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Monitoring the resonantly driven Jaynes-Cummings oscillator by an external two-level emitter:
A cascaded open-systems approach

Th. K. Mavrogordatos * and J. Larson
Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

(Received 4 December 2019; revised manuscript received 10 March 2020; accepted 20 April 2020;
published 21 May 2020)

We address the consequences of back action in the unidirectional coupling of two cascaded open quantum
subsystems connected to the same reservoir at different spatial locations. In the spirit of H. J. Carmichael
[Phys. Rev. Lett. 70, 2273 (1993)], the second subsystem is a two-level atom, while the first transforms from
a driven empty cavity to a perturbative QED configuration and ultimately to a driven Jaynes-Cummings (JC)
oscillator through a varying light-matter coupling strength. For our purpose, we appeal at first to the properties
of resonance fluorescence in the statistical description of radiation emitted along two channels—those of forward
and sideways scattering—comprising the monitored output. In the simplest case of an empty cavity coupled to
an external atom, we derive analytical results for the nonclassical fluctuations in the fields occupying the two
channels, pursuing a mapping to the bad-cavity limit of the JC model to serve as a guide for the description of
the more involved dynamics. Finally, we exemplify a conditional evolution for the composite system of a critical
JC oscillator on resonance coupled to an external monitored two-level target, showing that coherent atomic
oscillations of the target probe the onset of a second-order dissipative quantum phase transition in the source.
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I. INTRODUCTION

The late 1980s and early 1990s witnessed the development
of the formalism for describing the statistical properties of
light emitted from a quantum system, driven by another
nonclassical source [1–5]. While fundamentally interesting
on its own, the theory also lends itself to the assessment of
critical behavior in nonequilibrium quantum phase transitions.
In the experiment of [6], for instance, it was shown that
the radiative decay rate of an atom coupled to quadrature-
squeezed electromagnetic vacuum, generated by a Joseph-
son parametric amplifier, can be reduced below its natural
linewidth. This observation corroborated Gardiner’s theoret-
ical prediction on the disparity of the rates at which the two
polarization quadratures are damped when an atom interacts
with a broadband squeezed vacuum [7]. Concurrently with
the latter, resonance fluorescence from a driven atom which is
damped by a squeezed vacuum was studied in [8]. Following
this long path of investigation to the present, in the explicitly
cascaded setup of [9], a weakly nonlinear system comprising a
superconducting resonator coupled to an artificial atom in the
dispersive regime is driven by squeezed vacuum, extending
the efficient generation of squeezed states in a parametric
amplifier comprising an array of Josephson junctions [10].
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Further along, an important step in characterizing the prop-
erties of squeezing via resonance fluorescence—and its char-
acterstic Mollow triplet spectrum—from artificial atoms in
circuit quantum electrodynamics (QED) was taken in [11]. In
what concerns now the generation of time-correlated photon
pairs from sources operating at the nanoscale, inelastic tunnel-
ing of single photons has been very recently shown to produce
highly bunched light in a process that can be construed as an
idealized two-step cascade [12].

Quantum optical systems, like those mentioned above,
have come to play a crucial role in the recent exploration of
nonequilibrium phase transitions. Such dissipative quantum
phase transitions rely fundamentally on the balance between
output and input in a background of intense fluctuations, in
contrast to their equilibrium counterparts. Shortly after the
formulation of the cascaded-system theory, an experiment
reported on the emission properties of two coupled cavities
operating in the region of optical bistability [13]. Closer to
the present, the breakdown of photon blockade in zero dimen-
sions [14], which was experimentally demonstrated in [15],
is associated with a distinct presence of quantum nonlinearity
leading to a definition of a strong-coupling “thermodynamic
limit,” where fluctuations persist, while the mean-field and
quantum predictions manifestly disagree. Such an out-of-
equilibrium phase transition probes the paradigmatic

√
n non-

linearity of the Jaynes-Cummings (JC) oscillator [16], which
has been revealed in a series of experiments in cavity and
circuit QED (see, e.g., [17] and [18]). Light-matter interaction
as formulated by the driven dissipative JC model is subject to
two thermodynamic limits which are fundamentally different
in terms of the input-output relation they dictate. One of
them is a so-called weak-coupling limit, in which quantum
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fluctuations reduce to an inconsequential addition (a so-called
“fuzz”) superimposed on top of the semiclassical output. The
second one is a strong-coupling limit, where the system size
grows together with the light-matter coupling strength and
quantum fluctuations remain. Such a limit is associated with
the occurrence of spontaneous dressed-state polarization and
symmetry breaking on resonance [19] and the persistence of
photon blockade off-resonance [14].

Accessing the Fock states of a harmonic oscillator and
assessing the statistical properties of the radiation emitted
following excitation with a single-photon source, either co-
herent or incoherent, has recently revived the interest in the
cascaded-systems formalism [20]. Subsequently, the normal-
ized emission spectra of a two-level atom driven by the light
emanating from another classically driven two-level atom
were investigated in [21] to be followed by a detailed analysis
of a regime where “where thermal statistics and quantum
coherences coexist and intertwine via quantum emitters,” as
demonstrated in [22]. With regard to extended systems, a
driven lattice of bidirectionally coupled cavities in the photon-
blockade regime has been assigned a quasithermal distribu-
tion function in [23], while a first-order dissipative quantum
phase transition has recently been experimentally realized in
a chain of 72 coplanar waveguide resonators [24]. Further-
more, direct correspondence between photon blockade and
stationary dark-state generation has been recently explored in
[25]. Interestingly, cascaded quantum systems have also been
used for a realization of a quantum information protocol in
which spontaneously emitted photons from a quantum dot at
a properly prepared state are collected and directed to a second
quantum dot [26].

How will the crucial interplay of input and output pan out
when information on the developed criticality is monitored
by an external quantum system? Contextual entanglement for
a laser oscillator illuminating a two-level atom was studied
in [27] in the frame of characterizing the laser output state,
while a very recent recent paper reports on a superposition of
macroscopically incompatible states, localized at the maxima
and the minima of the dipole potential, following a detection
of the electromagnetic field [28]. An investigation of the
Ising quantum phase transition in a quantum magnetic field
[29] came after the example of [30], where an external spin
is coupled to an Ising-type chain comprising a couple of
spins; such an interaction imposes a conditional evolution on
the composite system observables. In our paper, we explore
the conditional evolution of a JC oscillator arising when
monitoring its output by an external two-level atom. The
atom polarization together with the cavity field form part
of the forward-scattering channel, which occupies a main
object of our investigation. In such a cascaded setup, one
aims at total absorption of the incident light, projecting the
atom to its excited state with unit probability; a single photon
representing the time-reversed wave packet would then be
released by the atom in question in the course of spontaneous
emission [31–33]. The single-photon wave packet must then
impinge from the full 4π solid angle and have the appropriate
temporal shape [34].

Our discussion is organized as follows. After introducing
the model in Sec. II, based on the cascaded-systems formalism
developed in [2], we isolate the internal two-level atom from

the dynamics by setting its coupling strength to the cavity
equal to zero in Sec. III. We provide expressions for the inco-
herent spectrum and the squeezing spectrum of quantum fluc-
tuations in Secs. III A and III B, respectively, before focusing
on the weak-excitation limit which preserves the state purity.
We then extract an approximate formula for the second-order
correlation function for forward scattering in Sec. III C 1,
which reaffirms the mapping to the bad-cavity limit. Such a
correspondence gives access to a more general discussion on
the second-order coherence properties in Sec. III C 2. In the
second part of our analysis, we reinstate the atom inside the
cavity and assess the implications of a light-matter coupling
with growing strength. In Sec. IV, we remain within the
framework of the bad-cavity limit permitting the adiabatic
elimination of the intracavity field. In Sec. V, we abandon
the perturbative analysis allowed by the distinct time scales
defining the the bad-cavity limit, and instead move to the
strong-coupling regime, where we encounter a second-order
quantum phase transition with the accompanying spontaneous
symmetry breaking for the intracavity field and the associated
atomic polarization. We exemplify the impact of a monitor-
ing atom outside the cavity on the manifestation of phase
bistability for a conditional evolution of the composite system
in the course of single quantum trajectories. In spite of the
unidirectional coupling, we find that monitoring the bistable
JC oscillator has an ostensible effect on how the switching
events appear; these events are correlated with disruptions
in the coherent-oscillation cycles of the external atom. Some
brief comments on our results and extension to future work
close out the paper.

