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Incomplete spontaneous decay in a waveguide caused by polarization selection
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Spontaneous decay of an excited atom in a waveguide is essentially modified by the spatial structure of a
vacuum reservoir. This is particularly exciting in view of a range of applications for quantum information science.
We found out that spontaneous decay can be incomplete, so the time dependence of the excited state population
asymptotically approaches to a nonzero value, under the conditions when the atomic transition frequency is
larger than the cutoff frequency of a waveguide and far from the vicinities of the cutoffs. The discovered effect
is explained by the emergence of the dark state, which is nondecaying due to polarization selection rules. It was
revealed for a single-mode waveguide with rectangular cross section both in a single-atom case and a diatomic
case when the long-range dipole-dipole interaction plays a significant role.
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I. INTRODUCTION

Atomic spontaneous decay is one of the most fundamental
phenomena of quantum electrodynamics, taking place due to
the coupling between an atom and vacuum reservoir. Now it is
well understood that changing the properties of the reservoir
can affect the spontaneous decay process. Thus, placing an
atom in a cavity or waveguide leads to significant alteration
of the decay rate [1–8]. In the case of a waveguide, this
effect dramatically depends on the ratio between the resonant
frequency of atomic transition ω0 and the cutoff frequency
of a waveguide ωc. In particular, in the well-known paper of
Kleppner [3], strong suppression of spontaneous decay under
condition ω0 < ωc was predicted. The same effect takes place
for an excited atom in photonic band gap crystals when ω0

falls in the range of the frequency gap of the environment
[9,10]. When ω0 approaches the vicinities of a photonic crys-
tal band gap where the local density of states is not smooth,
the suppression of decay is not complete, but only partial, so
only some part of the energy of the initial atomic excitation
is transferred to the electromagnetic field and the other part
remains in the atomic system. This effect is explained by
frequency selection and can be described in the framework
of two-level atom formalism neglecting the vectorial nature
of electromagnetic waves, as was done in Ref. [10].

In this paper we report the incomplete spontaneous decay
in a waveguide when the atomic transition frequency ω0 is
larger than ωc and far from the vicinities of the cutoffs of
the waveguide modes. We explain the revealed effect by
polarization selection. Our results raise the issue of the role
that polarization plays in the problem of spontaneous decay in
structured reservoirs. The revealed effect might be of general
interest in different topics of quantum physics; in particular,
quantum information storing and processing [11,12]. It can
be useful for the development and improvement of many
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quantum devices based on atomic systems in a waveguide,
such as single-photon switching [13–15], routers [16], tran-
sistors [17–19], frequency comb generators [20], and single-
photon frequency converters [21].

II. BASIC ASSUMPTIONS AND APPROACH

The theory employed here considers an ensemble of point-
like motionless atoms in a waveguide. This model is excellent
for ensembles of impurity atoms embedded in a transparent
dielectric under low temperatures that, therefore, provide a
fantastic and practically realizable playground for testing the
theory [22,23]. For concreteness, we assume that the atoms
are equal, having a nondegenerate ground state |gi〉 with
energy Eg and the total angular momentum Jg = 0 and an
excited state |ei〉 with Ee = Eg + h̄ω0, Je = 1 and natural free
space linewidth γ0 (h̄ is the Planck’s constant and the index
i = 1, . . . , N denotes quantities corresponding to the atom i
among N atoms). The excited state is thus triply degenerate
and splits into three Zeeman sublevels |ei,mJ 〉, which differ
by the angular momentum projection on the quantization axis
z – mJ = −1, 0, 1. For convenience, let us choose the z axis
coinciding with the axis of a waveguide. Assuming the walls
of a waveguide to be perfectly conductive (i.e., neglecting the
absorption), we can write the non-steady-state Schrödinger
equation for the wave function of the joint system, which
consists of the atoms and the electromagnetic field in a waveg-
uide, including a vacuum reservoir. This system is described
by the following Hamiltonian [24]:

Ĥ =
N∑

i=1

1∑
mJ =−1

h̄ω0|ei,mJ 〉〈ei,mJ |

+
∑
k,α

h̄ωk

(̂
a†

k,α âk,α + 1

2

)
−

N∑
i=1

d̂i · Ê(ri )

