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Intermittent chaos in cavity optomechanics
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We theoretically demonstrate intermittent chaos induced by radiation-pressure nonlinearity in a general
optomechanical system. In contrast to the periodic and chaotic dynamics, this optomechanical intermittent
chaos is characterized by a nearly periodic motion interrupted irregularly by the chaotic motion, and exists
in a transitional parameter regime between the normal chaos and periodic windows. The route to intermittent
chaos is identified by bifurcation diagrams, and the optimal parameter regime for achieving this intermittent
chaos is presented by a phase diagram. This work broadens the realm of optomechanical nonlinear dynamics,
and is feasible with currently available optomechanical technology.
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I. INTRODUCTION

Cavity optomechanics, exploring radiation-pressure inter-
actions between electromagnetic and mechanical systems,
has achieved rapid progress in recent years [1]. It is shown
that optomechanical nonlinear interactions could induce many
interesting phenomena in the field of quantum optics, such as
optical bistability, self-induced oscillations, and synchroniza-
tion phenomena [2–12]. More interestingly, chaotic motion
in both the optical and mechanical modes can be induced
by this optomechanical nonlinearity, when the strength of the
driving laser is increased above a certain threshold, as demon-
strated both theoretically [13–20] and experimentally [21–24].
Chaotic dynamics is an aperiodic long-term behavior in a
deterministic system that exhibits a sensitive dependence
on the initial conditions [25]. It is useful for implementing
secret information processing and optical sensing [26–30],
and hence the generation of chaos under optomechanics has
recently attracted enormous attention.

Intermittent chaos, as an important nonlinear phenomenon
different from normal chaos, is characterized by a nearly
periodic motion interrupted irregularly by chaotic motion (ir-
regular bursts). Intermittent chaos includes two states, nearly
periodic motion and chaotic motion, which appear alternately
with time evolution. The time between bursts is statistically
distributed, much as a random variable, even though the
system is completely deterministic. As the control parameter
is varied, the bursts become more frequent until the system is
fully chaotic [25]. Intermittent chaos is fundamentally differ-
ent from periodic motion and chaotic motion, and can provide
a new method to generate physical random numbers based on
temporal randomness [31]. This behavior was first introduced
by Pomeau and Manneville [32] and it has been investigated
in different systems, including plasmas [33], optically pumped
lasers [34], semiconductor superlattices [35], and gene circuit
motifs [36]. A natural question is whether optomechanical
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nonlinearity could induced intermittent chaos. The study of
intermittent chaos in cavity optomechanics remains unex-
plored, which may enrich the nonlinear dynamics associated
with optomechanical interactions.

Here, we propose optomechanical intermittent chaos by
investigating the nonlinear dynamics induced by radiation-
pressure interactions. This optomechanical intermittent chaos
includes nearly periodic motion and chaotic motion, which
appear alternately during a single dynamical evolution, and
features a ladder evolution for the perturbation of optical and
mechanical trajectories. By numerically calculating the bifur-
cation diagrams, we identify the route to intermittent chaos,
and clearly show the transitional parameter regime between
normal chaos and periodic windows for obtaining intermittent
chaos. We also complete the phase diagram of optomechanical
nonlinear dynamics, which shows the regimes of periodic
motion, intermittent chaos, and chaos. This intermittent chaos
is identified in optomechanics, and it can be implemented
experimentally in various optomechanical systems. Our work
is fundamentally interesting for completing the optomechan-
ical nonlinear dynamics, and also provides an alternative
method to generate physical random numbers by utilizing the
randomness of the time interval of nearly periodic motion.

This paper is organized as follows: In Sec. II, we describe
the model and present the system Hamiltonian. Then we give
the detailed derivation of the analytical expression for the
dynamical equation and describe the intermittent chaos. In
Sec. III, we follow the route to intermittent chaos dynamics in
detail and give a phase diagram of the system as a function of
light intensity and the detuning between the driving laser and
cavity field. In Sec. IV, we discuss the experimental feasibility
for achieving intermittent chaos, and in Sec. V, we finally
summarize our results.

II. MODE AND INTERMITTENT CHAOS

We consider a general optomechanical system, whose
Hamiltonian in a frame rotating with ωl is

H/h̄ = −�â†â + ωbb̂†b̂ − gâ†â(b̂† + b̂) + �(â† + â), (1)
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where â (â†) and b̂ (b̂†) are the annihilation (creation) opera-
tors of the cavity mode and the mechanical mode, respectively.
The cavity mode a (with the resonance frequency ωc) is driven
by a driving laser with frequency ωl and amplitude �. Here,
� is related to the driving power Pl and decay rate κ by � =√

κPl/(h̄ωl ). The detuning between the driving laser and the
cavity field � = ωl − ωc. The third term in Eq. (1) describes
the radiation-pressure interaction between the cavity and the
mechanical oscillator with coupling strength g.

