

∑
σ1,σ2

J
(
σ1σ

−1
2

) N∏
k=1

U ∗
σ1(k),lkUσ2(k),lk , (16)

with the POVM [compare with the Fock-state POVM �̂m of
Eq. (3)]

�� = 1

N!

∫
dt1 . . .

∫
dtN

[
N∏

k=1

b̂†
lk

(tk )

]
|0〉〈0|

N∏
k=1

b̂lk (tk ),

(17)

where 1√
N!

∏N
k=1 b̂lk (tk )|0〉 is the mentioned above unnor-

malized symmetric basis state of N bosons. The POVM of
Eq. (17) is positive semidefinite and normalized, since we
have

M∑
l1=1

. . .

M∑
lN =1

�� = 1

N!

∑
σ

Pσ ≡ SN , (18)

where SN is the projector on the symmetric states of N
particles, i.e., the identity operator in the Hilbert space of N
bosons.

B. Setup (b): Precise time resolution by detectors

Consider now the setup of Fig. 1(b), where, instead of
introducing the actual detection time δt � T , for simplicity,
we use the instantaneous detection model, and thus we will
consider probability density at output. The POVM density
��(t), where t = (t1, . . . , tN ), describing such sharply precise
photodetection can be obtained from that of Eq. (17) by
removing the integrals:

��(t) ≡ 1

N!

[
N∏

k=1

b̂†
lk

(tk )

]
|0〉〈0|

N∏
k=1

b̂lk (tk ). (19)

The probability density p�(t) of detecting N input photons in
the output ports � at times t is accordingly

p(b)
� (t) = Tr{��(t)ρ̂1 ⊗ · · · ⊗ ρ̂N }. (20)

As in the previous section, using the identity of Eq. (5) one
can easily compute the inner products in Eq. (20) involving
the boson creation and annihilation operators. By comparing
Eqs. (20) and (16), one concludes that computation of the
above inner products amounts to repeating that of Sec. II A,
however with the integration over photodetection times re-
moved, and rescaling. The following result is obtained:

p(b)
� (t)= 1

N!

∑
σ1,σ2

J (t; σ1, σ2)
N∏

k=1

U∗
σ1(k),lk(tk )Uσ2(k),lk(tk ),

Uk,l (t ) ≡ e−i�ktUk,l , (21)

with the distinguishability function [compare with Eq. (8)]

J (t; σ1, σ2)

=
N∏

k=1

∫
dτk pk (τk )φ∗

k,τk
(tσ−1

1 (k) )φk,τk

(
tσ−1

2 (k)

)
= Tr

(
P†

σ1
|t1〉〈t1| ⊗ . . . ⊗ |tN 〉〈tN |Pσ2ρ1 ⊗ . . . ⊗ ρN

)
=

N∏
k=1

〈
tσ2(k)

∣∣ρk

∣∣tσ1(k)
〉
, (22)

where the inner state ρk of photon k is given in Eq. (10) and
Pσ is defined in Eq. (9).

Note that the internal states of photons that define the
distinguishability functions in Eqs. (8) and (22) are the same
and given by Eq. (10), i.e., irrespectively, whether we consider
the setup with or without precise time resolution. Moreover,
the following relation holds between the distinguishability
functions of the two setups:∫

dt1 . . .

∫
dtNJ (t; σ1, σ2) = J

(
σ−1

1 σ2
)
. (23)

Distinguishability function in the form similar to that of
Eq. (22) has appeared before in discussion of the effect of
state-resolving photodetection on multiphoton interference
[27]; however, no analysis of partial distinguishability in such
a setup was attempted before.
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For input photons in pure states, i.e., for �τk = 0, the
distinguishability function J Eq. (22) factorizes as follows:

J (t; σ1, σ2) =
N∏

k=1

φ∗
k,0

(
tσ−1

1 (k)

)
φk,0

(
tσ−1

2 (k)

)
=

N∏
k=1

φ∗
σ1(k),0(tk )φσ2(k),0(tk ) (24)

[in this case τ = 0 in φk,τ (t ) of Eq. (10)]. In this special case,
using the relation �k,0(t ) = e−i�ktφk,0(t ), one obtains

p(b)
� (t) = 1

N!

