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Rigorous theory of thin-vapor-layer linear optical properties: The case of specular
reflection of atoms colliding with the walls
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The theory of the thin-vapor-layer linear optical properties is presented for the case of specular reflection of
atoms colliding with the walls. The effects of light absorption and the shift in the resonance frequency are taken
into account by means of self-consistent calculation of the field and polarization in a gaseous medium. The
obtained formulas reproduce the complex dependence of the spectral line profile on the gas layer thickness and
allow one to determine numerically the exact values of the “blueshift.” It was shown that, despite the low vapor
concentration, the resonance shift is on the same order of magnitude as the width of the spectral lines.
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I. INTRODUCTION

The possibility of observing sub-Doppler resonances in
the spectra of light reflection from the interface between a
transparent dielectric medium and the atomic vapor makes
selective reflection spectroscopy a promising area for theo-
retical and experimental studies. Doppler-free structures in
the line shape of selective reflection were first observed by
Cojan [1]. In this paper, the narrowing of the spectral lines
in reflection was ascribed to the transient polarization of the
atoms departing from the cell wall. In the limit of sufficiently
high vapor densities, particle collisions lead to a rapid loss
of the oscillation phase. Consequently, polarization at a given
spatial location is defined solely by the field in the same
location, the condition commonly referred to as local response
of the polarization on the field. Contrary to that, in the case of
rarefied vapor polarization at a given location is defined by
the field at the neighboring location as well. The effects of
this nonlocal response, or in other words, spatial dispersion
effects become especially important when the mean free path
of atoms without loss of polarization becomes greater than the
wavelength of the incident light [2].

Recently, it was demonstrated [2,3] that the nonlocal opti-
cal response of a resonant gas can be significantly enhanced if
the vapor is spatially confined in a cell with a thickness on the
order of the incident wavelength λ. The invention of a gas cell
with a subwavelength thickness [4] enabled experimenters to
examine optical properties of a thin-vapor layer as well as the
interaction of atoms with the surface of a dielectric material
[5,6]. These studies may become the basis for the creation of
miniature atomic standards of frequency and time [7]. From
this point of view, it is important to correctly consider factors
leading to a shift and broadening of the spectral lines of
selective reflection. In this article, we will focus on one of the
shifts of a purely electrodynamics nature that arises due to the
interference between the contributions of the departing and
arriving atoms (hereinafter referred to as the “blueshift”) [8,9].

In Refs. [3,10], the approximate solution for the reflected
and transmitted fields was obtained by means of perturbation

expansion of the field with respect to the atomic vapor density
for the case of diffuse boundary conditions, which imply
that the atom loses polarization upon collision with the wall.
In fact, in order to account for the structure of the field
inside the vapor exactly, the field and polarization should be
calculated in a self-consistent way [11]. In the absence of a
rigorous theory, in many works, the experimental results are
compared with the calculations performed in the framework
of perturbation theory in optical density, which can lead to
substantial errors. The aim of this paper is to investigate the
linear optical properties of thin-vapor layers beyond the scope
of perturbation theory. We will assume throughout this paper
that atoms collide with the walls specularly, i.e., the atoms
preserve their polarization, and only the normal component
of their velocity changes sign after a collision with the wall.
Being well aware of experimental studies in which atomic
excitation quenching processes predominate in collisions of
atoms with dielectric surfaces [12], we would like to empha-
size that, to some extent, the situation considered in this paper
can be experimentally realized by applying antirelaxation
coatings on the windows of the gas cell [4,13,14]. Moreover,
we believe that the rigorous solution of the problem of a thin
gas layer obtained in our paper for the case of elastic scattering
of atoms on the walls is an important step in developing of the
comprehensive theoretical model that will include diffuse and
quenching collisions as well.

The paper is organized as follows. Section II describes a
theoretical model of resonant reflection of light from a thin
gas layer based on the Maxwell-Bloch equations. In Sec. III,
the rigorous solution of the thin gas layer problem is derived
for the case of specular boundary conditions by means of
Fourier series expansion of the field. A numerical calculation
of the reflectivity of a thin gas layer at various thicknesses and
vapor densities, the comparison of the Fourier method with
the result of perturbation theory, as well as the dependence of
the blueshift on the atomic number density are presented in
Sec. IV (the perturbation theory approach is described in the
Appendix). Finally, in Sec. V, we discuss some peculiarities
connected with the specular reflection of atoms colliding
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with the walls and the general significance of the considered
problem for the case of diffuse and quenching collisions of
atoms with the walls.