+ 1

2ε0

N∑
i �= j

d̂i · d̂ jδ(ri − r j ), (1)
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FIG. 1. Sketch of the waveguide and the atoms inside it.

where the first two terms correspond to noninteracting atoms
and the electromagnetic field in an empty waveguide, re-
spectively; the third term describes the interaction between
the atoms and the field in the dipole approximation; and the
last, the contact term, ensures the correct description of the
electromagnetic field radiated by the atoms [24]. In Eq. (1),
â†

k,α and âk,α are the operators of creation and annihilation of a
photon in the corresponding mode, ωk is the photon frequency,
d̂i is the dipole operator of the atom i, Ê(r) is the electric
displacement vector in a waveguide, and ri is the position of
the atom i.

Field operator Ê(r) can be obtained on the basis of well-
known classical mode expansion of the electromagnetic field
in a waveguide [25] followed by standard quantization [26].
The specific form of this operator is determined by the cross
section of a waveguide. For concreteness, we assume the
rectangular cross section with sizes a and b. In this case, Ê(r)
is given as follows:

Ê(r) =
∑
k,α

√
h̄

2ωk
Ek,α (x, y) exp (ikzz )̂ak,α + H.c., (2)

where α denotes the type of waveguide mode—TE (transverse
electric) or TM (transverse magnetic), i means imaginary unit.

Ex
k,TE(x, y) = − iknk

k2
m + k2

n

Bmn cos (kmx) sin (kny), (3)

Ey
k,TE(x, y) = ikmk

k2
m + k2

n

Bmn sin (kmx) cos (kny), (4)

Ez
k,TE(x, y) ≡ 0, (5)

Ex
k,TM(x, y) = ikzkm

k2
m + k2

n

Bmn cos (kmx) sin (kny), (6)

Ey
k,TM(x, y) = ikzkn

k2
m + k2

n

Bmn sin (kmx) cos (kny), (7)

Ez
k,TM(x, y) = Bmn sin (kmx) sin (kny). (8)

Here km = mπ/a, kn = nπ/b, and k = √
k2

m + k2
n + k2

z =
ωk/c. The indexes m and n are positive integers for TM
modes, and for TE modes m, n = 0, 1, 2, . . ., herewith both
indexes cannot be zero together. Bmn is the normalization con-
stant, which can be obtained on the basis of the standard form
of the field Hamiltonian. A reference point is chosen at one of
the corners of the cross section, so the space into a waveguide
corresponds to the positive values of the coordinates x and y
(see Fig. 1).

Formally solving the Schrödinger equation for the system
“atoms+field” and restricting ourselves by the states con-
taining no more than one photon (i.e., neglecting nonlinear

effects), one obtains a system of equations for the amplitudes
be of onefold atomic excited states with the coupling between
atoms described by the so-called Green’s matrix [27]. It is es-
sentially built up of Green’s functions of Maxwell equations,
describing the propagation of light in a waveguide from one
atom to another. This 3N×3N matrix plays a key role in the
theory, describing both single-atom effects and the radiative
transfer between different atoms.

According to the general quantum microscopic approach
essentially based on the coupled-dipole model, the Green’s
matrix Gee′ (ω) is given as follows:

Gee′ (ω) = − 2

γ0

{∑
g

Ve;gVg;e′ζ (h̄ω − Eg)

+
∑

ee

Ve;eeVee;e′ζ (h̄ω − Eee)

}
. (9)

This equation includes matrix elements of the operator V̂ of
the interaction between atoms and electromagnetic field; ζ (x)
is a singular function which is determined by the relation
ζ (x) = limk→∞ [1 − exp(ikx)]/x. To calculate the Green’s
matrix, we should perform a summation over resonant single-
photon states “g” as well as over nonresonant states with two
excited atoms and one photon “ee” (as greater length, see
[27]). Actually, this approach allows one to describe from
a single position both monatomic dynamics and cooperative
effects caused by interatomic dipole-dipole interaction. The
main idea of this approach was first proposed by Foldy [28];
further, it was developed by a number of authors; [29–33],
to name a few. This method was successfully used in our
group for the analysis of the optical properties of dense atomic
ensembles as well as for studying light scattering from such
ensembles [34–40]. Further, it allowed us to describe coop-
erative effects in atomic ensembles located in a Fabry-Perot
cavity [41,42] and near a conducting surface [43–45]. The
calculation of the explicit expressions for the Green’s matrix
corresponding to a waveguide is provided in the Appendix.