∣∣∣∣∣∑
σ

N∏
k=1

Uσ (k),lk �σ (k),0(tk )

∣∣∣∣∣
2

; (25)

i.e., the output probability is given by absolute value squared
of a single matrix permanent of Bj,k ≡ Uj,lk � j,0(tk ), where
the matrix permanent of an N-dimensional matrix B is de-
fined as per(B) = ∑

σ

∏N
k=1 Bσ (k),k , where the sum is over all

permutations σ of N objects. Thus, our approach reproduces
the so-called multiboson correlation sampling with pure-state
single photons [23]. In this case, the photons are completely
indistinguishable (see also below). However, the states of
photons in any experiment are mixed states due to various
sources of noise, not allowing the factorization of J as in
Eq. (24).

When the distinguishability function in Eq. (22) satisfies
J (t; σ1, σ2) = 0 whenever σ1 �= σ2, there is no multiphoton
interference, since the output probability is a convex combi-
nation of products of probabilities for each photon. Indeed, by

Eq. (22) 0 � J (t; σ, σ ) � 1, whereas from Eq. (21) we get

p(b)
� (t) = 1

N!

∑
σ

J (t; σ, σ )
N∏

k=1

∣∣Uσ (k),lk (tk )
∣∣2

. (26)

The output probability density in Eq. (26) can be simulated
with classical particles (which are classically indistinguish-
able). Therefore, it is the classical limit, in accordance with the
theory [6,19]. It occurs when the overlap between the different
photon pulses vanishes, which in the model of Eq. (2) is the
limit of infinite relative uncertainty in arrival times of photons
�τk/Tk → ∞.

1. Identical mixed internal states: ρk = ρ

In general, for different (mixed) internal states of pho-
tons, ρk �= ρ j for k �= j, the distinguishability function J
of Eq. (22) depends on two permutations separately. As
discussed in the previous section, we focus on the simplest
case of photons in the same mixed internal state. When
ρk = ρ in Eq. (10) (i.e., �τk = �τ and Tk = T ), we get
that J of Eq. (22) depends only on the relative permutation,
J (t; σ1, σ2) = J (t; σ1σ

−1
2 , I ) (σ = I being the identity per-

mutation), thanks to the following identities:

Pσ2ρ ⊗ · · · ⊗ ρ = ρ ⊗ · · · ⊗ ρPσ2 , Pσ2 P†
σ1

= P†
σ1σ

−1
2

. (27)

Below we focus on this simplified case and use the nota-
tion J (t; σ ) ≡ J (t; σ, I ). Evaluating Gaussian integrals in
Eq. (22), we get

J (t; σ ) = 1

(π [T 2 + �τ 2)N/2
exp

[
−

∑N
k=1 t2

k

T 2 + �τ 2
−

(
�τ

2T

)2 ∑N
k=1

(
tk − tσ (k)

)2

T 2 + �τ 2

]
. (28)

Unlike J (σ ) of the previous section, we have J (t, I ) =
p(t) �= 1, where we have introduced the probability density
p(t) of detecting photons at times t, irrespective in which
output ports of a spatial interferometer U the input photons
are detected. Indeed, by unitarity of matrix U , we have from
Eq. (21) (starting with general ρk)

p(t) ≡
M∑

l1=1

. . .

M∑
lM=1

p(b)
� (t)

= 1

N!

∑
σ1,σ2

J (t; σ1, σ2)
N∏

k=1

δσ1(k),σ2(k)e
i(�σ1 (k)−�σ2 (k) )tk

= 1

N!

∑
σ

J (t; σ, σ )
ρk→ρ= J (t, I ), (29)

since for ρk = ρ we have J (t; σ, σ ) = J (t; σσ−1, I ) =
J (t; I ) and there are exactly N! permutations σ of N objects.