Here, we focus on the mean response of the system, and
therefore any optical or mechanical operator ô is reduced to an
algebraic number. The photon-phonon quantum correlations
can be safely ignored in the semiclassical approximation,
which is valid in the concerned weak-coupling regime, i.e.,
g � κ [21]. To obtain a general result under the semiclas-
sical approximations in optomechanical systems, we define
the dimensionless time τ by τ = ωbt , and the dimensionless
driven power parameters P = 8�2g2/ω4

b. Correspondingly,
the mean values of optical and mechanical operators â and b̂
are rescaled as α = [ωb/(2�)]〈â〉 and β = (g/ωb)〈b̂〉, respec-
tively. In order to discuss the dynamic properties of chaos, we
define the mean value of each operator as o = or + ioi (or and
oi are real numbers). The Heisenberg-Langevin equations read

α̇r = − �

ωb
αi − κ

2ωb
αr + 2βrαi, (2a)

α̇i = �

ωb
αr − 2βrαr − κ

2ωb
αi − 1

2
, (2b)

β̇r = βi − γ

2ωb
βr, (2c)

β̇i = −βr − γ

2ωb
βi − P

2

(
α2

r + α2
i

)
. (2d)

Physically. the nonlinearity strength of the system plays
an important role in generating intermittent chaos. Generally
speaking, for the dissipative system, its equations of motion,
when put in a standard autonomous form, must be nonlinear
and the variables are greater than three [37]. It is shown from
Eq. (2) and the system Hamiltonian that the optomechanical
nonlinearity interaction leads to an interrelationship between
the intracavity field intensity and the mechanical deformation,
which satisfies the above condition and might induce the
appearance of intermittent chaos.

Besides the evolution trajectory of the system correspond-
ing to the specified initial condition, we also need to calculate
the evolution of the perturbation εo with Eq. (2), where εo =
(εar , εai , εbr , εbi ). The equations of the divergence of nearby
trajectories read

ε̇αr
= − �

ωb
εαi − κ

2ωb
εαr + 2(αiεβr + εαiβr ), (3a)

ε̇αi
= �

ωb
εαr − κ

2ωb
εαi − 2(αrεβr + εαr βr ), (3b)

ε̇βr
= εβi − γ

2ωb
εβr , (3c)

ε̇βi
= −εβr − γ

2ωb
εβi − P

2
(2αrεαr + 2αiεαi ), (3d)

FIG. 1. Evolution of (a) mechanical deformation x, and (c) in-
tracavity field intensity I in a general optomechanical system. The
evolution corresponding perturbations ln(εx ), ln(εI ) are shown in
(b) and (d). Power spectra ln SI (ω) corresponding to time intervals
5, 6, and 7 of (d), indicated by three arrows, are shown in (e)–(g).
The insets of (b) and (d) present the LE of different time periods.
The optical trajectories in phase space are presented in the insets
of (e)–(g). The parameters are dimensionless by setting ωb = 1,
and hence g = 5 × 10−5, κ = 1, γ = 1.1 × 10−3, � = −1.2, and
P = 2.6224.

which can offer the stochastic properties of the system by
characterizing the divergence of nearby trajectories in phase
space. This is important for demonstrating the appearance of
intermittent chaos.

By numerically solving Eqs. (2) and (3), in Figs. 1(a)
and 1(c), we present the time evolution of the mechani-
cal deformation x = 1/

√
2(β + β∗) and the intracavity field

intensity I = |α|2. It clearly shows the intermittent chaotic
dynamics both in the mechanical oscillator and the optical
mode, i.e., nearly periodic motion interrupted by occasional
irregular bursts. This property is demonstrated more clearly in
the ladder evolution of the perturbations ln(εI ) and ln(εx ) in
Figs. 1(b) and 1(d). The flat part indicates that the trajectories
of two systems with infinitesimally different initial conditions
will not diverge, and the dynamic evolution of I is periodic.
The oblique part indicates that neighboring trajectories sep-
arate exponentially fast, and the dynamic evolution of I is
chaotic. The power spectra of I corresponding to the flat and
oblique parts are shown in Figs. 1(e)–1(g). During a single tra-
jectory, the discrete and continuous spectra appear alternately,
which also demonstrates that the intermittent chaotic dynam-
ics includes two states, i.e., periodic and chaotic motions.
From the perspective of phase space trajectory [see the insets
of Figs. 1(e)–1(g)], the system first evolves along the limit
cycles, and then becomes very complicated due to the strong
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FIG. 2. Bifurcation diagram of the amplitude of the mechanical limit cycle (top), and the corresponding evolutions of the mechanical
deformation x and ln(εx ) (bottom) at � = −1.2. (b)–(f) correspond to the values of P indicated by the dots in (a), and the parameters are the
same as in Fig. 1.

attractor, where nearby points in phase space evolve into
completely different states, and lastly the trajectories feature
a set of limit cycles again. The above process continues along
with time evolution, which is more evidence of intermittent
chaos. In the inset of Figs. 1(b) and 1(d), we present the
Lyapunov exponent (LE) of different time intervals, which is
defined by the logarithmic slope of the perturbation εI versus
time t . It quantifies the sensitivity of the cavity system to the
initial conditions, and features alternately appearing nonzero
values for the intermittent chaotic dynamics.