II. THEORETICAL MODEL

Consider a vapor layer of thickness l , located between
two transparent dielectric media with parallel interfaces. The
described system is schematically shown in Fig. 1 where a
monochromatic electromagnetic plane wave propagates in the
positive direction of the x axis in the first dielectric medium
with refractive index n1. The wave (at normal incidence)
partially reflects from the gas layer and penetrates into the
second dielectric medium with refractive index n2.

Neglecting nonlinear optical processes, the electric field
and polarization inside the vapor can be represented as

E (x, t ) = 1
2 E (x) exp(−iωt ) + c.c., (1a)

P(x, t ) = 1
2 P(x) exp(−iωt ) + c.c. (1b)

From Maxwell’s equations, it can be shown that the spatial
parts of the electric field and polarization of the medium
satisfy the equation,

d2E (x)

dx2
+ k2E (x) = −4πk2P(x), (2)

where k = ω/c.
It is assumed that the gas consists of two-level atoms

and the frequency of the incident light wave ω is var-
ied in the vicinity of the atomic transition frequency ω0.
Then, the macroscopic polarization can be expressed in
terms of the off-diagonal density-matrix element ρ(x, υ, t ) =
ρ(x, υ ) exp(−iωt ) by averaging the dipole moment operator
over the velocity distribution of atoms f (υ ),

P(x) = 2ND
∫ +∞

−∞
dυ f (υ )ρ(x, υ ), (3)

where N is the number density of the gas atoms, D is the
transition dipole moment, and υ is the projection of the atomic
velocity on the x axis. Throughout this article, we will assume
that the thermal motion of the gas layer atoms is described by

FIG. 1. Schematic of light reflection (at normal incidence) from
a thin gas layer.

Maxwell’s distribution function,

f (υ ) = 1√
πυT

exp

(
−υ2

υ2
T

)
, (4)

where υT is the most probable thermal velocity.
In order to study the linear optical properties of the de-

scribed system, we restrict ourselves to the case of small
electric-field strengths when the intensity of the light is so low
that it cannot saturate the resonant transition. Given that the
total time derivative of an off-diagonal element of a two-level
atom with a nonzero velocity component υ should be defined
as dρ(x, υ, t )/dt = [∂/∂t + υ(∂/∂x)]ρ(x, υ ) exp(−iωt ), ac-
cording to the optical Bloch equations in the resonance region
ω � |ω0 − ω|, ρ(x, υ ) satisfies the steady-state equation,

υ
∂ρ(x, υ )

∂x
+ [γ + i(ω0 − ω)]ρ(x, υ ) = i

2h̄
DE (x), (5)

where γ is the homogenous width of the transition that is the
sum of natural and collisional widths of the spectral line. After
substituting the expression for polarization [see Eq. (3)] in
Eq. (2), we can rewrite the whole set of Eqs. (2)–(5) in the
following way:

d2E (ξ )

dξ 2
+ E (ξ ) = −2im

∫ +∞

−∞
σ (ξ, ν) exp(−ν2)dν,

(6a)

ν
∂σ (ξ, ν)

∂ξ
+ ησ (ξ, ν) = E (ξ ). (6b)

Here, we have introduced the dimensionless variables
ξ = kx, m = 2

√
πND2/h̄kυT , ν = υ/υT , σ (ξ, ν) =

(2h̄kυT /iD)ρ(x, υ ), η =  − i�,  = γ /kυT , and
� = (ω − ω0)/kυT , where parameter m is proportional
to the atomic vapor density.