III. RESULTS AND DISCUSSION

A. Single-atom effect

We first analyze the spontaneous decay dynamics of a
single excited atom placed in a waveguide. The character
of decay dramatically depends on the transverse sizes of a
waveguide a and b, because these sizes determine the cutoff
frequency. Without any restriction of generality, we assume
a � b. It is known that if the resonant frequency of atomic
transition ω0 is less than the cutoff frequency of a waveguide
ωc, then single-atom spontaneous decay is totally suppressed
for any Zeeman sublevel [3]. This is explained by the fact that
in such a case, no one field mode at the transition frequency
can propagate in a waveguide as oscillating wave. Different
modes have different cutoff frequencies, and ωc is determined
by the mode, which has a minimal one. In the considered case,
it is a TE10 mode, so ωc = ωc

10 = cπ/a. When ω0 > ωc
10,

single-atom spontaneous decay is allowed, but the character
of this decay depends on the Zeeman sublevel which was ini-
tially populated. The developed theory allows us to consider
an arbitrary initial condition. From the experimental point of
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FIG. 2. Population of different Zeeman sublevels of the atomic
excited state depending on time. The transverse sizes of a waveguide
a = 4, b = 2. An atom is located at the axis of a waveguide. At t = 0
only one sublevel mJ = −1 is populated.

view, this is determined by the technique employed to excite
atoms. Generally, an atom can be prepared in a superposition
of the ground state and all the Zeeman sublevels of the excited
state. For clarity, we first consider the case when at initial time
only one Zeeman sublevel mJ = −1 is populated with 100%
probability. Electromagnetic field is initially in the vacuum
state.

Figure 2 shows the population dynamics of all Zeeman
sublevels of the atomic excited state Pe(t ) = |be(t )|2 cal-
culated for a given initial condition. The transverse sizes
of a waveguide were chosen as a = 4, b = 2 (hereafter we
consider the inverse wave number of radiation resonant to the
atomic transition k−1

0 = c/ω0 as a unit of length). In this case,
the transition frequency ω0 significantly exceeds the cutoff
frequency of a waveguide, ω0/ω

c = 4/π ≈ 1.27, and it is far
from the vicinities of the cutoffs of all the waveguide modes
(under the considered assumption of perfectly conducting
walls of a waveguide, these vicinities are infinitely narrow).
The waveguide with given transverse sizes is single mode,
because the cutoff frequencies of all the modes except TE10

exceed ω0 (see the inset in Fig. 2). Thus, only the TE10

mode is responsible for the spontaneous decay. An atom
was considered at the axis of a waveguide. In Fig. 2 we
see that the excitation probability of the sublevel mJ = −1
decreases with time from its initial value equal to 1 and
asymptotically approaches to 0.25 at large times. Thus, we
observe incomplete spontaneous decay. It is obvious that
the well-known mechanism of decay suppression which was
described in Refs. [3] and [10], namely, frequency selection,
cannot explain the observed effect under considered condi-
tions. Moreover, we see the gradual population of another
Zeeman sublevel—mJ = 1. Its excitation probability grows
from the initial value equal to 0, and approaches at large times
to the same asymptotic value 0.25. The sublevel mJ = 0 of the
excited state does not populate with time.