III. ROUTE TO INTERMITTENT CHAOS

To show the route to intermittent chaos in optomechanics,
in Fig. 2(a) we present the bifurcation diagram of the ampli-
tude of mechanical oscillation. As increasing the dimension-
less driven power P, the system dynamics experiences regular,
period-doubling bifurcation, chaos to intermittent chaos (the
shaded areas). Specifically, for a weak driving power, the sys-
tem dynamics experiences the sequence of period-doubling
bifurcations, which also can be seen by the evolution of
mechanical displacement x in Figs. 2(b) and 2(c). For exam-
ple, when P = 1.5, a period-doubling bifurcation taken place,
and a new limit cycle with twice the period of the original
simple periodic cycle appears. Increasing the driving field P
further, chaotic motion emerges, such as the increasing ln(εx )
that is obtained at P = 2.4 shown in Fig. 2(d). Interestingly,
intermittent chaotic dynamics is obtained when one increases
driven power to the regime before periodic motion appears
again. As shown in Fig. 2(e), the ladder evolution of ln(εx )
clearly shows the appearance of intermittent chaos. It also
shows that the periodic dynamics appears again when the
driven power P is enhanced a little, corresponding to the
flat evolution of ln(εx ) in Fig. 2(f). Now, a general result

is obtained, that is, that optomechanical intermittent chaos
exists only in a transitional regime of driving field power
P between the chaos and periodic windows. Note that the
dimensionless parameter range of intermittent chaos seems
narrow, but, based on a typical whispering-gallery microcavity
system [38–41], it corresponds to a relatively broad range
(∼10 μW) even for the narrowest shading area of Fig. 2(a).

Physically, the above intermittent chaos is induced by
optomechanical nonlinearity, which is decided by the driving
detuning � and power P in a general optomechanical system.
To fully show the optimal parameter regime of intermittent
chaos, we present the phase diagram versus the detuning �

and the driving strength P in Fig. 3, which completely offers
the rich dynamics phenomena induced by optomechanical
nonlinearity. We distinguish the periodic and multiple pe-
riodic trajectories through the amplitude of the mechanical
oscillation, and distinguish chaotic and regular trajectories
through the LE. The LE separates regular motion with a
negative value from chaotic motion with a positive value [16].
The intermittent and chaotic trajectories are distinguished by
the evolution of ln(εx ), i.e., the oblique line and ladder form,
corresponding to chaos and intermittent chaos, respectively.
The various zones are denoted with different colors. The
black zone confirms that, in a general optomechanical system,
the intermittent chaotic dynamics appears in the transitional
parameter regime between chaos and the periodic window.
For a fixed driving power, such as P = 2.5, the system
goes through self-induced oscillations (periodic), intermittent
chaos to chaos, along with increasing the modulus of detuning
|�| in the blue-detuning regime. For a fixed detuning, such as
� = −1.2, the system experiences regular, period-doubling
bifurcation, chaos, intermittent chaos, to regular as increasing
P, which is consistent with the above results from the bifurca-
tion diagram.
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FIG. 3. Phase diagram in terms of the detuning � and the driving
strength P, indicating the intermittent chaos, chaos, period quadru-
pling, period doubling, self-induced oscillations, and steady-state
regimes in a general optomechanical system. The system parameters
are the same as in Fig. 1.

IV. EXPERIMENTAL IMPLEMENTATIONS

Regarding experimental implementations, our work could
be realized in a variety of optomechanical platforms. As an
example, here we choose the whispering-gallery microcavity
system, which has been widely used in a variety of devices on
account of its relatively high-quality factor Q and small mode
volume V [38–41]. Based on the above theoretical results,

the feasible experimental parameters for achieving intermit-
tent chaos are P = 10.9 mW, ωb/2π = 51.8 MHz, m = 20
ng, G/2π = 28.77 GHz/nm, κ/2π = 51.8 MHz, γ /2π =
56.98 kHz, and � = −1.2ωb, respectively. Corresponding to
Fig. 3, the frequency range of intermittent chaos is about
0.5 MHz when the driving power P = 10.9 mW, which is
feasible with current experimental technology.

V. CONCLUSIONS

In conclusion, we have shown that intermittent chaotic
dynamics, characterized by nearly periodic motion interrupted
irregularly by chaotic motion, could be realized in a general
optomechanical system. By numerically calculating the bifur-
cation diagram and phase diagram, we identified the route to
intermittent chaos and the corresponding optimal parameter
regime, i.e., optomechanical intermittent chaos exists in a
transitional parameter regime between normal chaos and pe-
riodic windows. Our work is general and can be implemented
in a variety of optomechanical systems. It enriches the non-
linear dynamics induced by optomechanical interactions, and
provides a promising route for generating on-chip intermittent
chaos.
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