It is clear from Eqs. (26) and (29) that the probability
density p(t) is also the weight of the respective classical
contribution to output probability density of detecting photons
and times t (in any output ports �). Recall that in the setup

of Fig. 1(a) the weight of the classical contribution to output
probability is always J (I ) = 1, by the normalization of the
distinguishability function, Eq. (8). Therefore, to compare
the distinguishability of photons in the two setups, for each
given set of photodetection times t in setup (b), we rescale
J (t; σ ) so that the classical contribution is also weighted by
1. We therefore divide the distinguishability function J (t; σ )
of Eq. (28) by the probability density p(t) of Eq. (29).
Hence, the proper distinguishability function of setup (b)
becomes

J̃ (t; σ ) ≡ J (t; σ )

p(t)
=

N∏
k=1

〈tk|ρ|tσ (k)〉
〈tk|ρ|tk〉

= exp

(
−η2

∑N
k=1

(
tk − tσ (k)

)2

T 2 + �τ 2

)
. (30)

Let us introduce the following pure states,

χk (t ) ≡ 1

(π [T 2 + �τ 2])1/4
exp

(
−i�kt − t2

2(T 2 + �τ 2)

)
,

(31)
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and then from Eq. (29) we get

p(t) =
N∏

k=1

|χk (tk )|2. (32)

Now we can recast the probability density of Eq. (21) in the
following form:

p(b)
� (t) = 1

N!

∑
σ1,σ2

J̃
(
t; σ1σ

−1
2

) N∏
k=1

Ũ∗
σ1(k),lk (tk )Ũσ2(k),lk (tk ),

Ũk,l (t ) ≡ Uk,lχk (t ). (33)

For �τ = 0, i.e., photons in pure states, we get from Eq. (30)
J̃ (t; σ ) = 1 and Eq. (33) reduces to the single permanent
expression of Eq. (25) [in this case χk (t ) = φk,0(t )]. In any
experiment, however, mixed states of photons invariably lead
to partial distinguishability with some nontrivial distinguisha-
bility function J̃ (t; σ ) in Eq. (33), for our Gaussian model
given by Eq. (30).

We already know from Eq. (23) that the proper distin-
guishability function J̃ (t; σ ) averaged over p(t) coincides
with J (σ ). There is, moreover, an insightful similarity rela-
tion, in the functional dependence on σ , between the proper
distinguishability functions of the two setups of Fig. 1 for
small η � 1. Namely, the argument in the exponent in the
case of J̃ (t; σ ), Eq. (30), averaged over random photodetec-
tion times t with the probability density p(t), Eq. (32), gives
−η2(N − C1(σ )), i.e., the argument in the exponent of J (σ ) in
Eq. (14). Indeed, there are exactly N − C1(σ ) nonzero average
squared differences (tk − tσ (k) )2 with the same value

∫
dt1

∫
dt2|χ (t1)|2|χ (t2)|2(t1 − t2)2 = T 2 + �τ 2.

The similarity of partial distinguishability of photons in the
two setups reveals that distinguishability due to mixed states
is not compensated for by increasing photodetection time
resolution up to arbitrarily sharp resolution.

Note that the output probability formula given by Eqs. (31)
and (33) corresponds a nonunitary spatiotemporal transforma-
tion matrix Ũk,l (t j ) for any finite photon pulse width T . In
contrast, the same probability density in the form of Eq. (21)
has the desired unitarity feature of Uk,l (t j ), where the tem-
poral part of the combined spatiotemporal “interferometer” is
given by the Fourier transform. Thus, according to Eq. (21),
photodetection with precise time of arrival resolution also
performs a unitary transformation, additional to the one per-
formed by a spatial interferometer. By doing this, it converts
the running phases, e−�kt , of photons into operating modes,
in the terminology of Refs. [6,19], thus they are not part
of internal states in Eq. (10). This is reflected in the fact
that (as we show in the next section) while the rescaled
function J̃ (t; σ ) of Eq. (30) is the proper distinguishability
function, it is nevertheless the function J (t; σ ) of Eq. (28),
or, equivalently, J̃ (t; σ ) jointly with p(t), describe the quality
of multiphoton interference in the setup of Fig. 1(b).

III. MEASURE OF INDISTINGUISHABILITY AND
QUALITY OF EXPERIMENTAL BOSON SAMPLING

Let us now quantify how distinguishability affects the qual-
ity of multiphoton interference and boson sampling in the two
setups considered in the previous section, where the quality
is measured by closeness to the ideal case with completely
indistinguishable bosons.