In accordance with the statement of the problem [see
Fig. 1], the electric-field strength of the incident, reflected, and
transmitted waves may be written in the following forms [15]:

E0 exp[in1ξ − iωt], (7a)

Er exp[−in1ξ − iωt], (7b)

and

Et exp[in2(ξ − φ) − iωt], (7c)

respectively. From the condition of continuity of the field and
its first derivative at the boundaries, we can find

E0 + Er = E (0), (8a)

in1(E0 − Er ) = E ′(0), (8b)

Et = E (φ), (8c)

in2Et = E ′(φ), (8d)

where φ = kl and (′) stands for the derivative with respect to
ξ . Introducing the amplitude reflection coefficient r = Er/E0,
we can represent Eqs. (8a) and (8b) as

1 − r

1 + r
= M(0)

n1
, (9)

where M(0) = E ′(0)/iE (0) is the surface admittance of the
first boundary of a gas layer. Consequently, reflectivity may
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be expressed in terms of the surface admittance,

R = |r|2 =
∣∣∣∣n1 − M(0)

n1 + M(0)

∣∣∣∣
2

. (10)

According to Eq. (10), in order to study the spectral line
profile in reflection, the set of Eqs. (6) needs to be solved with
respect to the surface admittance.

III. FOURIER METHOD

In this section, following the method described in Ref. [16],
the exact solution of Eqs. (6a) and (6b) is obtained for the case
of specular boundary conditions by means of Fourier series
expansion of the field. According to the specular boundary
conditions, after a collision with the surface of a dielectric
material, an atom conserves its polarization and changes the
sign of the velocity component normal to a given surface.
Thus, we can set

σ (ξ = 0, ν ) = σ (ξ = 0,−ν ), (11a)

σ (ξ = φ,−ν ) = σ (ξ = φ, ν ) (11b)

for the atoms at the front and rear boundaries. Now, in order to
determine the field inside the vapor, let us imagine that there
are no boundaries at planes ξ = 0 and ξ = φ. If we reflect
the gas layer with respect to the plane ξ = 0 and repeat the
resulting layer with the thickness of 2φ throughout the space,
the field will satisfy the following condition:

E ( jφ − ξ ) = E ( jφ + ξ ), (12)

where j is an integer. In this case, the atom reflected from
the wall in the layer problem corresponds to an atom freely
crossing the interface from the side of the adjacent layer in
the infinite space problem.

It is clear from Eqs. (11a), (11b), and (12) that the field
and the off-diagonal element of the density matrix can be ex-
panded in the Fourier series as continuous periodic functions
with a period of 2φ in the form

F (ξ ) =
∞∑

n=−∞
F (n) exp(inπξ/φ), (13)

where F (n) = (2φ)−1
∫ φ

−φ
F (ξ ) exp(−inπξ/φ)dξ . After we

multiply Eqs. (6a) and (6b) by (2φ)−1 exp(−inπξ/φ) and
integrate them from −φ to φ, the set of equations for the
field and the off-diagonal element of the density matrix is
transformed into(

q2
n − 1

)
E (n) − φ−1[einπ E ′(φ) − E ′(0)]

= 2im
∫ +∞

−∞
σ (n, ν) exp(−ν2)dν, (14a)

(η + iqnν)σ (n, ν) = E (n), (14b)

where qn = nπ/φ. The system of Eqs. (14) can be solved with
respect to the Fourier coefficient of the field,

E (n) = φ−1 (−1)nE ′(φ) − E ′(0)

q2
n − 1 − 2imI (n)

, (15)

where I (n) = ∫ +∞
−∞ [exp(−ν2)/(η + iqnν)]dν. From Eq. (15),

it is seen that in order to calculate the surface admittance it

is essential to find the connection between field derivatives on
the layer boundaries. Substitution of Eq. (15) into Eq. (13)
yields

E (ξ ) =
∞∑

n=−∞
E (n)eiqnξ =

∞∑
n=−∞

(−1)nE ′(φ) − E ′(0)

q2
n − 1 − 2imI (n)

eiqnξ .

(16)

For the field at the boundaries of layers ξ = 0 and ξ = φ, we
have

E (0) = E ′(φ)S− − E ′(0)S+, (17a)

E (φ) = E ′(φ)S+ − E ′(0)S−. (17b)

Here, we have introduced two sums,

S+ = φ−1
∞∑

n=−∞

1

q2
n − 1 − 2imI (n)

, (18a)

S− = φ−1
∞∑

n=−∞

(−1)n

q2
n − 1 − 2imI (n)

. (18b)

Finally, solving Eqs. (8c), (8d), and (17) for the ratio
E (0)/E ′(0), we can find an exact expression for the surface
admittance in terms of sums S+ and S−,