II. JC OSCILLATOR COUPLED TO A SINGLE
TWO-LEVEL ATOM: THE MODEL

In this work, a coherent field is driving on resonance a
cavity mode coupled to a two-level atom, while the output
cavity field is directed to an external two-level atom. Both
atomic transitions are as well resonant with the frequency of
the cavity mode. A traveling-wave reservoir connects the two
subsystems unidirectionally [2,3]. The master equation (ME)
in the Markovian approximation, for the retarded density
operator ρ̃ of the composite system at the position of the
external two-level atom and in the interaction picture, reads
[2,27,35]

dρ̃

dt
= 1

ih̄
[H, ρ̃] +

∑
k=1,2

L[Ck]ρ̃, (1)

where L[Ck]ρ̃ ≡ Ck ρ̃C†
k − (1/2)C†

k Ck ρ̃ − (1/2)ρ̃C†
k Ck is the

standard dissipation superoperator corresponding to the col-
lapse operator Ck and taking as an argument the density matrix
ρ̃. The coupled-system Hamiltonian in Eq. (1) is

H = ih̄[g(a†σ1− − aσ1+) +
√

�κγ /4 (a†σ2− − aσ2+)

+ εd (a† − a)], (2)

in which g is the coupling strength between the cavity mode
(with annihilation and creation operators a and a†, respec-
tively) and the internal atom (with polarization and inversion
operators σ1− and σ1z, respectively), εd is the amplitude of
the coherent field driving the cavity and 2κ is the photon
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FIG. 1. The two cascaded open quantum systems connected via
the reservoir field in the vacuum state. The modes of the vacuum
field that couple to the external two-level atom (TLA2) are divided
between four channels. Two of them are labeled by �γ and the
other two by (1 − �)γ , with 0 � � � 1 the degree of focusing. The
incident light from the driven JC oscillator occupies one channel
and, superimposed with forward scattering, eventually falls on the
detector corresponding to the collapse operator C1. Spontaneous
emission is absent for the internal two-level atom (TLA1) coupled
to the intracavity field with strength g. Backward and sideways
scattered photons are captured by the three detectors with a combined
output corresponding to the collapse operator C2.

loss rate due to coupling of cavity mode to a reservoir at
zero temperature. The total spontaneous emission rate due to
coupling of the external atom (σ2−, σ2z) to reservoir modes is
denoted by γ , while we assume that spontaneous emission is
absent for the atom inside the cavity, unless explicitly stated
otherwise (e.g., in Sec. IV). The fraction of the spontaneous
emission rate into the solid angle subtended by the source
is denoted by �γ /2, while we refer to � as the degree of
focusing. In such a configuration, 0 � � � 1, with the total
spontaneous emission rate being [2� + 2(1 − �)](γ /2) = γ .

The two collapse operators featured in Eq. (1), reflecting
the asymmetry of the channels coupling the external atom to
its environment due to the presence of a degree of focusing �

different than unity, are [see Eq. (12) of [2]]

C1 =
√

2κ a +
√

�(γ /2) σ2−,

C2 =
√

[2(1 − �) + �](γ /2) σ2− =
√

(2 − �)(γ /2) σ2−,

(3)
for the single forward-scattering (C1) and the collection of
one backward-scattering and two sideways-scattering chan-
nels (all lumped in C2). For convenience, hereinafter we omit
the designation backward-scattering when referring to the
field C2 (which is, however, the dominant contribution for the
limiting case � → 1 considered in [2]). The setup of Fig. 1,
depicting the input-output channels for an atom driven by a
JC oscillator closely based on the configuration investigated
in [2], is a parametrized sketch of the actual three-dimensional
interactions involved (see [36] for a discussion on the spatial
overlap between the excitation pulse and the dipole moment
with reference to the atomic excitation probability). The
forward-scattering channel corresponds to the superposition
of two quantum fields which cannot be monitored individually
without upsetting the coupling between the resonant cavity
mode and the external fluorescent two-level atom. The direct
coupling between the cavity field and the external two-level
atom, forming part of the coherent dynamics, occurs with a

strength
√

�κγ /4, comprised entirely of coupling rates to the
reservoir fields, otherwise responsible for dissipation. We note
as well that a and σ2− also couple to the reservoir modes
at the same spatial location [2]. ME (1) is solved via exact
diagonalization for the Liouvillian superoperators dictating
the evolution of the composite-system density matrix. The
ME is also unravelled into quantum trajectories via a quantum
state diffusion algorithm (see [37,38] and the correspondence
with a stochastic differential equation for the continuous
time evolution of conditioned heterodyne-current records, in
Sec. 18.2.3 of [39]) with adaptive step size. For the exact
diagonalization, we use the exponential series expansion of
MATLAB’s Quantum Optics Toolbox, while for the generation
of individual realizations we rely on an open-source library in
C++ detailed in [40].

To gain an understanding of where the unidirectional cou-
pling could lead to, we begin by looking at the mean-field
equations. The semiclassical equations for α̃ ≡ 〈a〉, β̃1 ≡
〈σ1−〉, ζ1 ≡ 〈σ1z〉, β̃2 ≡ 〈σ2−〉, ζ2 ≡ 〈σ2z〉, derived from the
ME (1) after factorizing the coupled moments in the equations
of motion, read

dα̃

dt
= −κα̃ + gβ̃1 + εd , (4a)

dβ̃1

dt
= gα̃ζ1, (4b)

dζ1

dt
= −2g(α̃∗β̃1 + α̃β̃∗

1 ), (4c)

dβ̃2

dt
= −(γ /2) β̃2 +

√
κγ� α̃ζ2, (4d)

dζ2

dt
= −γ (ζ2 + 1) − 2

√
κγ�(α̃∗β̃2 + α̃β̃∗

2 ). (4e)

Since spontaneous emission is absent for the atom lying inside
the cavity, Eqs. (4b) and (4c) preserve the length of the
pseudospin for the internal two-level atom interacting with the
resonant cavity mode, yielding [14,19]

4|β̃1|2 + ζ 2
1 = 1. (5)

Equations (4a)–(4c) predict the appearance of spontaneous
dressed-state polarization for the JC “molecule” when εd �
g/2, producing states which become attractors in the presence
of quantum fluctuations [19]. We also note that on the mean-
field level, the equations of motion for the atomic averages are
the same as those of free-space resonance fluorescence, where
the atom is driven by a coherent field with complex amplitude
α̃. This is a consequence of the unidirectional coupling. In the
steady state, we then find

β̃2, ss = − 1√
2

Y

1 + |Y |2 , ζ2, ss = − 1

1 + |Y |2 , (6)

with the dimensionless drive amplitude defined as Y ≡
2
√

2κ�/γ α̃ss. Having now introduced the model we will
be working with, we proceed to a significant simplification
by considering an empty cavity driven by coherent light,
producing an output field which is directed to the external
two-level atom.
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III. COHERENTLY DRIVEN EMPTY CAVITY COUPLED
TO AN EXTERNAL TWO-LEVEL ATOM

Let us now consider the case where g = 0. For brevity we
drop the subscript of the atomic operators, reserving σ for
the external atom only (since the internal atom has no longer
any influence on the dynamics). In this section, we draw
motivation by the analysis of the same system considered in
[2], which we briefly summarize in the following paragraphs.

In the interaction picture, the non-Hermitian Hamiltonian
governing the evolution of the (un-normalized) conditional
wave function |ψc(t )〉, as (d/dt )[|ψc(t )〉] = [1/(ih̄)]H|ψc(t )〉
has the form

H = ih̄(εd (a† − a) − κa†a − (γ /2)σ+σ−

−
√

2�κ (γ /2) aσ+). (7)

Assuming an initial vacuum state for the cavity mode and
given that the term a†σ− is absent from the Hamiltonian
of Eq. (7), the conditional wave function can be written in
the factorized form |ψc(t )〉 = |α(t )〉|Ac(t )〉, where α(t ) is a
coherent-state amplitude and |Ac(t )〉 is the state of the atom.
When the field is in a coherent state, the atom does not
entangle with its driving field [35]. We find that the amplitude
α(t ) is given by the expression α(t ) = (εd/κ )(1 − e−κt ) and,
upon reaching steady state, we obtain αss = εd/κ . Then, in
the long-time limit, the wave function for the (external) atom
alone obeys

d

dt
|Ac(t )〉 = −

(
γ

2
σ+σ− + εd

√
�γ

κ
σ+

)
|Ac(t )〉, (8)

with collapse operators C1 = √
2κ (εd/κ ) + √

�(γ /2)σ− and
C2 = √

(2 − �)(γ /2) σ−.
Now, in [2] we also read that this evolution is equivalent to

placing the atom inside a driven cavity in the bad-cavity limit,
satisfying a ME of the open driven JC oscillator on resonance
(in the interaction picture)

dρ̃

dt
= g[a†σ− − aσ+, ρ̃] + εd [a† − a, ρ̃]

+ κ (2aρ̃a† − a†aρ̃ − ρ̃a†a)

+ γ s

2
(2σ−ρ̃σ+ − σ+σ−ρ̃ − ρ̃σ+σ−), (9)

with g ≡ √
κ�γ /2 and γ s = √

(2 − 2�)(γ /2), adopting the
notation of [2]. In the bad-cavity limit, with the adiabatic elim-
ination of the cavity field being justified when κ � (γ /2, g),
the intracavity field operator a is then identifiable with the
forward-scattering field operator (in units of the square root
of photon flux) C1 ≡ √

2κ (εd/κ ) + √
�(γ /2)σ−, the statistics

of which we wish to determine. This mapping would also
lead to an enhanced emission rate of the form (1 + 2C)γ s,
with C ≡ g2/(κγ s) = �/[2(1 − �)], whence (1 + 2C)γ s =
[1 + �/(1 − �)]2(1 − �)(γ /2) = γ . In this correspondence,
� = 2C/(1 + 2C) is the proportion of the atomic reradiation
inside the cavity seen in transmission [41]. We will discuss
this mapping in more detail in Sec. III C 2.

For the moment, we return to the solution of ME (1) in
the case where the atom inside the cavity is explicitly not
involved. As in Sec. V of [35] and Sec. II B of [5], we propose

the ansatz

ρ̃(t ) = |α(t )〉〈α(t )| ⊗ ρA(t ), (10)

leading to a reduced ME for the external atom alone,

dρA

dt
= 1

ih̄
[Heff , ρA] + L[CA]ρA, (11)

with an effective Hamiltonian

Heff = ih̄
√

2κ�(γ /2)[α∗(t )σ− − α(t )σ+]

= ih̄
√

κ�γ [α∗(t )σ− − α(t )σ+], (12)

and a single collapse operator

CA = √
γ σ−. (13)

The coherent-state amplitude evolves again as α(t ) =
(εd/κ )(1 − e−κt ) for a time-independent coherent drive, re-
laxing to the steady-state value αss = εd/κ . Since the cavity is
in a coherent state, the neoclassical equations (4d) and (4e) are
identical to the Heisenberg equations of motion with a steady-
state solution given by Eq. (6), where Y = 2

√
2 εd

√
�/(κγ ).