To explain the nature of the dependencies plotted in Fig. 2,
let us take into account that the process of spontaneous decay
is caused by the multiple emission and subsequent absorption

of virtual photons. The vector of electric field in the mode
TE10 has only one nonzero component along the y axis that is
clear from Eqs. (3)–(5). Therefore, upon the atomic transition
from the sublevel mJ = −1 to the ground state, only half of
the energy of atomic excitation transfers to the field subsystem
with the y-polarized photon. The subsequent absorption of the
y-polarized virtual photon leads to an equiprobable excitation
of the sublevels mJ = −1 and mJ = 1. Thus, as a result of
the multiple emission and absorption, a half of the energy of
atomic excitation transfers to the electromagnetic field, and
the remaining half is equally distributed among the sublevels
mJ = −1 and mJ = 1. The sublevel mJ = 0 does not populate
because the electric field in TE10 has no z component. We
call the described mechanism a “polarization selection.” In the
considered example, the dipole momentum of the transition
from the excited state mJ = −1 to the ground state has only
one circular component σ−, which can be presented as a
superposition of two linear components x and y. The y compo-
nent is decaying, while the decay of the x component is forbid-
den because the TE10 mode has no corresponding component
of the electric field. In fact, the effect of polarization selection
occurs upon the decay of such a superposition state, in which
some components are decaying while others correspond to the
dark state, which is nondecaying due to polarization effects.

Note that the effects described here can be correctly ex-
plained and clearly understood only if the polarization prop-
erties are taken into account. In the literature, one can find
different approaches to the description of the dynamics of
a two-level system (atom) embedded into a waveguide. In
a number of them, one-dimensional approximation for the
photon mode involved in the interaction is used (see, e.g.,
Ref. [46]). In general, the description of polarization effects
requires a realistic three-dimensional model for the photon
modes. This allows us to describe correctly the atomic dy-
namics both in a single-mode and in a multimode waveguide.

Since the Green’s matrix is only 3×3 in the case of a
single atom, we are able to obtain the analytical expres-
sions for the quantum amplitudes of the onefold atomic ex-
cited states be(t ) and, consequently, Pe(t ). For the sublevel
mJ = −1:

be(t ) = i

2

[
1 + exp

(
−γ ′

2
t

)]
,

Pe(t ) = 1

4

[
1 + 2 exp

(
−γ ′

2
t

)
+ exp(−γ ′t )

]
.

Thus, the spontaneous decay dynamics is described by biex-
ponential law. For the considered parameters γ ′ ≈ 3.8γ0.

For Zeeman sublevel mJ = 1 the dynamics is described as
follows:

be(t ) = i

2

[
−1 + exp

(
−γ ′

2
t

)]
,

Pe(t ) = 1

4

[
1 − 2 exp

(
−γ ′

2
t

)
+ exp(−γ ′t )

]
.

Note that the curves shown in Fig. 2 were obtained upon a
specific initial condition—when only one sublevel mJ = −1
was excited at t = 0. Of course, upon another initial condition
the results will differ. Thus, if the sublevel mJ = 0 of the
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excited state is initially populated, then spontaneous decay is
totally suppressed, i.e., Pe(t ) ≡ 1 for mJ = 0 and Pe(t ) ≡ 0 for
mJ = ±1. This is explained by the fact that the spontaneous
decay of a given sublevel requires the presence of field modes
with a nonzero z component that can propagate in a waveguide
as an oscillating wave. In the case when the sublevel mJ = 1 is
initially populated, the results are mirror symmetrical to those
shown in Fig. 1 (i.e., the curves for mJ = −1 and mJ = 1 are
swapped).

The rate of incomplete spontaneous decay is determined
by the parameter γ ′. It depends on the position of the atom in
the plane perpendicular to the axis of a waveguide (there is no
dependence on its z position, because all the points along the
z axis are physically equal in an infinite waveguide). By the
analysis of the eigenvalues of the Green’s matrix, we derived
the expression for γ ′:

γ ′ = 6πγ0

k2
0ab

√
1 − (

π
k0a

)2
sin2

(
πx1

a

)
, (10)

where x1 means the x coordinate of the atom. Note that γ ′ does
not depend on its y coordinate. The reason for this feature is
that the electric field in the TE10 mode has no dependence on
y, which is clear from Eq. (4).

To verify the explanation of the observed effect, we
changed the frequency of atomic transition. The alteration in
ω0, if it does not cross the cut-offs of the waveguide modes,
cannot qualitatively change the picture.