M(0) = 1 − in2S+

n2(S− − S+)(S− + S+) − iS+ . (19)

In order to test our theory, let us first assume that there is no
vapor in the layer. For this instance, we can set parameter m
equal to 0 in Eq. (19). Therefore, we get rid of the integral in
Eqs. (18a) and (18b), and sums S+ and S− converge to explicit
analytic functions,

S+ = φ−1
∞∑

n=−∞

1

(nπ/φ)2 − 1
= − cot φ, (20a)

S− = φ−1
∞∑

n=−∞

(−1)n

(nπ/φ)2 − 1
= − csc φ. (20b)

Substitution of Eqs. (20a) and (20b) into Eq. (19) leads to
the well-known result of the wave interference in the empty
Fabry-Pérot resonator,

r = i(n1 − n2) + (n1n2 − 1) tan φ

i(n1 + n2) + (n1n2 + 1) tan φ
, (21)

where φ denotes the thickness of the gap between dielectric
media l divided by reduced wavelength λ̄ = λ/2π .

IV. NUMERICAL CALCULATION

In the following section, the reflectivity is calculated nu-
merically for different thicknesses of the gas layer via the
Fourier method described above [Eqs. (10), (18), and (19)
were used to calculate the reflectivity]. The results of calcu-
lation are displayed in Fig. 2 where the reflectivity is plotted
as a function of dimensionless detuning �.

From the comparison of dashed and solid curves in Fig. 2,
it can be seen that with an increase in the layer thickness by
the wavelength of the incident light, the spectral line contour
of the reflection coefficient almost periodically repeats itself.
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FIG. 2. Reflectivity of a thin-vapor layer against dimensionless
detuning calculated by the Fourier method for eight different layer
thicknesses. Dashed curves: (a) l = λ/2 (the inset: spectral behavior
of reflectivity near resonance: |�| � 0.03), (b) l = 3λ/4, (c) l = λ,
and (d) l = 5λ/4; solid curves: (a) l = 3λ/2, (b) l = 7λ/4, (c) l =
2λ, and (d) l = 9λ/4. The parameters , n1, n2, and m were taken
equal to 0.01, 1.5, 1.5, and 0.001, respectively.

This λ-periodic dependence arises from spatial oscillations
of the transient component of the polarization. In addition,
the presence of the Fabry-Pérot resonances determines the
λ/2-periodic dependence of the nonresonant contribution to
the total reflection on the layer thickness. This effect is
manifested in a significant increase in the total reflection level
at layer thicknesses l = (n − 1/2)λ/2, where n = 1, 2, 3, . . .

[see Figs. 2(b) and 2(d)]. Despite the fact that, according
to Eq. (21), the condition l = (2n − 1)λ/2 corresponds to
the destructive interference of waves reflected from the layer
boundaries, in this case, we obtain a narrow Doppler-free
even spectral contour (with the Lorentzian line shape), which
is related to the resonant contribution of gas to the total
reflection. Contrary to that, whenever the layer thickness
coincides with an integer number of wavelengths l = nλ,
the sub-Doppler contributions coming from adjacent half-
wavelength-thick slices cancel each other and the sub-Doppler
structure in the reflection spectrum disappears. At the same
time, partial absorption of the transmitted wave causes a de-
crease in the effect of destructive interference of nonresonant
contributions from waves reflected from the boundaries of
the layer. This explains the appearance of a wide Doppler
spectral contour in the reflection as well as an increase in its
amplitude at a layer thickness l = 2λ [see Fig. 2(c)]. Finally,
the situation l = (n − 1/2)λ/2 corresponds to the presence of
the sub-Doppler feature with approximately an odd spectral
contour with respect to the resonant transition of the gas
atoms. In this case, the slope of the odd spectral contour is
determined by the interference of resonant contributions to the
total reflection. For all other layer thicknesses, reflectivity is
determined by a superposition of even and odd contributions.
It is also worth noting that, in the limit of large thicknesses
of the gas layer, the second boundary ceases to contribute to
total reflection due to the attenuation of the transmitted wave.
Consequently, numerical calculation gives the well-known
logarithmic spectral line profile of the selective reflection of