A. Incoherent spectrum of fluctuations for the two channels

We will now carry on with the ME produced for the exter-
nal atom alone which, after the field amplitude has relaxed
to its final value, can be written in the standard form of
free-space resonance fluorescence, as

dρA

dt
= 1

ih̄
[Heff,(t�κ−1 ), ρA] + L(CA)ρA, (14)

in which the effective Hamiltonian has relaxed to

Heff,(t�κ−1 ) = (1/2)h̄ωAσz

+ ih̄εd

√
�γ /κ (σ−eiωAt − σ+e−iωAt ), (15)

where ωA is the atomic frequency (coinciding with the fre-
quency of the drive and the resonance frequency of the in-
tracavity mode). In the Appendix, we derive the correlation
functions needed to calculate the incoherent spectrum of the
forward-emitted field from the steady-state first-order correla-
tion function [42]. These are the same as in ordinary resonance
fluorescence since the fluctuations �C1,2 and �C†

1,2 (where
�C1,2 ≡ C1,2 − 〈C1,2〉ss) are proportional to �σ− and �σ+,
respectively, and the quantum regression formula relies on the
Bloch equations (in which appropriately modified coefficients
feature). For all the steady-state averages, 〈·〉ss, the limit t →
∞ has already been attained. Therefore, one only requires
the Hamiltonian of Eq. (15) when assessing the coherence
properties of the source field radiated by the atom outside the
cavity as a stationary process.

Adopting the scaling of [41] and following the standard
procedure (see, e.g., Sec. 2.3.4 of [42]), we write the inco-
herent optical spectrum of the forward and sideways scat-
tered fields as the Fourier transform of the first-order fluc-
tuation correlation function for the slowly varying operators
C̃1, C̃2, at a scaled angular frequency displaced by the atomic

053849-4



MONITORING THE RESONANTLY DRIVEN … PHYSICAL REVIEW A 101, 053849 (2020)

resonance, as

SC1,2, inc(ω) = 1

2π

(〈�C̃†
1,2�C̃1,2〉ss

)−1

×
∫ ∞

−∞
dτei(ω−ωA )τ 〈�C̃†

1,2(0)�C̃1,2(τ )〉
ss

= 1

π

(
1

2

Y 4

(1 + Y 2)2

)−1

×Re

(∫ ∞

0
dτei(ω−ωA )τ 〈�σ̃+(0)�σ̃−(τ )〉ss

)
,

(16)

where the (slowly varying) operators C̃1,2(t ) and C̃†
1,2(t ) are

defined in a frame rotating with ωA. The incoherent spectrum
evaluates to [see Eq. (1) of [41] and Eq. (22) of [21]]

SC1,2, inc(ω)

= 1

2π

{(
Y 2

1 + Y 2

)−1 1

1 + (ω − ωA)2

−
[

1/Y 2 − 1 + (1/Y 2 − 5)
1

2δ

]

× 3/4 − δ/2

(3/2 − δ)2 + (ω − ωA)2

−
[

1/Y 2 − 1 − (1/Y 2 − 5)
1

2δ

]

× 3/4 + δ/2

(3/2 + δ)2 + (ω − ωA)2

}
, (17)

where τ ≡ γ τ/2, ω ≡ 2ω/γ , ωA ≡ 2ωA/γ , and δ ≡ 2δ/γ ,
with δ = (γ /4)

√
1 − 8Y 2. The above expression is normal-

ized (to unit area) with respect to the dimensionless angular
frequency ω. At the exceptional point, δ = 0 (see the Ap-
pendix), the incoherent spectrum is given by the expression
[see Eq. (5) of [41]]

SC1,2, inc, cr (ω) = 9

2π

{
1

1 + (ω − ωA)2

− 3 + (ω − ωA)2

[(3/2)2 + (ω − ωA)2]2

}
, (18)

yielding a narrower distribution than the free-space
Lorentzian spectrum, before the Rabi doublet emerges.

B. Squeezing of quantum fluctuations
and the spectrum of squeezing

The incoherent spectrum of the quantum fields occupying
the two channels, corresponding to the operators C1,C2, is
intimately tied to the spectrum of squeezing which, unlike the
former, can assume negative values. Essentially, the spectrum
of squeezing for both channels assumes the same form as in
ordinary resonance fluorescence, since the source operators
�σ± obey the same optical Bloch equations as we have
already pointed out (for a discussion on the self-homodyning
of squeezed florescence and its contribution to antibunching
see, e.g., the form Eq. (37) and the ensuing discussion in [43],

and compare to Sec. 2.3.6 of [42]). Defining the field quadra-
tures �X̃1,2 ≡ X̃1,2 − 〈X̃1,2〉ss with

√
2κX̃1 ≡ (1/2)(C̃1 + C̃†

1 )
and

√
2κX̃2 ≡ −i(1/2)(C̃1 − C̃†

1 ), we calculate the normally
ordered quadrature variances in the steady state [see also
Eq. (32) of [43]],

〈: (�X̃1,2)2 :〉ss

= 1

4

[
2〈�C̃†

1 �C̃1〉ss ± 〈(�C̃1)2〉ss ± 〈(�C̃†
1 )2〉ss

]
= 1

4

(
�γ

4κ

)
[1 + 〈σz〉ss − (2 ± 2)〈σ̃+〉2

ss]

= 1

4

(
�γ

4κ

)
Y 2(Y 2 ∓ 1)

(1 + Y 2)2
. (19)

Squeezing of the steady-state quantum fluctuations occurs
only for the field quadrature X̃1, which is in phase with the
steady-state polarization 〈σ̃−〉ss, for Y < 1; this variance is an
explicit function of the degree of focusing.

The spectrum of squeezing for the outward-field quadra-
ture, as measured via a homodyne detection scheme employ-
ing a local oscillator with phase θ , is [41]

SC1, sq(ω, θ ) = 8η

π

∫ ∞

0
dτ cos(ω τ )Re(〈�C̃†

1 (0)�C̃1(τ )〉ss

+ e2iθ 〈�C̃†
1 (0)�C̃†

1 (τ )〉ss), (20)

where η stands for the product of the collection and detection
coefficients. Once more, we need to sequester formulas of
ordinary resonance fluorescence from the Appendix. For θ =
0, the quantity in the integral of Eq. (20) is the normally
ordered correlation function of the in-phase quadrature X1,
which, as we anticipate when τ = 0, is explicitly negative for
Y � 1 according to the calculation below:

〈: �X̃1(0)�X̃1(τ ) :〉ss

= 1

2

(
�γ

4κ

)
[〈�σ̃+(0)�σ̃+(τ )〉ss + 〈�σ̃+(0)�σ̃−(τ )〉ss]

= −1

4

(
�γ

4κ

)
Y 2

(1 + Y 2)2

×
{[

1 − Y 2 +
( γ

4δ

)
(1 − 5Y 2)

]
e−(3γ /4−δ)τ

+
[
1 − Y 2 −

( γ

4δ

)
(1 − 5Y 2)

]
e−(3γ /4+δ)τ

}
. (21)

From this function, one computes the squeezing spectrum
for the field quadrature of forward-scattered light which is in
phase with the induced atomic polarization as

SC1, sq(ω, 0)

= −2η

π

(
�γ

2

)
Y 2

(1 + Y 2)2

×
{[

1 − Y 2 +
(

1

2δ

)
(1 − 5Y 2)

]
3/2 − δ

(3/2 − δ)2 + ω2

+
[

1 − Y 2 −
(

1

2δ

)
(1 − 5Y 2)

]
3/2 + δ

(3/2 + δ)2 + ω2

}
.

(22)
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FIG. 2. Incoherent scattering and squeezing of fluctuations in the forward-scattering channel for increasing degree of focusing. Incoherent
spectra SC1, inc(ω) [curves (i)] obtained from Eq. (17), showing the development of the Mollow triplet, and normalized squeezing spectra
SC1, sq(ω − ωA) [curves (ii)] obtained from Eq. (22) (centered at ωA) of the forward-propagating field for an increasing degree of focusing:
� = 0.05, 0.1, 0.4, 0.8 in frames (a)–(d), respectively. The remaining parameters read κ/γ = 200 and εd/γ = 50.