Previously, for the setup in Fig. 1(a), we have introduced
[7] a measure of indistinguishability of bosons (describing
also the quality of multiphoton interference on a spatial
multiport) given by 1 − ds, where ds is the projection of the
internal state of bosons on the symmetric subspace (which
corresponds to completely indistinguishable bosons [6,19]).
This measure serves as an upper bound on the total variation
distance between the respective distributions with completely
indistinguishable and partially distinguishable bosons. The
total variation distance between two distributions is equal
to the largest possible difference in probabilities that the
two distributions can assign to the same event; it was also
employed in the analysis of computational complexity of
boson sampling in Ref. [2]. It was also argued in Ref. [7]
that the bound must be tight, since ds is the probability that
bosons behave as completely indistinguishable. Below we find
an equivalent measure of indistinguishability for the setup of
Fig. 1(b).

Let us now introduce the ideal case (i.e., with completely
indistinguishable bosons) of the two setups of Fig. 1 by setting
J (σ ) = 1 in Eq. (16) and J̃ (t, σ ) = 1 in Eq. (33). Denote the
probabilities [probability density for setup (b)] in the ideal
case by p̊(a)

� and p̊(b)
� (t), respectively. From Eq. (16) we get

p̊(a)
� = 1

N!

∣∣∣∣∣∑
σ

N∏
k=1

Uσ (k),lk

∣∣∣∣∣
2

= |per(U [1...N |l1...lN ]|2
N!

, (34)

where U [1...N |l1...lN ] is a submatrix of U on rows 1, . . . , N
and columns l1, . . . , lN . Similarly, setting J̃ (t; σ ) = 1 in
Eq. (33) we obtain

p̊(b)
� (t) = |per(Ũ[1...N |(l1, t1)...(lN , tN )]|2

N!
, (35)

where Ũ[1...N |(l1, t1)...(lN , tN )] is a similar submatrix of
Ũk,l (t ) of Eq. (33).

One comment is in order on Eq. (35). From the previous
section, we know that in the case of setup (b) photons in what-
ever pure states are completely indistinguishable. However,
the output distribution of Eq. (33) for photons in mixed states
can approximate that of Eq. (35) for photons in pure states
only if in the latter case the same distribution p(t) of detection
times appears, Eq. (32), since p(t) is independent of the
proper distinguishability function J̃ . Therefore, in Eq. (35)
we choose pure state of photon k to be χk (t ) of Eq. (31) [with
�τ �= 0, in contrast to Eq. (25)], which guarantees the same
p(t).
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Consider how close the distribution of photons at the output
of a spatial multiport is to the ideal case in the two setups,
where the closeness is given by the total variation distance:

D(a) = 1

2

M∑
l1=1

. . .

M∑
lN =1

∣∣p(a)
� − p̊(a)

�

∣∣, (36)

D(b) = 1

2

∫
dt1 . . .

∫
dtN

M∑
l1=1

. . .

M∑
lN =1

∣∣p(b)
� (t) − p̊(b)

� (t)
∣∣.
(37)

One comment is in order on Eqs. (36) and (37). On the
right-hand side, we have rescaled probabilities of Eq. (16)
and (21), where output ports � (and also photodetection
times t) appear in the summations (integrals), instead of
Fock state occupations. The output probability of setup (a)
is symmetric in � and that of setup (b) in (�, t), and thus
permutations of order in � [respectively, in (�, t)] do not
change the probabilities. Since, moreover, both distributions
are appropriately rescaled, Eqs. (36) and (37) correctly give
the total variation distance. For instance, in the case of setup
(a) by combining all the possible sequences of output ports �

corresponding to the same output configuration m and using
the summation identity of Eq. (15) we get

M∑
l1=1

. . .

M∑
lN =1

∣∣p(a)
� − p̊(a)

�

∣∣ =
∑

m

| ˚̃pm − p̃m|,

where p̃m is the probability given in Eq. (7) and p̊(a)
m is the

respective probability for J (σ ) = 1 (the ideal case).
In Ref. [7] for identical internal states ρk = ρ it was shown

that

D(a) � 1 − ds, ds = Tr(SNρ ⊗ · · · ⊗ ρ) = 1

N!