FIG. 3. (a) Reflectivity of a thick gas layer in the resonance
region versus the dimensionless detuning calculated by the Fourier
method for m = 0.005,  = 0.01, l = 500λ, n1 = 1.5, and n2 = 1.5.
(b) Reflectivity of the sub-λ-thick vapor layers calculated by the
Fourier method for m = 0.001,  = 0.01, n1 = 1.5, and n2 = 1.5:
dashed curve: l = λ/4; solid curve: l = λ/8; and dotted curve: l =
λ/13. (c) Comparison of the spectral line profiles of the reflectivity
calculated by the Fourier method (solid and dot-dashed curves) with
the perturbation theory solution (dashed and dotted curves) at various
atomic vapor densities: solid and dashed curves: m = 0.001; dot-
ted and dot-dashed curves: m = 0.002 for  = 0.01, n1 = 1.5, and
n2 = 1.

light from a thick gas layer R ∝ − ln(�2 + 2) in the region
|�| � 1 [3,17], which is shifted towards the short-wave part
of the spectrum [this result is presented in Fig. 3(a)].

Taking into account recent experiments in which the reso-
nance reflection from and transmission through the gas cells
with a thickness less than a wavelength are studied [2,6],
it seems of value to examine the situation l � λ as well.
However, the simulation of this case requires accurate con-
sideration of the van der Waals interactions, which is beyond
the scope of this paper. In Fig. 3(b), we provide the results of
numerical calculation of the reflectivity of sub-λ-thick vapor
layers in order to demonstrate that, in the absence of van der
Waals interactions, the reflectivity contains the approximately
odd spectral line profile in the case of specular reflection of
atoms colliding with the walls. It can be seen that a decrease
in the layer thickness (from l = λ/4 to l = λ/13) leads to
a decrease in both the total reflection (i.e., the efficiency of
the constructive interference of the nonresonant contributions
of waves reflected from the boundaries of the layer) and the
resonant contribution of gas.

In the limit of a highly rarefied gas, an approximate solu-
tion of Eqs. (6a) and (6b) is to be found via the perturbation
theory method described in detail in Ref. [3]. In order to
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compare the rigorous solution of the thin gas layer problem
for the case of specular boundary conditions with the result of
perturbation theory, we presented the procedure for finding the
first-order correction of the reflected field in the framework
of perturbation theory in the Appendix. In this paper, we are
mostly interested in the resonant part of the reflectivity. In
fact, the nonresonant contribution to the total reflection can
be eliminated by the proper selection of the parameters of the
antireflection coatings [18]. Although Eqs. (A5)–(A7) in the
perturbation method are written for the case of the absence of
reflection from the rear boundary, to exclude the influence of
the second wall in the Fourier method, we can put formally
parameter n2 = 1 in Eqs. (10), (18), and (19). A comparison
of the reflection spectra of resonant radiation from a thin gas
layer calculated by two methods is displayed in Fig. 3(c).

Given that the calculation according to perturbation theory
is performed in the first order in m, we can see from Fig. 3(c)
that high-order terms lead to a minor deformation of the
spectral line profile and to a shift of its maximum. In addition,
the peaks in the reflection spectra calculated through the per-
turbation theory have larger amplitude since the perturbation
method does not take into account the absorption of the light.
In the far wings of the resonance, the spectral line profiles
practically coincide.

Equations (10), (18), and (19) allow us to accurately calcu-
late the values of the blueshift in a wide range of atomic num-
ber densities. With an increase in the concentration of atomic
vapors, the spectral line contour of the reflection coefficient
broadens, the amplitude of the maximum increases, and its
position shifts to the short-wavelength part of the spectrum
[see Fig. 3(c)]. In the case of a thick layer, a universal
proportionality constant may be found in the framework of the
perturbation theory [9]. Contrary to that, in the case of a thin
gas layer, the meaning of the shift is to be elaborated because
the line shape depends on the layer thickness. Because of the
inequality m <  that holds due to the self-broadening effect
[19] in the domain of the strong spatial dispersion  < 1, the
shift of the resonance frequency �� is well described by a
linear dependence on m. As an example, we quote here the
relation �� = 3.54m obtained numerically from Eqs. (10),

FIG. 4. The blueshift normalized to the Doppler width as a func-
tion of m for m �  = 0.01 and l = λ/2. The dashed line represents
the linear fit �� = 3.54m.