On the other hand, for the fluctuations in quadrature to 〈σ̃−〉ss
(θ = π/2), we obtain a standard Lorentzian with natural
linewidth,

SC1, sq(ω, π/2)

= (2κ )
8η

π

∫ ∞

0
dτ cos(ω τ )〈: �X̃2(0)�X̃2(τ ) :〉ss

= 8η

π

(
�γ

2

)∫ ∞

0
dτ cos(ω τ )

×[〈�σ̃+(0)�σ̃−(τ )〉ss − 〈�σ̃+(0)�σ̃+(τ )〉ss]

= 4η

π

(
�γ

2

)
Y 2

1 + Y 2

1

1 + ω2 . (23)

Hence, we recover the general result linking the incoherent
spectrum to the spectrum of squeezing [41],

SC1, inc(ω + ωA) = (16η〈�C̃†
1 �C̃1〉ss)−1

× [SC1, sq(ω, θ ) + SC1, sq(ω, θ + π/2)],

(24)

applying in our case for θ = 0 (see also Fig. 2 of [21] for
an explicit formation of the incoherent spectrum as a balance
of Lorentzians with positive and negative weights). For weak
excitation strengths, Y 2 � 1, the spectrum SC1, sq(ω, 0) takes
negative values due to squeezing of fluctuations in phase with
the mean induced polarization; this lies at the root of the
squared Lorentzian profile whose origins date back to Mollow
as reported in 1969 [see [41] as well as Eq. (4.21) of [44] and
discussion below]. The incoherent spectrum of Eq. (17) and
the normalized squeezing spectra as given by

SC1, sq(ω) ≡ (16η〈�C̃†
1 �C̃1〉ss)−1SC1, sq(ω) (25)

for the forward emission are depicted in Fig. 2. In this figure,
where Y > 1/(2

√
2) for all frames, we witness the develop-

ment of the characteristic Mollow triplet for an increasing

degree of focusing, a sign of dominant incoherent scattering.
The Rabi sidebands of Figs. 2(c) and 2(d) are perfectly
captured by the spectrum of squeezing for strong focusing,
as predicted by the dominant contribution of the second term
in the sum of Eq. (24) to the incoherent spectrum, for large
values of Y .

C. Second-order coherence for the two channels

To get a deeper insight for the statistics of the forward-
and sideways-scattered light we now consider the second-
order correlators. The second-order correlation function for
the forward-scattering field, corresponding to the operator C1,
is

g(2)
C1

(τ ) = 〈C̃†
1 (0)C̃†

1 (τ )C̃1(τ )C̃1(0)〉ss

〈C̃1
†
C̃1〉

2

ss

= tr{C̃†
1 (0)C̃1(0)eL̃τ [C̃1(0)ρ̃ssC̃

†
1 (0)]}

〈C̃†
1C̃1〉2

ss

=
〈(C̃†

1C̃1)(τ )〉
ρ̃(0)=ρ̃ ′

ss

〈C̃†
1C̃1〉ss

, (26)

where in passing from the first to the second line we have
once more employed the quantum regression formula. The
(normalized) initial state of the atomic system ρ̃(0) = ρ̃ ′

ss, for
which the above averages are evaluated, is given by

ρ̃ ′
ss ≡ C̃1ρ̃ssC̃

†
1

tr(C̃1ρ̃ssC̃
†
1 )

. (27)

We note here that the steady-state mean photon flux in the
forward direction, featuring in the above expression, is given
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by the expression

〈C̃†
1C̃1〉ss = (2κ )

1

8�

γ

κ

Y 2

1 + Y 2
[(1 − �)2 + Y 2]

= γ

4�

Y 2

1 + Y 2
[(1 − �)2 + Y 2]. (28)

For weak driving, Y 2 � 1, this quantity reduces to

〈C̃†
1C̃1〉ss ≈ (2κ )

(εd

κ

)2
(1 − �)2, (29)

provided that � is not too close to unity.

1. Weak-excitation limit

The calculation is significantly simplified in the low-
excitation limit. We follow closely the treatment in Sec. 13.2.3
of [39] regarding the statistics of a weak intracavity field in
the bad-cavity limit. Within the Hilbert space of the external
atom, the density matrix in the steady state, following Eq. (6)

with (the real) Y = 2
√

2εd
√

�/(κγ ), is

(ρ̃A)ss = 1

2

2 + Y 2

1 + Y 2
|1〉〈1| + 1

2

Y 2

1 + Y 2
|2〉〈2|

− 1√
2

Y

1 + Y 2
(|1〉〈2| + |2〉〈1|). (30)

In the limit Y � 1, the steady state may then be approximated
by a pure state as

(ρ̃A)ss ≈ |Ãss〉〈Ãss|, (31)

with

|Ãss〉 = |1〉 − 1√
2

Y |2〉. (32)

The reduced state given by Eq. (27), prepared under the
condition that a photodetection occurs in the forward direction
at τ = 0, is then also approximately pure and can be written
in the factorized form

(ρ̃A)′ss ≈ |Ã′
ss〉〈Ã′

ss|, (33)

with

|Ã′
ss〉 = C̃1|Ãss〉√

〈Ãss|C̃†
1C̃1|Ãss〉

= (εd/κ + √
�γ /(4κ ) σ̃−)|Ãss〉√

〈Ãss|
(
εd/κ + √

�γ /(4κ ) σ̃+
)(

εd/κ + √
�γ /(4κ ) σ̃−

)|Ãss〉
. (34)

For the un-normalized state in the numerator of Eq. (34) we
write

|Ãss〉 = (εd/κ +
√

�γ /(4κ ) σ̃−)[|1〉 − (Y/
√

2)|2〉]
= (εd/κ −

√
�γ /(8κ ))|1〉 − (εd/κ )(Y/

√
2)|2〉.

To dominant order in the driving-field amplitude, the state
norm, equal to the square of the denominator in Eq. (34), is

1

2κ
tr(C̃1ρ̃ssC̃

†
1 ) ≈

(
εd

κ
− 2

εd

κ

√
�γ

4κ

√
κ�

γ

)2

= (εd/κ )2(1 − �)2, (35)

an expression we have already met in Eq. (29). Bringing the
different pieces together, we write the reduced state in the
same order of magnitude with respect to Y as

|Ã′
ss〉 ≈ |1〉 − 1

1 − �

Y√
2
|2〉 = |1〉 − 2

εd

κ

√
κ�

γ (1 − �)2
|2〉.
(36)

The relaxation of the conditional state |Ã′
ss〉 to the steady state

|Ãss〉 occurs via the action of the propagator eL̃Aτ , where the
Liouvillian superoperator L̃A is defined through the ME of

Eq. (11):

L̃A ≡ −εd

√
�γ /κ [σ+ − σ−, •]

+ γ

2
(2σ− • σ+ − σ+σ− • − • σ+σ−)

≈ −εd

√
�γ /κ [σ+, •] − γ

2
{σ+σ−, •}. (37)

This approximation, preserving the purity of the state, is
justified only for a weak excitation which guarantees a neg-
ligible photon emission probability during the relaxation of
the atom back to the steady state. The drive term is accounted
for by a non-Hermitian Hamiltonian (retaining only the term
proportional to σ+) preserving the norm of the steady-state
reduced density matrix as unity plus a first-order correction
in the drive strength. Under this assumption, the second-order
correlation function in the forward direction can be recast in
the form

g(2)
C1

(τ ) ≈ (εd/κ )2(1 − �)2〈Ã(τ )|(εd/κ +
√

�γ /(4κ ) σ̃+)

× (εd/κ +
√

�γ /(4κ ) σ̃−)|Ã(τ )〉, (38)

with initial condition |Ã(0)〉 = |Ã′
ss〉. Having eliminated the

quantum jumps due to spontaneous emission from the Li-
ouvillian of Eq. (37), the conditional wave function evolves
under a non-Hermitian Hamiltonian, obeying the Schrödinger
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equation

d

dτ
|Ã(τ )〉 =

(
−εd

√
�γ

κ
σ+ − γ

2
σ+σ−

)
|Ã(τ )〉. (39)

We expand the conditional state as |Ã(τ )〉 = x(τ )|1〉 +
y(τ )|2〉, where the complex expansion coefficients x(τ ), y(τ ),
satisfy the set of coupled linear differential equations

dx

dτ
= 0,

dy

dτ
= −γ

2
y − εd

√
�γ

κ
x. (40)

The initial conditions should match the conditional state
of Eq. (36) following the measurement of a photon
in the forward direction, yielding x(0) = 1 and y(0) =
−2(εd/κ )

√
κ�/[γ (1 − �)]2.

The solution to the set of coupled equations (40) and their
associated initial conditions produces the state

|Ã(τ )〉 = |1〉 − 2
εd

κ

√
κ�

γ

(
1 + �

1 − �
e−(γ /2)τ

)
|2〉. (41)

Finally, consistent with the initial approximation in Eq. (32),
which amounts to keeping terms linear in the driving-field
amplitude, we write

(εd/κ +
√

�γ /(4κ ) σ̃−)|Ã(τ )〉
≈ (εd/κ )|1〉 − �(εd/κ )[1 + �/(1 − �) e−(γ /2)τ ]|1〉
= {εd/[κ (1 − �)]} {1 − [�2/(1 − �)2] e−(γ /2)τ }|1〉,

(42)

whence, substituting in Eq. (38), we finally obtain the second-
order correlation function for the forward emission in the
weak-excitation approximation,

g(2)
C1

(τ ) ≈
[

1 −
(

�

1 − �

)2

e−(γ /2)τ

]2

. (43)

This expression, which is explicitly independent of the
driving-field amplitude, agrees with Eq. (41) of [43] with C ≡
g2/(κγ ′) = �/[2(1 − �)], in the correspondence we have in-
troduced in Sec. III. The transition from photon antibunching
to bunching for varying degrees of focusing � is depicted
in Fig. 3. The function g(2)

C1
(τ ) in the weak-coupling limit

has a minimum at the delay γ τm = 4 ln[�/(1 − �)] [see also
Eq. (42) of [43]], which is relevant for � � 0.5. In particular,
for � = 0.5, τm = 0 and g(2)

C1
(0) = 0, as we can see for curve

(iv) in Fig. 3(a). The occurrence of the minimum value of
g(2)