We carried out the calculations of the atomic excitation
dynamics in a waveguide with different transverse sizes. Our
analysis shows that in the case of a multimode waveguide,
the effect of incomplete spontaneous decay disappears. For
instance, when a = b = 8 (in such a waveguide ten modes at
the transition frequency can propagate long distances along
the axis: TE10, TE01, TE20, TE02, TE11, TE12, TE21, TM11,
TM12, TM21), we observe that upon the spontaneous decay of
any Zeeman sublevel mJ , other sublevels are almost not pop-
ulated. Herewith, all the energy of initial excitation transfers
to the electromagnetic field, and the decay dynamics can be
described by a traditional single-exponential law with a good
accuracy.

B. Diatomic effect

Alteration of the spatial structure of modes of the electro-
magnetic field in a waveguide leads not only to the modifica-
tion of single-atom properties, but also qualitatively changes
the character of any electromagnetic interaction between dif-
ferent atoms; in particular, the most pronounced dipole-dipole
interaction. This effect also dramatically depends on the ratio
between the transition frequency ω0 and the cutoff frequency
of a waveguide ωc. In the case of ω0 < ωc, photon exchange
between atoms is caused by near-field effects, so at long
distances it is suppressed [47]. This situation is a lot like
that taking place in a Fabry-Perot cavity with small separation
between the mirrors, when single-atom spontaneous decay of
some Zeeman sublevels is suppressed, but near-field energy
exchange between different atoms recovers decay dynamics
[41,42]. In the opposite case, ω0 > ωc, the dipole-dipole
interaction is essentially long range, and the dynamics of a

FIG. 3. Population of the excited state; a = 4, b = 2, x1 = x2 =
a/2, y1 = y2 = b/2, z2 − z1 = 107. 1, first atom in the presence of
second one; 2, first atom in the absence of second one; 3, second
atom.

given atom can be significantly affected even by far-distant
atoms [48].

Let us consider two atoms in a single-mode waveguide
with transverse sizes a = 4, b = 2. The first atom is located
at the point x1, y1, z1; the second at x2, y2, z2. We assume that
at initial time only one Zeeman sublevel mJ = −1 of the first
atom is populated. The second atom is in the ground state.

Figure 3 shows the dynamics of the total excited state pop-
ulation Psum(t ), calculated as a sum of Pe(t ) over all the Zee-
man sublevels, separately for the first and for the second atom.
In order to compare, we show the curve corresponding to the
single-atom case, when the second atom is absent. Figure 3
demonstrates two main results. The first one is that the effect
of incomplete spontaneous decay takes place in the diatomic
problem. The total excited state population of the first atom in
the presence of the second one asymptotically approaches to
0.5 at large times (we have checked it at any timescale). The
second result is that a significant energy exchange between the
atoms takes place even when the interatomic distance is very
large. For the considered parameters, interatomic separation
is 17 times greater than resonant wavelength. In free space,
the dipole-dipole interaction at such distances is negligible.
Herewith, in a waveguide, the population of the excited state
of the second atom reaches 10%. Accordingly, one can see a
significant difference in the dynamics of the first atom for the
cases of the presence and absence of the second one.

We have studied the maximal population of the excited
state of second atom max(Psum,2) depending on the inter-
atomic separation along the axis of a waveguide 
z = z2 − z1

(see Fig. 4). We have analyzed the case when both atoms are
located at the axis of a waveguide, as well as when the first
atom is at the axis and the second one at another position.
Figure 4 demonstrates a periodical character of the long-range
dipole-dipole interaction. In a single-mode waveguide that we
considered, the spatial period is k0Ts = π/

√
1 − [π/(k0a)]2;

it is two times less than the spatial period of the TE10 wave
at the transition frequency. We noticed an interesting feature,
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FIG. 4. Maximal population of the excited state of the second
atom; a = 4, b = 2, x1 = a/2, y1 = b/2.

that the maximum of the dependence shown in Fig. 4 is,
surprisingly, exactly 1/8 for the case when both atoms are at
the z axis and 1/9 for the second considered case.