∑
σ

J (σ ),

(38)

where SN is defined in Eq. (18). We remind here that ds

defined in Eq. (38) is the probability that internal state of
N single bosons, ρ ⊗ · · · ⊗ ρ, is a state of N completely
indistinguishable bosons, in this case

ρ̊ ≡ SNρ ⊗ · · · ⊗ ρSN

ds
, (39)

since SN is a projector on a symmetric state. Therefore, ds tells
us how indistinguishable bosons are in an experimental setup
(more details in Ref. [7]).

Now let us find an equivalent measure, which replaces ds

of Eq. (38), in the case of setup of Fig. 1(b). To this goal, let
us generalize the derivation of the upper bound in Eq. (38)
to setup (b). The probability of Eq. (33), in comparison to
that of Eq. (16), has one essential new feature: Dependence
of the distinguishability function J̃ on the output data (pho-
todetection times t). Notwithstanding this fact, the main idea
of Ref. [7] applies also to setup (b): We recast the output
probability in a form where the distinguishability function
serves as a “state” in some auxiliary linear space spanned by
N! permutations, whereas the spatial interferometer U and
photodetection combine to a corresponding POVM in that
linear space. This simple trick not only allows us to derive

a bound on the total variation distance D(b) of Eq. (37),
similar to that of Eq. (38), but also to find the measure
of indistinguishability for setup (b), equivalent to that for
setup (a).

Let us introduce an auxiliary linear space spanned by N!
basis vectors |σ 〉, where one vector is introduced for each
permutation σ of N objects. Next, we introduce a “state”
(more precisely, state density) J(t) corresponding to the dis-
tinguishability function J̃ (t; σ ):

〈σ1|J(t)|σ2〉 ≡ 1

N!
J̃

(
t; σ1σ

−1
2

)
. (40)

The distinguishability function J̃ (t; σ ) Eq. (30) is a
positive-semidefinite function over permutations; i.e., for any
complex-valued function z(σ ) we have

∑
σ1,σ2

J̃
(
t; σ1σ

−1
2

)
z(σ1)z∗(σ2)

=
∑
σ1,σ2

z(σ1)z∗(σ2)
N∏

k=1

〈
tσ2(k)

∣∣ρ∣∣tσ1(k)
〉

〈tk|ρ|tk〉 � 0.

Therefore, the introduced operator in Eq. (40) is a positive
semidefinite operator in the auxiliary linear space, normalized
as follows:

tr(J(t)) ≡
∑

σ

〈σ |J(t)|σ 〉 = 1. (41)

Next, we introduce rank-1 POVM on vectors |Z�(t)〉 in the
auxiliary linear space, where

〈σ |Z�(t)〉 ≡
N∏

k=1

Ũσ (k),lk (tk ), (42)

with Ũk,l (t ) from Eq. (33). The probability density of Eq. (33)
becomes an average in the auxiliary linear space,

p(b)
� (t) = 〈Z�(t)|J(t)|Z�(t)〉. (43)

In the ideal case, i.e., with J̃ (t; σ ) = 1, Eq. (40) tells us that
the corresponding auxiliary “state” is a projector

J̊(t) = |S〉〈S|, 〈σ |S〉 ≡ 1√
N!

. (44)

The key observation for the below derivation is that J(t) of
Eq. (40) has |S〉 of Eq. (44) as an eigenvector, as can be
easily established by verification using the definition. We have
therefore

J(t) = λ(t)|S〉〈S| + (1 − λ(t))J(⊥)(t), (45)
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with

λ(t) = 〈S|J(t)|S〉 = 1

N!

∑
σ

J̃ (t; σ ) � 1, (46)

where a positive semidefinite operator J(⊥)(t) is normalized
by tr(J(⊥)(t)) = 1 and satisfies the orthogonality condition
J(⊥)(t)|S〉 = 〈S|J(⊥)(t) = 0.

Note that due to our specific choice of the ideal case in
Eq. (35) with χk (t ) of Eq. (31), all the introduced “states” in
the auxiliary linear space correspond to the same probability
density p(t), given by Eq. (32). Indeed, in the ideal case,
by repeating the calculation of Eq. (29) for p(b)

� (t)|λ(t)=1 =

p̊(b)
� (t), we get

M∑
l1=1

. . .