C1
(τm) = 0 for τm > 0 evidences the nonclassical character

of intensity correlations (see Sec. IV A of [43]). The extreme
bunching we observe in Fig. 3(b), in a clear departure from the
second-order coherence of resonance fluorescence, reflects
the fact that a measurement in the forward-scattering channel
projects the external atom in its excited state when � → 1.
The excited atom then lets a photon pass through while it is
dealing with the one it is about to emit [2,35]; as a result,
closely spaced photon pairs are detected, in stark contrast with
the scattered field of ordinary resonance fluorescence when
the amplitude of the coherent drive is very small. We also note
that, owing to the fact that terms proportional to σ− • σ+—
destroying the state purity—are omitted from Eq. (37) in this
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FIG. 3. Second-order coherence of forward scattering in the
weak-excitation limit. Second-order correlation function of forward
photon scattering g(2)

C1
(τ ) vs the dimensionless delay γ τ , calculated

using Eq. (43). In (a) we depict photon antibunching for � =
0.2, 0.3, 0.4, 0.5 as depicted by the curves (i)–(iv), respectively,
and in (b) the approach to extreme photon bunching for � =
0.7, 0.75, 0.8, 0.82 as depicted by the curves (i)–(iv), respectively.

approximation, g(2)
C1

(τ ) is initially proportional to the waiting-
time distribution of photon emissions in the forward direction,
wC1 (τ ), a probability distribution over waiting times to the
next jump associated with a photon emission, integrated to
unity. This proportionality relation holds true for delay times
γ τ much smaller than the mean time between jumps (scaled
by the atomic lifetime) which, in the limit of a vanishingly
weak excitation, extends to infinity (see [45] and Sec. 13.2.4
of [39]). The waiting-time distribution wC1 (τ ), however, ulti-
mately decays to zero at long times (as a probability distribu-
tion function), while g(2)

C1
(τ ) is asymptotic to unity.

2. More on the mapping to a two-level atom inside
a coherently driven bad cavity

Following on with our mapping for larger driving strengths
and comparing with Eqs. (17) and (23) of [43], we identify the
second-order correlation function of Eq. (26) with the more
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involved expression

g(2)
C1

(τ ) − 1

= − 8C2

[1 + Y 2(1 + 2C)2]2

×e−(3γ /4)τ

{
[1 − 2C2 − Y 2(1 + 2C)2] cosh(δτ )

+ γ

4δ
[1 + 2C2 − Y 2(1 + 2C)(5 + 2C)] sinh(δτ )

}
,

(44)

where the parameters Y , δ, and C have been defined in Sec. III,
all involving the effective coupling strength g = √

κ�γ /2
in the mapping to the bad-cavity configuration. We note,
however, that, owing to the unidirectional coupling between
the driven cavity—whose resonant mode field remains in a
coherent state—and the atom, the validity of Eq. (44) extends
beyond the bad-cavity limit when mapped to the parameters of
the cascaded-system setup. There is no entanglement between
the atom and the cavity field due to their direct coupling [35].
This means that a condition of the kind κ/γ � 1—the trans-
lation of the bad-cavity rate hierarchy—is not imposed. Here,
the presence of C addresses a different physical mechanism:
instead of being the Purcell factor enhancing the spontaneous
emission rate to arbitrary values set by the intracavity cou-
pling strength, it promotes the sideways-emission rate to its
full 4π value, γ s → γ .

As for the sideways emission, for the field operator C2, one
employs directly the familiar result from free-space resonance
fluorescence, namely (see Appendix and [42])

g(2)
C2

(τ ) = 〈C̃†
2 (0)C̃†

2 (τ )C̃2(τ )C̃2(0)〉ss

〈C̃2
†
C̃2〉

2

ss

= 1 − e−(3γ /4)τ

(
cosh δτ + 3γ

4δ
sinh δτ

)
, (45)

with g(2)
C2

(0) = 0 for all values of �. Further evidence on
the distinct character of the forward-emission field alongside
its difference from the ordinary resonance fluorescence of
sideways emission is given by the numerically computed
correlation functions of Fig. 4 beyond the weak-excitation
limit. The results depicted here coincide with the analytical
predictions of Eqs. (44) and (45). In Fig. 4(a), the decay of
g(2)

C1
(τ ) to a minimum below unity [curve (i)] (approaching

arbitrarily low values for εd/κ → 0 —a nonclassical effect
discussed in [43]) is replaced by rapid oscillations of a weak
amplitude about unity with increasing Y (as we keep εd/κ

constant and increase κ/γ ) [curve (iii)], in the approach
to a coherent-state output. At the same time, g(2)

C2
(τ ) shows

the expected onset of the free-space resonance fluorescence
ringing associated with the pronounced Rabi doublet in the
optical and squeezing spectra we have met in Fig. 2. For
the computation of higher-order correlation functions for the
forward-scattering channel, one employs directly Eqs. (22)
and (23) of [43].
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FIG. 4. Second-order quantum correlations for a weakening cou-
pling to the external atom. Second-order correlation function of for-
ward photon scattering g(2)

C1
(τ ) in (a) and sideways scattering g(2)

C2
(τ )

in (b) vs the dimensionless delay γ τ , for γ /κ = 0.025, 0.01, 0.001,
as depicted by the curves (i)–(iii), respectively. The correlation func-
tions are derived from the numerical solution of the ME (1) through
exact diagonalization. The remaining parameters are εd/κ = 0.1 and
� = 0.7.

IV. ADIABATIC ELIMINATION OF THE
INTRACAVITY FIELD: FREE-SPACE RESONANCE

FLUORESCENCE REVISITED

We now bring the atom inside the cavity into play in a
perturbative fashion, assuming a coupling to the cavity mode
with a small but finite strength g � κ . This interaction is con-
sidered together with emission from the sides of the cavity at
a rate γs, adding another dissipation channel to the ME (1) via
the term L[C3]ρ̃, with C3 = √

γs σ1−. We focus on a hierarchy
of time scales set by the condition κ � (εd , g, γs/2), such
that the cavity relaxes fast to a coherent state with very small
amplitude, while the atom inside the cavity remains close to
its ground state with a steady-state excitation probability on
the order of the scaled drive amplitude squared—consistent
with our approximation in Eq. (32) referring now to the JC
oscillator in the bad-cavity limit.

053849-9



TH. K. MAVROGORDATOS AND J. LARSON PHYSICAL REVIEW A 101, 053849 (2020)

From the ME (1) (including L[C3]ρ̃), we obtain the follow-
ing equations of motion for the time-varying averages of the
coupled cavity mode field, atomic polarization, and inversion
of the internal two-level atom (where the tilde on top of the
operators signifies the equivalence to a frame rotating with
the atomic frequency ωA):

d〈ã〉
dt

= −κ〈ã〉 + g〈σ̃1−〉 + εd , (46a)

d〈σ̃1−〉
dt

= −γs

2
〈σ̃1−〉 + g〈σ1zã〉, (46b)

d〈σ̃1+〉
dt

= −γs

2
〈σ̃1+〉 + g〈ã†σ 1z〉, (46c)

d〈σ1z〉
dt

= −γs(〈σ1z〉 + 1) − 2g(〈σ̃1+ã〉 + 〈ã†σ̃1−〉), (46d)

and for the external atom,

d〈σ̃2−〉
dt

= −γ

2
〈σ̃2−〉 +

√
κγ� 〈σ2zã〉, (47a)

d〈σ̃2+〉
dt

= −γ

2
〈σ̃2+〉 +

√
κγ� 〈ã†σ2z〉, (47b)

d〈σ2z〉
dt

= −γ (〈σ2z〉 + 1) − 2
√

κγ� (〈σ̃2+ã〉 + 〈ã†σ̃2−〉).

(47c)

From the Heisenberg-Langevin equation (12) of [3], by virtue
of the unidirectional coupling between the two cascaded sys-
tems and in a frame rotating with ωA, we obtain [43]

ã(t ) = εd

κ
+ g

κ
σ̃1−(t ) + 1

κ
ξ̂ (t ), (48)

where ξ̂ (t ) is the quantum-noise term arising from the interac-
tion of the cavity mode with the field modes of a reservoir (and
contains the sum of the corresponding annihilation operators
over those modes). Here, we take 〈ξ̂ (t )〉 = 0, assuming that
the reservoir is in the vacuum state. Substituting the expres-
sion of Eq. (48) for the adiabatically eliminated intracavity
field into the equations of motion (46) and (47), in which
the system operators have been preordered in such a fashion
as to make clear that every term involving the reservoir field
coming from ã(t ) is zero, yields the Bloch equations for the
two-level atom inside the cavity,

d〈σ̃1−〉
dt

= −γs

2
(1 + 2C) 〈σ̃1−〉 + Y√

2
〈σ1z〉, (49a)

d〈σ̃1+〉
dt

= −γs

2
(1 + 2C) 〈σ̃1−〉 + Y√

2
〈σ1z〉, (49b)

d〈σ1z〉
dt

= −γs(1 + 2C)(〈σ1z〉 + 1)

− Y

2
√

2
(〈σ̃1+〉 + 〈σ̃1−〉), (49c)

and for the external atom,

d〈σ̃2−〉
dt

= −γ

2
〈σ̃2−〉 + εd

√
γ�

κ
〈σ2z〉

+ g

√
γ�

κ
〈σ̃1−σ2z〉, (50a)

d〈σ̃2+〉
dt

= −γ

2
〈σ̃2+〉 + εd

√
γ�

κ
〈σ2z〉

+ g

√
γ�

κ
〈σ̃1+σ2z〉, (50b)

d〈σ2z〉
dt

= −γ (〈σ2z〉 + 1) − 2εd

√
γ�

κ
(〈σ̃2+〉 + 〈σ̃2−〉)