(18), and (19) by simulation of the even spectral line contour
corresponding to l = λ/2 and  = 0.01. In Fig. 4, the shift
of the resonance frequency normalized to the Doppler width
kυT is plotted as a function of m for the aforementioned case.
The deviation from the linear dependence resulting from the
influence of high-order terms in m is only 2 × 10−4 at the
maximum possible m =  = 0.01. We emphasize that this
linear dependence of the shift on m manifests the nonlinear
dependence of the spectra on the vapor density.

V. DISCUSSION AND CONCLUSION

The special role of the cavities of half-wavelength thick-
ness in the Doppler width cancellation was first pointed out
in the microwave region. The main idea of Ref. [20] was that,
in a pillbox-shaped cell, the slowly moving atoms contribute
most to the absorption as well as to the fluorescence simply
because they spend more time in their free flights between
the walls. With the highly reflective walls, the field inside
the cell is very close to a standing wave. Then, in the case
of a half-wavelength-thick cell, all atoms experience the field
oscillations of the same phase. Nevertheless, after the work on
selective reflection from a gaseous half-space [1], it becomes
clear that the main reason for the Doppler width cancella-
tion is the transient polarization of the atoms that was not
accounted for in Ref. [20]. Indeed, in the case of specular
reflection, considered above, polarization of the atom, which
has just changed the direction of its movement, does not corre-
spond to its newly acquired detuning. Transient polarization of
an atom departing from the surface with velocity v is depicted
in Fig. 5 and contrasted with the steady-state polarizations of
an atom with the same velocity and an atom arriving at the
surface with velocity −ν.

The difference between the transient and the steady-state
polarizations of the departing atom underlies narrow sub-
Doppler features in reflection spectra. The same is true in
the case of polarization quenching at the surface considered
earlier [3]. It is interesting to note that the major role of the
polarization transients was overlooked in the first demonstra-
tion of the Doppler width cancellation [1]. Interference of two
transient contributions that start their oscillations from the
opposite walls leads to the periodic dependence of the line
shapes on the cell thickness and further enhancement of the
effect, whereas the details of the scatterings at the walls are of
minor importance. Because of that, the results of the rigorous
solution of the problem formulated for the specular reflection
of the atoms have the general significance and may be used as
a clue in the case of diffuse and quenching collisions for which
the rigorous solutions are still absent. Below, we specify some
peculiarities connected with the specular reflection of atoms
colliding with the walls.

According to our calculations [see Fig. 2(a)], the amplitude
of selective reflection of light from a thin layer of resonant
gas in the case of specular reflection of atoms colliding with
the walls is larger when in the case of complete quenching
considered in Ref. [3]. As shown in Ref. [17], at large layer
thicknesses l � λ, the spectral line profile of the selective
reflection signal has a logarithmic form, and its amplitude
for the case of specular reflection is approximately two times
larger than the corresponding amplitude in the case of diffuse
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FIG. 5. The origin of the sub-Doppler features illustrated on the
example of atomic polarization near an isolated boundary situated
at ξ = 0. The difference between transient and steady-state polar-
izations of an atom departing from the surface is given for the
particular absolute value of atomic velocity |ν| = 1 and the following
set of parameters: � = 0,  = 0.1, and E0 = 1. All complications
connected with the self-consistent solution of Eqs. (6) are omitted.
The real and imaginary parts of σ are presented in subfigures (a) and
(b), respectively. Dotted curve: steady-state polarization of an atom
arriving at the surface with velocity ν = −1; solid curve: steady-state
polarization of an atom departing from the surface with velocity ν =
1; dashed curve: transient polarization of the departing atom after
quenching collision with the surface for ν = 1 [σ (ξ = 0, ν > 0) =
0]; dot-dashed curve: transient polarization of the departing atom
after specular collision with the surface for ν = 1 (the real part of this
solution coincides with the steady-state polarization of the departing
atoms represented by the solid curve). Although the steady-state
polarization implied in the conventional dispersion theory leads to
the Doppler broadened spectral lines, transient polarizations initiated
by specular as well as by quenching collisions lead to sub-Doppler
linewidths.

boundary conditions. However, if the thickness of the vapor
layer is comparable to wavelength λ, the differences in the
amplitude and line shape of the resonance for models of
diffuse and specular reflection are much more considerable. In
the case of specular reflection, collisions with the walls allow
a large part of the atoms to oscillate at their own frequency for
a long time. The interference of contributions from individual
atoms leads to the formation of a narrow and intense peak
with a Lorentzian spectral profile near the resonance. In the
crude approximation, the most slowly moving atoms make
the major contribution to the reflectivity spectrum. With an

increase in the layer thickness, atoms have enough time to
adapt to the external field before they collide with the wall.
As a result, the amplitude of the Lorentz spectral contour
decreases significantly, and the spectral contour of selective
reflection has a mostly logarithmic singularity [see Fig. 3(a)].