In the diatomic case, the Green’s matrix has a size of 6×6,
so obtaining analytical expressions is much more complicated
than in the case of a single atom. However, our analysis
shows that in the specific case of far-distant atoms in a single-
mode waveguide, the Green’s matrix has only two nonzero
eigenvalues:

λ1,2 = r1 + r3 ±
√

(r1 − r3)2 + 4r2
2 , (11)

where r1 = −iγ ′/4, γ ′ is given by Eq. (10), r3 = −iγ ′′/4,
γ ′′ is determined by the same equation as γ ′ substituting x2

instead of x1, and

r2 = − 3iπγ0

2k2
0ab

√
1 − (

π
k0a

)2
sin

(
πx1

a

)
sin

(
πx2

a

)

× exp

⎡⎣i|z2 − z1|
√

1 −
(

π

k0a

)2
⎤⎦. (12)

Both λ1 and λ2 are complex numbers, Im(λ1,2) < 0. The
dynamics of the quantum amplitudes of the onefold atomic
excited states is given as follows:

bei,mJ
(t ) = ui,mJ + vi,mJ exp(−iλ1t )

+wi,mJ exp(−iλ2t ). (13)

To obtain the coefficients ui,mJ , vi,mJ , and wi,mJ , we need to
solve the system of linear algebraic equations with full matrix
6×6 numerically.

IV. CONCLUSION

In conclusion, we considered the dynamics of atomic ex-
citation prepared in a waveguide. We found out the effect
of incomplete spontaneous decay—when the excited state
population asymptotically approaches to a nonzero value at
large times, under the conditions when the atomic transition
frequency is larger than the cutoff frequency of a waveguide

and far from the vicinities of the cutoffs. The discovered effect
is explained by polarization selection. It has been predicted in
a single-mode waveguide with rectangular cross section both
for the single-atom case and for the diatomic case when the
long-range dipole-dipole interaction significantly affects the
atomic dynamics.
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APPENDIX

As we assume an infinite length of a waveguide, the sum
over the field variables in Eq. (9) should be calculated in the
limit of infinite length of the quantization volume along the
z axis, Lq → ∞. This implies summation over the types of
field modes in a waveguide (TE and TM), summation over
the transverse indexes m and n, as well as the integration over
continuous variable kz:

∑
g

or
∑

ee

→ Lq

2π

∑
TE,TM

∑
m,n

∫ +∞

−∞
dkz.

To simplify the calculations, it is convenient to perform
summation by separate parts:

(1) over TE modes with n = 0;
(2) over TE modes with m = 0;
(3) over TE modes with positive integer m and n;
(4) over TM modes (with positive integer m and n).
In accordance with this decomposition, we denote the part

of the Green’s matrix Gee′ (ω), which is calculated by the sum
over the modes of the first group, as GI

ee′ (ω); second, GII
ee′ (ω);

third, GIII
ee′ (ω); and fourth, GIV

ee′ (ω). Applying the so-called
polar approximation (i.e., neglecting retardation effects), one
obtains the following expressions.

Sum over TE modes with n = 0

GI
ee′ (ω0)

∣∣
i= j = 8iπ

dy
e j ;g j d

y
gi ;ei

γ0ab

×

[[
k0a
π

]]∑
m=1

k2
0√

k2
0 − k2

m

sin2 (kmxi ), (A2)

GI
ee′ (ω0)

∣∣
i �= j

= 8π
dy

e j ;g j d
y
gi ;ei

γ0ab

×
{

i

[[
k0a
π

]]∑
m=1

sin (kmx j ) sin (kmxi )

× exp
(
i|z j − zi|

√
k2

0 − k2
m

) k2
0√

k2
0 − k2

m
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+
+∞∑

m=
[[

k0a
π

]]
+1

sin
(
kmx j

)
sin (kmxi )

× exp
(−|z j− zi|

√
k2

m − k2
0

) k2
0√

k2
m−k2

0

}
. (A3)

Here the index i denotes quantities corresponding to the atom
which transit from excited state to ground state, and the index
j is related to the atom which performs reverse transition.
Double brackets means the integer part, and i means imagi-
nary unit.