− 2g

√
γ�

κ
(〈σ̃1+σ̃2−〉 + 〈σ̃1−σ̃2+〉), (50c)

where in this case there is explicit spontaneous-emission en-
hancement for the internal two-level system by (1 + 2C), with
the Purcell factor C = g2/(κγs) depending on the strength
of the coherent intracavity light-matter interaction. Equations
(49a)–(49c) can be solved independently of the quantities
pertaining to the external atom, and the steady-state solution
follows from the standard treatment of free-space resonance
fluorescence (for an atom placed outside the cavity) as [43]

〈σ̃1±〉ss = − 1√
2

Y (1 + 2C)

(1 + 2C)2 + Y
2 ,

(51)

〈σ1z〉ss = − (1 + 2C)2

(1 + 2C)2 + Y
2 ,

where Y ≡ 2
√

2gεd/(κγs) is the scaled dimensionless drive
amplitude. When γs → 0, we can instead write

〈σ̃1±〉ss = − 1√
2

Y
′

1 + Y
′2 , 〈σ1z〉ss = − 1

1 + Y
′2 , (52)

with Y
′ = 2

√
2{gεd/[κγ (1 + 2C)]} → √

2εd/g.
We will now decouple the moments of Eqs. (50a)–(50c)

in the mean-field approximation, and seek the steady-state
solutions of the modified equations of motion for the external
two-level system,

−γ

2
〈σ̃2−〉ss + εd

√
γ�

κ

[
1 + g

εd
〈σ̃1−〉ss

]
〈σ2z〉ss = 0,

(53a)

−γ

2
〈σ̃2+〉ss + εd

√
γ�

κ

[
1 + g

εd
〈σ̃1+〉ss

]
〈σ2z〉ss = 0,

(53b)

−γ (〈σ2z〉ss + 1) − 2εd

√
γ�

κ

[
1 + g

εd
〈σ̃1+〉ss

]
× (〈σ̃2+〉ss + 〈σ̃2−〉ss) = 0. (53c)

The solution to these equations, equivalent to free-space reso-
nance fluorescence, is, as usual,

〈σ̃2±〉ss = − 1√
2

Y
′′

1 + Y
′′2 , 〈σ2z〉ss = − 1

1 + Y
′′2 , (54)
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FIG. 5. Probing the intracavity light-matter coupling strength in
the bad-cavity limit. Second-order intensity correlation function of
the sideways scattered light field, g(2)

C2
(τ ) vs γ τ , extracted from the

solution of ME (1) with γs = 0 for increasing g/εd assuming values
0.05, 1, and 2.5 corresponding to the curves (i)–(iii) respectively.
The inset depicts the analytical expression of Eq. (45) with the scaled
drive amplitude of Eq. (55). The remaining parameters are εd/κ =
0.04, � = 0.9, γ /εd = 0.0156, and γs = 0.

but now with Y
′′ ≡ 2εd

√
2�/(κγ )[1 + (g/εd ) 〈σ̃1+〉ss]. For

g/εd � 1 and εd/γs � 1, one recovers the semiclassical dy-
namics predicted by Eqs. (4). When γs → 0, we obtain

Y
′′
γs→0 ≡ 2εd

√
2�

κγ

[
1 − 1

1 + 2(εd/g)2

]
, (55)

tending to zero for small ratios εd/g. The effect of reducing
the dimensionless drive amplitude Y

′′
γs→0 when increasing the

ratio g/εd is reflected in the intensity correlation functions for
sideways scattering of Fig. 5, where numerical results from
the solution of the ME (1) are compared to the analytical
expression of Eq. (45), with the appropriate scaled amplitude,
taken from Eq. (55). The long-time approach of the second-
order coherence function for sideways scattering to unity,
as depicted in curve (i) of the main plot (for g/εd � 1),
is indicative of quantum correlations built up between the
internal atom, coupled to the radiating intracavity field, and
the external scatterer. Simulations show that the deviation
is larger when g/γ ∼ 1 and for a small intracavity photon
number (εd/κ )2, which is a sign of departure from the validity
of the adiabatic elimination of the intracavity field and the
mean-field dynamics of free-space resonance fluorescence.
Otherwise, the two sets of curves are in good agreement.

Prompted by this semiclassical argument, we will now
compare the probability to find the external two-level atom
in the excited state in single quantum trajectories unravelling
the full ME (1), to the resonance fluorescence correspond-
ing to the equations of motion (50a)–(50c). We assume a
factorization of moments whereby the atomic polarization
and inversion of the internal two-level atom are kept equal
to their steady-state values at all times. In other words, we
compare to the solution of a reduced ME where a coherent
field drives the external atom, with an amplitude set by the
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FIG. 6. Rabi oscillations in single quantum trajectories.
(a) Time-dependent probability pe(t ) ≡ 0.5[1 + 〈σz(t )〉] of finding
the atom outside the cavity in the excited state, extracted from a
single realization. Curve (i) depicts pe(t ) from the unravelling of
the full ME (1) in the presence of sideways spontaneous emission
by the internal two-level atom, with g/εd = 0.5, γs/εd = 0.25,
γ /εd = 0.0156, and � = 0.9. Curve (ii), depicting 1 + pe(t ) (for
visual clarity), originates from the reduced ME of ordinary resonance
fluorescence. (b) Same as in frame (a), but for γ /εd = 0.0069. In
all quantum trajectories unravelling the (corresponding) MEs, the
same seed to the random-number generator and initial conditions
were used; both atoms were initialized in their ground states, and the
cavity field in the Fock state |n = 1〉 for the generation of curves (i)
in both frames.

mean-field steady-state operator averages of the atom inside
the cavity. The results are depicted in Fig. 6, where we can
observe that a decreasing spontaneous emission rate γ brings
the increasingly coherent Rabi oscillations in phase with the
monitored output of resonance fluorescence. The oscillations
depicted in the curves (ii), following from unravelling the
ME of the free-space resonance fluorescence, correspond to
the steady-state solution of the optical Bloch equations—as
given in Eq. (54)—for the scaled drive amplitude Y ′′. This
amplitude is in turn defined from the parameters employed for
the solution of the full ME (1), unravelled when producing the
curves (i). In the meanwhile, the inversion for the atom inside
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the cavity (in the cascaded configuration) remains virtually
fixed at its steady-state value 〈σ1z〉ss ≈ −0.95, yielding a very
small probability of finding the atom in the excited state—in
line with the weak-excitation limit of Sec. III C 1—as we
expect in the bad-cavity limit of the JC interaction we are
here considering. By lowering substantially the photon loss
rate 2κ with respect to the coupling strength g and considering
the limit of zero spontaneous emission, we access the strong-
coupling regime which is not amenable to perturbation theory:
there, modifications occur at the level of coherent quantum
dynamics due to the significant JC nonlinearity (Sec. 13.3 of
[39]) transmitted through to the monitored output.

V. QUANTUM-FLUCTUATION BIMODAL SWITCHING
DRIVING AN EXTERNAL TWO-LEVEL ATOM

The strong-coupling regime is defined by the condition
g/κ � 1; here, g/2 and εd are of the same order of magnitude,
while we also assume that the internal atom is not radiatively
coupled to the modes of the vacuum field (γs = 0), carrying on
from Sec. II. By doing so we reach the limit of “zero system
size” γ 2

s /(8g2) → 0, bringing spontaneous dressed-state po-
larization into play (see Sec. 16.3 of [39] and [19]). The output
channel reflects the collapse of the quasienergy spectrum at
the critical point εd = g/2 in the associated second-order
dissipative quantum phase transition [14]. Above threshold,
εd � g/2, the neoclassical (see Sec. II C of [14]) steady-
state intracavity field is bimodal according to the expression
[19,46]

α̃ss = εd

κ

[
1 −

(
g

2εd

)2
]

± i
g

2κ

√
1 −

(
g

2εd

)2

, (56)

identifying a complex-conjugate pair of state amplitudes. In
the strong-coupling limit, where g/κ � 1, and sufficiently
away from the critical point, the mean-field solutions (6) for
the two-level atom outside the cavity are (for �κ/γ ∼ 1,
guaranteeing |Y | � 1)

β̃2, ss ≈ − 1√
2

Y

|Y |2 = −1

4

√
γ

�κ

αss

|αss|2 , (57)

yielding

β̃2, ss ≈ −1

4

√
γ

�κ

⎡
⎣
√

1 −
(

g

2εd

)2

± i
g

2εd

⎤
⎦

×
{(εd

κ

)2
[

1 −
(

g

2εd

)2
]}−1/2

, (58)

while

ζ2, ss ≈ − 1

|Y |2 = − γ

8�κ

{(εd

κ

)2
[

1 −
(

g

2εd

)2
]}−1

. (59)

For the two-level atom inside the cavity, the corresponding
quantities read [see Eqs. (4(b), (4c) and (5) of Sec. II]

β̃1, ss = ±i
α̃ss

2|α̃ss| = − g

4εd
± i

1

2

√
1 −

(
g

2εd

)2

, ζ1, ss = 0.