M∑
lN =1

p̊(b)
� (t) =

N∏
k=1

|χk (tk )|2. (47)

From Eq. (45) we obtain the same result for the prob-
ability density p(b)

� (t)|λ(t)=0 corresponding to the “state”
J(⊥)(t). Hence, the same holds for p(b)

� (t)|λ(t)= f (t) with any
non-negative function f (t) � 1, e.g., for the probability
p(b)

� (t)|λ(t)=1/2 corresponding to the state 1
2 [|S〉〈S| + J(⊥)(t)].

This important fact will be used below.
Rewriting the total variation distance of Eq. (37) in the

introduced notations, we obtain

D(b) = 1

2

∫
dt1 . . .

∫
dtN

M∑
l1=1

. . .

M∑
lN =1

|〈Z�(t)|J̊(t) − J(t)|Z�(t)〉|

= 1

2

∫
dt1 . . .

∫
dtN [1 − λ(t)]

M∑
l1=1

. . .

M∑
lN =1

|〈Z�(t)|(|S〉〈S| − J(⊥)(t))|Z�(t)〉|

�
∫

dt1 . . .

∫
dtN [1 − λ(t)]

M∑
l1=1

. . .

M∑
lN =1

〈Z�(t)

∣∣∣∣1

2
(|S〉〈S| + J(⊥)(t))

∣∣∣∣Z�(t)〉

=
∫

dt1 . . .

∫
dtN [1 − λ(t)]

M∑
l1=1

. . .

M∑
lN =1

p(b)
� (t)

∣∣∣∣
λ(t)= 1

2

=
∫

dt1 . . .

∫
dtN [1 − λ(t)]p(t)

= 1 − 1

N!

∑
σ

∫
dt1 . . .

∫
dtNJ (t; σ ) = 1 − ds, (48)

where we have used that 1
2 [|S〉〈S| + J(⊥)(t)] is positive semidefinite operator in the auxiliary linear space corresponding to

λ(t) = 1/2 in Eq. (45), have taken into account the above discussed fact that p(b)
� (t)|λ(t)=1/2 = p(t), with p(t) of Eq. (32), and

have used the relations between the distinguishability functions J , J̃ , and J , given by Eqs. (23) and (29), and the definition of
ds in Eq. (38).

Thus, for the setup in Fig. 1(b) we have obtained the same bound on the total variation distance to the ideal case as for
the setup in Fig. 1(a). The physical reason for this is that in these two setups the (total) probability that the input photons are
completely indistinguishable is the same. Let us show that ds of Eq. (38) is also the total probability that photons are completely
indistinguishable in the case of setup of Fig. 1(b). Indeed, given photodetection times t, by the fact that the projector |S〉〈S|
of Eq. (45) corresponds to the ideal case in setup (b), the conditional on t probability density that photons in setup (b) are
completely indistinguishable reads d (b)

s (t) = λ(t), where λ(t) is the eigenvalue of J(t) in Eq (45). This can be also established
using the internal state, conditional on given photodetection times t, which is easily obtained by comparing Eqs. (8) and (39)
with Eq. (22):

d (b)
s (t) ≡

[ ∏N
k=1

⊗〈tk|
]
SNρ ⊗ · · · ⊗ ρSN

[ ∏N
k=1

⊗|tk〉
]

p(t)

= Tr(SN |t1〉〈t1| ⊗ · · · ⊗ |tN 〉〈tN |SNρ ⊗ · · · ⊗ ρ)

p(t)

= 1

N!

∑
σ

J (t; σ )

p(t)
= 1

N!

∑
σ

J̃ (t; σ ) = λ(t), (49)

where we have used the definition of SN (18) and Eq. (46). The total probability is therefore

d (b)
s ≡

∫
dt1 . . .

∫
dtN p(t)d (b)

s (t)

= 1

N!

∑
σ

∫
dt1 . . .

∫
dtNJ (t; σ ) = ds, (50)
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by Eqs. (46) and (49), the relation between the distinguishabil-
ity functions in Eq. (23) and the definition of ds (38). Hence,
the bound 1 − ds in Eqs. (38) and (48) bears the same physical
interpretation for both setups of Fig. 1.