Sum over TE modes with m = 0

GII
ee′ (ω0)

∣∣
i= j = 8iπ

dx
e j ;g j

dx
gi ;ei

γ0ab

[[
k0b
π

]]∑
n=1

k2
0√

k2
0−k2

n

sin2 (knyi ),

(A4)

GII
ee′ (ω0)

∣∣
i �= j = 8π

dx
e j ;g j

dx
gi ;ei

γ0ab

{
i

[[
k0b
π

]]∑
n=1

sin (kny j ) sin (knyi )

× exp
(
i|z j − zi|

√
k2

0 − k2
n

) k2
0√

k2
0 − k2

n

+
+∞∑

n=
[[

k0b
π

]]
+1

sin (kny j ) sin (knyi )

× exp
(−|z j−zi|

√
k2

n−k2
0

) k2
0√

k2
n−k2

0

}
. (A5)

Sum over TE modes with positive integer m and n

GIII
ee′ (ω0)

∣∣
i= j

= 16iπ

γ0ab

×
∑

m,n:
√

k2
m+k2

n<k0

DIII
mn√

k2
0 − k2

m − k2
n

, (A6)

GIII
ee′ (ω0)

∣∣
i �= j = 16π

γ0ab

{
i

∑
m,n:

√
k2

m+k2
n<k0

DIII
mn√

k2
0 − k2

m − k2
n

× exp
(
i|z j − zi|

√
k2

0 − k2
m − k2

n

)
+

∑
m,n:

√
k2

m+k2
n>k0

DIII
mn√

k2
m + k2

n − k2
0

× exp
(−|z j − zi|

√
k2

m + k2
n − k2

0

)}
, (A7)

DIII
mn = k2

0

k2
m + k2

n

[
kndx

e j ;g j
cos (kmx j ) sin (kny j )

− kmdy
e j ;g j

sin (kmx j ) cos (kny j )
]

× [
kndx

gi ;ei
cos (kmxi ) sin (knyi )

− kmdy
gi ;ei

sin (kmxi ) cos (knyi )
]
. (A8)

Sum over TM modes (with positive integer m and n)

GIV
ee′ (ω0)

∣∣
i= j = 16iπ

γ0ab

×
∑

m,n:
√

k2
m+k2

n<k0

D(IV)1
mn

√
k2

0 − k2
m − k2

n

+ D(IV)3
mn√

k2
0 − k2

m − k2
n

, (A9)

GIV
ee′ (ω0)

∣∣∣
i �= j

= − 16π

γ0ab

{
(−i)

∑
m,n:

√
k2

m+k2
n<k0

exp
(
i|z j − zi|

√
k2

0 − k2
m − k2

n

)

×
[

D(IV)1
mn

√
k2

0 − k2
m − k2

n + iD(IV)2
mn sgn(z j − zi) + D(IV)3

mn√
k2

0 − k2
m − k2

n

]

+
∑

m,n:
√

k2
m+k2

n>k0

exp
(−|z j − zi|

√
k2

m + k2
n − k2

0

)

×
[

D(IV)1
mn

√
k2

m + k2
n − k2

0 + D(IV)2
mn sgn(z j − zi) − D(IV)3

mn√
k2

m + k2
n − k2

0

]}
, (A10)

D(IV)1
mn = 1

k2
m + k2

n

[
kmdx

e j ;g j
cos (kmx j ) sin (kny j ) + kndy

e j ;g j
sin (kmx j ) cos (kny j )

]
× [

kmdx
gi ;ei

cos (kmxi ) sin (knyi ) + kndy
gi ;ei

sin (kmxi ) cos (knyi )
]
, (A11)
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D(IV)2
mn = dz

gi ;ei
sin (kmxi ) sin (knyi )

[
kmdx

e j ;g j
cos (kmx j ) sin (kny j )

+ kndy
e j ;g j

sin (kmx j ) cos (kny j )
]− dz

e j ;g j
sin (kmx j ) sin (kny j )

× [
kmdx

gi ;ei
cos (kmxi ) sin (knyi ) + kndy

gi ;ei
sin (kmxi ) cos (knyi )

]
, (A12)

D(IV)3
mn = dz

e j ;g j
dz

gi ;ei

(
k2

m + k2
n

)
sin (kmx j ) sin (kny j ) sin (kmxi ) sin (knyi ). (A13)
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