(60)

Defining λ ≡ (g/2εd )2, we observe that at the critical point,
λc = 1, both the field amplitudes α̃ss and the atomic polar-
ization states β̃(1,2), ss display a pitchforklike bifurcation. The
complex order parameter α̃ss of Eq. (56) points to a scaling
of the form (λ − λc)1/2, identifying a critical exponent equal
to 1/2. However, the moduli of the external polarization,
|β̃2, ss|, and inversion, ζ2, ss, scale instead as (λ − λc)−1/2 and
(λ − λc)−1, respectively, for large excitation amplitudes Y
away from the critical point, while the modulus of the internal
polarization, |β̃1, ss|, is equal to 1/2 above the critical point,
and the internal inversion ζ1, ss remains fixed at zero.

Quantum-fluctuation bistable switching above threshold,
stabilizing the mean-field states as attractors [19], is depicted
in Fig. 7 for low and high degree of focusing to the external
atom, and a steady-state average intracavity photon number
〈n〉ss ≡ 〈a†a〉ss ≈ 43. The imaginary part of the polarization-
operator average has opposite signs for the two atoms, 1
and 2, as correctly predicted by the semiclassical Eqs. (57)
and (60). The two metastable states with conjugate polar-
ization have a lifetime that significantly exceeds the κ−1

time-scale set by dissipation. Since γ /κ � 1, one cannot
distinguish individual Rabi oscillations (for the external atom)
during the lifetime of each of the two states of polariza-
tion with opposite imaginary parts. Increasing the degree of
focusing from � = 0.1 to � = 0.9 influences the particular
realization of quantum-fluctuation switching in the bistable
JC oscillator, with switching events occurring at different
positions, as we can observe when comparing the two panels
of Fig. 7. We observe that the external atom responds to
the bistable switching even for a low degree of focusing.
When comparing the two individual realizations, we also
note the disappearance of the time interval characterized by
intense decoherence (for 60 � κt � 80) in Fig. 7(a) when
focusing to the external atom is stronger [Fig. 7(b)]; in the
latter case, the Bloch vector explores larger regions of the
unit sphere.

In Fig. 8, we observe the distinction between driving the
external two-level atom by a state that fluctuates and by a
state with nonzero mean-field amplitude α̃ss slightly below
and above the critical point, respectively. Quantum-fluctuation
switching between the two semiclassical solutions of the ex-
ternal atom, as seen in both frames, is simultaneously accom-
panied by phase jumps of the cavity-field amplitude. Hence,
the two subsystems become phase correlated via radiative
coupling to the same reservoir. Here, γ /κ � 1 (resulting in a
much larger value of Y than the one used in Fig. 7); therefore,
individual Rabi oscillations are visible, with a period which is
comparable to the lifetime of the metastable states. Switching
events to a different metastable state—and accordingly to a
different excitation ladder of the JC spectrum [14,19]—in the
top panel of Fig. 8, are correlated with a clear disruption of
the Rabi-oscillation cycles. This is a disruption of the phase
arising from the switching of the drive-field phase, in contrast
to a disruption due to spontaneous emission—which resets the
atomic oscillation to the ground state—seen in trajectories of
regular resonance fluorescence. For the bottom panel of Fig. 8,
the scaled amplitude of the field driving external atom is
Y = 0, since the cavity is driven by a field with an amplitude
below its threshold value (whence α̃ss = 0). Nevertheless,
coherent oscillations in the imaginary part of the atomic-
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FIG. 7. Bimodal field driving a two-level atom. Time-dependent averages 〈σy(t )〉 of the slowly varying y-polarization component for the
atom inside (in solid purple line) and outside (in green dots) the cavity, extracted from a single quantum trajectory. For the trajectory in the top
panel, � = 0.1, and for the trajectory in the bottom panel, � = 0.9. The remaining parameters are g/κ = 100, γ /κ = 40, and εd/g = 0.501.
For both quantum trajectories the same seed to the random-number generator and initial conditions were used; both atoms were initialized in
their ground states, and the cavity field in the Fock state |n = 1〉.

polarization average, though visibly more distorted, can still
be discerned, together with their disruptions, correlated with
transitions to a different metastable state. We need to empha-
size here that this is a regime of pronounced fluctuations, be-
ing around the critical point of a second-order quantum phase
transition in zero dimensions, where a departure from the
mean-field predictions is to be expected when one monitors
directly the output of the bistable oscillator (see Sec. 16.3.6
of [39]). In fact, the Q function for the cavity-field distribu-
tion in Fig. 8 evidences two maxima for complex-conjugate
amplitudes, before the appearance of the expected mean-field
bifurcation; this suggests a conditional evolution roughly of
the type described in Eqs. (50)–(52) of [19], affected and

monitored by the external two-level atom, in spite of driving
below threshold.

VI. CONCLUDING DISCUSSION AND FUTURE WORK

In this work, we have derived analytical results for the
statistics of the forward and sideways emission channel by
means of a mapping to an atom inside the coherently driven
cavity coupled to the supported resonant mode with a strength
determined by the dissipation rates of the initial cascaded-
system configuration. For this purpose, we at first set to zero
the coupling strength between the cavity and the two-level
atom comprising the JC oscillator, developing a treatment
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FIG. 8. Driving the external atom above and below the critical point of symmetry breaking. Time-dependent averages 〈σy(t )〉 of the slowly
varying y-polarization component for the atom inside (in solid purple line) and outside (in green dots) the cavity, extracted from a single
quantum trajectory. For the quantum trajectory depicted in the top panel, εd/g = 0.501, and for the trajectory in the bottom panel, εd/g = 0.495.
The insets depict the quasiprobability distribution Q(x + iy) of the intracavity field, with the corresponding steady-state photon number given
underneath. The remaining parameters are g/κ = 100, γ /κ = 0.004, and � = 0.95. As in Fig. 7, for both quantum trajectories the same seed
to the random-number generator and initial conditions were used; both atoms were initialized in their ground states, and the cavity field in the
Fock state |n = 1〉.

which relied on several well-known results from ordinary
resonance fluorescence and the bad-cavity limit of QED.
We then brought progressively the JC dynamics into play,
reflected in the nonlinearity of the nonclassical light emanat-
ing from the first subsystem coupled to an atomic scatterer.
Through a succession of coupled equations of motion for
the two cascaded subsystems, we employed a semiclassical
and numerical investigation to compare the solution of the
full ME with free-space resonance fluorescence for the atom-
scatterer lying outside the cavity. The latter is driven by an
effective field whose amplitude is determined by the steady-

state polarization and inversion averages of the atom inside
the cavity.

By promoting the intracavity coupling strength between
the two constituents of the JC oscillator we have eventually
moved to a regime where the quantum nature of the field
driving the external atom cannot be reduced to a mean-field or
perturbative description. The output of the bistable oscillator
in the region of the critical point, forming part of the forward-
scattering channel, involves actively both coupled quantum
degrees of freedom in the JC interaction (which is not the
case when g/κ � 1, γs/κ � 1); it is in a state of pronounced
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quantum fluctuations subject to a conditional evolution which
actively involves the external two-level emitter. Away from
the critical point, where the quasienergy spectrum collapses,
such an output can be approximated by a mixed state with an
equal representation of the two quasicoherent states of phase
bimodality [19]. In the absence of monitoring by the external
atom (γ = 0), we have also found that the conditional evolu-
tion of phase bistability in the coupled degrees of freedom
is different from the trajectories depicted in Fig. 7 for the
same seed to the random-number generator. Therefore, our
analysis has been largely based upon the coherence properties
of resonance fluorescence and the associated Rabi oscilla-
tions, with reference to the different statistics of forward
and sideways scattering for an external atom coupled to the
coherently driven cavity; such a disparity arises due to the
interference with the coherent cavity output field, and varies
with the degree of focusing. Disruptions in these coherent
oscillations, emerging on approaching the critical point, are
correlated with the switching events realizing phase bistability
in the individual trajectories unravelling the evolution of the
full system density matrix (source plus target).

Let us pause here to comment a little bit further on the
mapping to the bad-cavity limit, which, as we have already
pointed out, effectively amounts to placing the external atom
inside the cavity and dealing with JC dynamics, even if per-
turbatively. In the cascaded-system configuration, the forward
dipole scattering is made significant by strongly focusing the
cavity output onto the external emitter so that a significant
fraction of the 4π solid angle seen by the atom is occupied
by the incoming mode. In this case, the drive field must be
mode-matched to the dipole mode that naturally arises in the
coupling of a dipole transition to the electromagnetic field
in free space—this remains a considerable challenge on the
experimental front. There is no Purcell enhancement involved
in generating the mode overlap and, in that sense, our mapping
is rather formal. Nevertheless, the effective “enhancement” of
the sideways spontaneous emission rate to its full 4π value
points us to the ME (11) in which a classical field is driving
the target atom (a central message of [35]) where the trace
over the cavity field has worked out to yield exactly the total
emission rate γ .

Following the resurgence of interest in the emission prop-
erties of a target driven by an explicitly quantum source, an
immediate extension of our work could touch upon driving the
external atom with the output of a JC oscillator in the regime
of photon blockade, probing its persistence in the “thermo-
dynamic limit” of strong coupling, where the scale parameter
grows with the coupling strength. Here, the output is a stream
of distinct photon assemblies, corresponding to the multipho-
ton resonances responsible for the blockade, and comprises
a source of manifestly nonclassical light (depending on the
strength of the driving, both bunching and antibunching may
occur—see Sec. 3.3 of [47]). The experiment would then fo-
cus on the radiation properties of such a source in an environ-
ment containing the external atom target—another quantum
nonlinear oscillator—monitoring the composite conditional
evolution via the two channels of the distributed forward and
sideways emission.
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APPENDIX: AUXILIARY EXPRESSIONS FROM
RESONANCE FLUORESCENCE

In this Appendix, we calculate first- and second-order
correlation functions for the source field of the atom out-
side the cavity, which we then use to derive expressions for
the incoherent spectra and spectra of squeezing of the two
channels in Secs. III A and III B, respectively, as well as their
second-order coherence properties in Sec. III C 2.