As an application, consider how small the purity of single
photons should be for a good quality experimental boson sam-
pling. Our common upper bound 1 − ds can give a sufficient
purity. An explicit expression can be obtained with the use of
the approximation of Eq. (14), which is very good for η �
0.125 (see Fig. 2 in Appendix A). We have (see mathematical
details in Appendix B)

ds ≈ exp(−η2N )
N∑

n=0

1

n!

(
eη2 − 1

)n

= exp(−η2N )

[
eη2 +

N∑
n=2

1

n!

(
eη2 − 1

)n

]
. (51)

For a given purity of single photons, P ≡ Tr(ρ2) ≈ e−2η2
by

Eq. (13), from Eq. (51) we get

D(a,b) � 1 − ds ≈ P N−1
2

[
1 +

N∑
n=2

(1 − √
P )n

n!P n−1
2

]
. (52)

For illustration, to have up to 10% deviation from the ideal
case of N-photon experimental boson sampling for 20 � N �
50 photons our estimate necessitates the photon state purity
0.989 � P � 0.996.

IV. CONCLUSION

We have considered how inevitable noise affects multipho-
ton interference with single photons in two different setups:
in the setup with photons of the same central frequency on a
spatial interferometer and slow detectors, incapable of time
resolution, proposed for realizing boson sampling [2], and
in the setup with photons of different central frequencies on
the same spatial interferometer and fast detectors, capable of
precise time resolution, the so-called multiboson correlation
sampling of Ref. [23]. To be able to carry out all calculations
explicitly, we have focused on the specific model of mixed-
state input photons having Gaussian temporal shapes with
random arrival times governed by a Gaussian distribution. We
have revealed clear physical interpretations of main results,
and thus the conclusions are independent of the considered
model.

We have found that the partial distinguishability theory
of Refs. [6,19] applies also to multiphoton interference with
photodetection capable of precise time resolution, and more-
over, the output probability distribution is given by a similar
mathematical expression as for the time-unresolved photode-
tection, where a function on a permutation group describes
partial distinguishability of photons. For input photons in pure
states, the output probability is given by the absolute value
squared of a single matrix permanent, reproducing the results
of Refs. [21,23]. In this case, photons are completely indistin-
guishable, since photodetection with precise time resolution
turns the otherwise internal (temporal) states of photons into
the operating modes by coherently mixing different paths of
photons. Separation of degrees of freedom into the operating

modes and the internal states is the prerequisite for application
of the general theory of Refs. [6,19]. We find that, while the
average pure states of photons are operating modes under
the photodetection with precise photon state resolution, the
fluctuations about them are not, and thus photons in mixed
states are always partially distinguishable.

Whereas, with the operating modes and internal states
being properly identified, the applicability of the theory of
Refs. [6,19] to photodetection with precise time resolution
may not come as big surprise (though other views exist [21]),
the striking similarity of distinguishability of photons due to
mixed states under photodetection with and without precise
time resolution and the same probability of photons to behave
as completely indistinguishable in the two cases are rather
surprising. These facts have broad implications. For instance,
purity of photons, usually reported alongside with photon
distinguishability in current experiments, e.g., Refs. [37,38],
is in fact, the unavoidable distinguishability, whatever the
photodetection scheme employed. This implies that there is no
advantage in quality of the so-called multiboson correlation
sampling of Ref. [23] over the standard boson sampling [2] if
photons of the same purity are used in both schemes.

Though we have focused only on state-resolving photode-
tection where times of arrival are resolved by detectors, there
is nothing special about the particular detection scheme con-
sidered. Our main results on distinguishability due to mixed
states (noise) in an experimental setup are also applicable to
frequency-resolved photodetection of photons with different
times of arrival, as, for instance, in a recent experiment [43],
with the roles played by time and frequency interchanged.