Finally, the shift of the resonant frequency is reasonably
well described by a linear dependence on the number density
of gas atoms. This result is consistent with the magnitude of
the blueshift obtained numerically in Ref. [17] for the case
of a thick gas layer and specular wall collisions. Although,
it was shown numerically in Ref. [11] and analytically in
Ref. [9] that the Lorentz-Lorenz local-field correction par-
tially reduces the value of the blueshift, this shift of purely
electrodynamics nature is to be accounted for in any attempts
of measuring van der Waals atom-surface interaction in se-
lective reflection from and transmission through thin-vapor
layers.

APPENDIX

In the framework of perturbation theory with respect to the
vapor density, one starts with the solution of Eq. (6a) without
the right-hand side,

E (ξ ) = E0 exp(iξ ), (A1)

that corresponds to a plane electromagnetic wave of a constant
amplitude inside the vapor layer. When this solution is substi-
tuted to the right-hand side of Eq. (6b), its particular solution
reads as

σ (ξ, ν) = E0 exp(iξ )

η + iν
+ c exp(−ηξ/ν), (A2)

where с is determined by the boundary conditions (11a) for
atoms with positive velocities and by (11b) for atoms moving
in the opposite direction. The first term on the right-hand
side of Eq. (A2) stands for a steady-state polarization value,
which exists in the case of the absence of the walls and can
be obtained by eliminating the derivative in Eq. (6b). The
imposition of boundary conditions (11) on Eq. (A2) yields

σ (ξ, ν > 0)

E0
= eiξ

η + iν
+ 1 − eiφ−ηφ/ν

1 − e−2ηφ/ν

2iνe−ηξ/ν

η2 + ν2
(A3)

for atoms with a positive velocity projection ν > 0 and

σ (ξ, ν < 0)

E0
= eiξ

η + iν
+ (eiφ+ηφ/ν − e4ηφ/ν )

× (1 − coth ηφ/ν )
iνe−ηξ/ν

η2 + ν2
(A4)

for atoms with a negative velocity projection ν < 0. After we
determine the nondiagonal element of the density matrix, we
can obtain the approximate solution of Eq. (6a) in terms of
the Green’s function. For the case of the absence of reflection
from the rear boundary for the reflected wave, we have

Er = E0
n1 − 1

n1 + 1
− m

∫ φ

0
eiξ dξ

∫ +∞

−∞
σ (ξ, ν)e−ν2

dν. (A5)

The first term in Eq. (A5) corresponds to the nonresonant
reflection of light from the first boundary, whereas the sec-
ond term determines the contribution of selective reflection.
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Finally, after the integration, we can obtain an approximate expression for the reflectivity to the first order with respect to m in
the following way:

R =
(

n1 − 1

n1 + 1

)2

+ 2
n1 − 1

n1 + 1
Re(rs), (A6)

where

rs = m

{
e2iφ − 1

2

∫ +∞

−∞

e−ν2
dν

ν − iη
+ e2iφ

∫ +∞

−∞

ν2e−ν2
[−1 + coth φη/ν]dν

(ν − iη)(ν + iη)2 +
∫ +∞

0

ν2e−ν2
[1 + coth φη/ν]dν

(ν − iη)(ν + iη)2

− 2eiφ
∫ +∞

0

ν2e−ν2
csch φη/ν dν

(ν − iη)(ν + iη)2 +
∫ 0

−∞
[−eiφ (1 + e2φη/ν ) + e3φη/νν]

ν2e−ν2
csch φη/ν dν

(ν − iη)(ν + iη)2

}
. (A7)

Equations (A6) and (A7) allow us to calculate the spectral line profile of the reflection coefficient by means of numerical
integration.
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