Finally, since the theory of Refs. [6,19] is applicable to
the case of photodetection with precise time (or frequency)
resolution, all the previous results apply also to such setups
as well, e.g., the fundamental limits on the quality of boson
sampling experiments [6,7] and the classical simulation al-
gorithm, due to partial distinguishability [8]. We believe that
this general conclusion provides a basis for assessment of
experimental boson sampling setups with different detection
schemes for demonstration of quantum advantage over classi-
cal computers.
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APPENDIX A: ON DERIVATION OF EQ. (12)

Here we derive the expression for Tr(ρn) of Eq. (12). We
have (with index j mod n)

Tr(ρn) =
∫

dτ1 p(τ1) . . .

∫
dτn p(τn)

n∏
j=1

〈φ j,τ j |φ j+1,τ j+1〉

= 1

(π�τ 2)n/2

∫
dτ1 . . .

∫
dτn
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FIG. 2. Higher order purity Tr(ρn) (blobs) and its approximation
by the exponent in Eq. (12) (circles) vs n for several values of η =
�τ

2T , from top to bottom: η = 0.05; 0.1; 0.125.

× exp

[
−

∑n
j=1 τ 2

j

�τ 2
−

∑n
j=1(τ j − τ j+1)2

4T 2

]

= 1

πn/2

∫
dx1 . . .

∫
dxn exp

⎛⎝−
n∑

i, j=1

xiAi jx j

⎞⎠
= 1√

detA
, (A1)

where x j ≡ τ j

�τ
and A is the circulant matrix, with the only

nonzero elements Aj j = 1 + 2η2 and Aj, j±1 = −η2. Determi-
nant of A is given by an explicit analytical expression [44].
For a general n-dimensional circulant matrix

A =

⎛⎜⎜⎝
a0 an−1 . . . a1

a1 a0 . . . a2
...

...
. . .

...
an−1 an−2 . . . a0

⎞⎟⎟⎠, (A2)

denoting ξ ≡ e
2iπ
n , we get [44]

det A =
n−1∏
j=0

f (ξ j ), f (ξ ) ≡ a0 + a1ξ + · · · + an−1ξ
n−1.

(A3)

In case of matrix A in Eq. (A1) we have only three nonzero
elements: a0 = 1 + 2η2 and a1 = an−1 = −η2. Using ξ n−1 =
ξ−1, we obtain

det A =
n−1∏
j=0

[
1 + 2η2 − 2η2 cos

(
2π j

n

)]

= (1 + 2η2)n
n−1∏
j=0

[
1 − 2η2

1 + 2η2
cos

(
2π j

n

)]

= (1 + 2η2)n(X n
+ − X n

−)2, (A4)
where in the last step we have used an identity of Ref. [45] for
the product and introduced X+ and X− as follows:

X 2
± = 1

2

(
1 ±

√
1 + 4η2

1 + 2η2

)
. (A5)

Equations (A1), (A4), and (A5) give the expression in Eq. (12)
of the main text.

Finally, to judge how good is the exponential approxima-
tion in Eq. (13) to the exact expression for Tr(ρn), Eq. (12) in
the main text, a numerical comparison of the two is given in
Fig. 2.

APPENDIX B: ON DERIVATION OF EQ. (51)

We can use the method of generating function to compute
the cycle sum ZN in

ds ≈ 1

N!

∑
σ

exp(−η2[N − C1(σ )]) = exp(−η2N )ZN ,

(B1)

with ZN ≡ 1
N!

∑
σ ζC1(σ ) and ζ ≡ eη2

. Using that∑N
n=1 nCn(σ ) = N and [41]

1

N!

∑
σ

(. . .) =
∑

C1,...,CN

(. . .)∏N
n=1 nCnCn!

,

we get the generating function F (X ) ≡ ∑
N�1 ZN X N as

follows:

F (X ) =
∑
N�1

1

N!

∑
σ

(Xζ )C1(σ )
N∏

n=2

X nCn (σ )

=
∑

C1,...,CN

(Xζ )C1
∏N

n=2 X nCn∏N
n=1 nCnCn!

= exp

(
[ζ − 1]X +

∞∑
n=1

X n

n

)

= exp ([ζ − 1]X )

1 − X
. (B2)

Therefore,

ZN = 1

N!

dN F (X )

dX N

∣∣∣∣
X=0

=
N∑

n=0

(ζ − 1)n

n!
, (B3)

which results in the expression for ds in Eq. (51) of Sec. III.
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