The expectation value of the fluctuations in s� ≡
(σ̃−, σ̃+, σz )—defined in a frame rotating with ωA—
populating the vector of fluctuation operators

�s ≡
⎛
⎝�σ̃−

�σ̃+
�σz

⎞
⎠ ≡

⎛
⎝σ̃−

σ̃+
σz

⎞
⎠−

⎛
⎝〈σ̃−〉ss

〈σ̃+〉ss
〈σz〉ss

⎞
⎠, (A1)

evolves in time according to
d

dt
〈�s〉 = M〈�s〉. (A2)

The matrix M is provided by the Bloch equations, extracted
from the ME of resonance fluorescence,

dρ

dt
= −i

1

2
ωA[σz, ρ] − γY

2
√

2
[σ+e−iωAt − σ−eiωAt , ρ]

+ γ

2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−), (A3)

as

M ≡

⎛
⎜⎝

−γ /2 0
√

κγ�αss

0 −γ /2
√

κγ�αss

−2
√

κγ�αss −2
√

κγ�αss −γ

⎞
⎟⎠

= −γ

2

⎛
⎜⎝

1 0 −Y/
√

2

0 1 −Y/
√

2√
2Y

√
2Y 2

⎞
⎟⎠. (A4)

The quantum regression formula, then, dictates the evolution
of the first-order correlation function, 〈�σ̃+(0)�s(τ )〉ss,

d

dτ
〈�σ̃+(0)�s(τ )〉ss = M〈�σ̃+(0)�s(τ )〉ss. (A5)

The initial conditions are given by

〈�σ̃+�s〉ss =

⎛
⎜⎝

1
2 (1 + 〈σz〉ss) − 〈σ̃+〉ss〈σ̃−〉ss

−〈σ̃+〉2
ss

−〈σ̃+〉ss(1 + 〈σz〉ss)

⎞
⎟⎠

= 1

2

Y 2

(1 + Y 2)2

⎛
⎜⎝

Y 2

−1√
2Y

⎞
⎟⎠. (A6)
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The formal solution of Eq. (A5) is given by

〈�σ̃+(0)�s(τ )〉ss = S−1 exp(λτ )S〈�σ̃+�s〉ss, (A7)

where λ ≡ SMS−1 = diag(λ1, λ2, λ3), with λ1 = −γ /2 and
λ2,3 = −3γ /4 ± δ, is a diagonal matrix formed by the eigen-
values of M. Here, the shift δ captures the dependence of
the eigenvalues on the driving strength, and is defined as δ ≡
(γ /4)

√
1 − 8Y 2. There is one special point where M becomes

nondiagonalizable, namely when δ = 0 [or Y = 1/(2
√

2)].
This is a so-called exceptional point, at which two of the
eigenvalues, λ2 and λ3, coalesce. At that point, these two
eigenvalues switch from purely real (relaxing response) to
complex (decaying and oscillatory response), which coin-
cides with the formation of the Mollow triplet depicted in
Fig. 2. Since M is a non-Hermitian matrix, its left and right
eigenvectors are in principle not equivalent; the rows of S
are then populated by the left eigenvectors of M, while the
columns of S−1 are populated by the right eigenvectors of M.
The right eigenvector corresponding to the eigenvalue λ1 is
e1 = (1/

√
2)(1,−1, 0)T (which is also equal to the transpose

of the corresponding left eigenvector). The remaining right
and left eigenvectors corresponding to the eigenvalues λ2,3

assume the form e2 = c2(1, 1, A2)T, e3 = c3(1, 1, A3)T and
e′

2 = c′
2(1, 1, A′

2), e′
3 = c′

3(1, 1, A′
3), respectively. The coeffi-

cients featuring in the third components of the eigenvectors
read

A2 =
(
δ − γ

4

)2
√

2

Y γ
, A3 = −

(
δ + γ

4

)2
√

2

Y γ
,

A′
2 =

(γ

4
− δ
)√

2

Y γ
, A′

3 =
(γ

4
+ δ
)√

2

Y γ
. (A8)

Following then the prescription, we write Eq. (A7) in the form

〈�σ̃+(0)�s(τ )〉ss =

⎛
⎜⎝

1/
√

2 c2 c3

−1/
√

2 c2 c3

0 A2c2 A3c3

⎞
⎟⎠

× exp(λτ )

⎛
⎜⎝

1/
√

2 −1/
√

2 0

c′
2 c′

2 A′
2c′

2

c′
3 c′

3 A′
3c′

3

⎞
⎟⎠

× 〈�σ̃+�s〉ss,

where

exp(λτ ) =
⎛
⎝e−(γ /2)τ 0 0

0 e−(3γ /4−δ)τ 0
0 0 e−(3γ /4+δ)τ

⎞
⎠.

The orthonormality of right and left eigenvectors produces the
system of equations

A2A′
2c2c′

2 + A3A′
3c3c′

3 = 1, (A9a)

A′
2c2c′

2 + A′
3c3c′

3 = 0. (A9b)

Solving the above system of equations yields

c2c′
2 = [A′

2(A2 − A3)]−1 = (1/4)[1 + γ /(4δ)],

A′
2c2c′

2 = −A′
3c3c′

3 = Y γ /(4
√

2δ),

c3c′
3 = (1/4)[1 − γ /(4δ)].

Then, for the various first-order correlation functions we
obtain (see also [5,44])

〈�σ̃+(0)�σ̃−(τ )〉ss = 1

2

Y 2

(1 + Y 2)2

{[
1

2
Y 2 − 1

2
(−1)

]
e−(γ /2)τ + [c2c′

2Y
2 + c2c′

2(−1) + A′
2c2c′

2(
√

2Y )]e−(3γ /4−δ)τ

+[c3c′
3Y

2 + c3c′
3(−1) + A′

3c3c′
3(

√
2Y )]e−(3γ /4+δ)τ

}

= 1

4

Y 2

1 + Y 2
e−(γ /2)τ − 1

8

Y 2

(1 + Y 2)2

[
1 − Y 2 +

( γ

4δ

)
(1 − 5Y 2)

]
e−(3γ /4−δ)τ

− 1

8

Y 2

(1 + Y 2)2

[
1 − Y 2 −

( γ

4δ

)
(1 − 5Y 2)

]
e−(3γ /4+δ)τ , (A10)

〈�σ̃+(0)�σ̃+(τ )〉ss = 1

2

Y 2

(1 + Y 2)2

{[
−1

2
Y 2 + 1

2
(−1)

]
e−(γ /2)τ + [c2c′

2Y
2 + c2c′

2(−1) + A′
2c2c′

2(
√

2Y )]e−(3γ /4−δ)τ

+ [c3c′
3Y

2 + c3c′
3(−1) + A′

3c3c′
3(

√
2Y )]e−(3γ /4+δ)τ

}

= −1

4

Y 2

1 + Y 2
e−(γ /2)τ − 1

8

Y 2

(1 + Y 2)2

[
1 − Y 2 +

( γ

4δ

)
(1 − 5Y 2)

]
e−(3γ /4−δ)τ

− 1

8

Y 2

(1 + Y 2)2

[
1 − Y 2 −

( γ

4δ

)
(1 − 5Y 2)

]
e−(3γ /4+δ)τ , (A11)

〈�σ̃+(0)�σz(τ )〉ss = 1

2

Y 2

(1 + Y 2)2
{[A2c2c′

2Y
2 + A2c2c′

2(−1) + A2A′
2c2c′

2(
√

2Y )]e−(3γ /4−δ)τ

+ [A3c3c′
3Y

2 + A3c3c′
3(−1) + A3A′

3c3c′
3(

√
2Y )]e−(3γ /4+δ)τ }

= 1

2
√

2

Y 3

(1 + Y 2)2

{[
1 −

( γ

4δ

)
(2 − Y )

]
e−(3γ /4−δ)τ +

[
1 +

( γ

4δ

)
(2 − Y )

]
e−(3γ /4+δ)τ

}
. (A12)
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We also note that

〈�σ̃+(0)�s(τ )〉ss =

⎛
⎜⎝

〈σ̃+(0)σ̃−(τ )〉ss

〈σ̃+(0)σ̃+(τ )〉ss

〈σ̃+(0)σz(τ )〉ss

⎞
⎟⎠−

⎛
⎜⎝

〈σ̃+〉ss〈σ̃−〉ss

〈σ̃+〉2
ss

〈σ̃+〉ss〈σz〉ss

⎞
⎟⎠ =

⎛
⎜⎝

〈σ̃+(0)σ̃−(τ )〉ss

〈σ̃+(0)σ̃+(τ )〉ss

〈σ̃+(0)σz(τ )〉ss

⎞
⎟⎠− Y

(1 + Y 2)2

⎛
⎝ 2Y

2Y
1/

√
2

⎞
⎠.

We now calculate the (normalized) second-order correlation function,

g(2)
ss (τ ) = [〈σ+σ−〉ss + lim

τ→∞ 〈σ+(0)σz(τ )σ−(0)〉ss]
−1 [〈σ+σ−〉ss + 〈σ+(0)σz(τ )σ−(0)〉ss] (A13)

requiring the third component of the vector 〈σ+(0)s(τ )σ−(0)〉ss. Using once more the quantum regression theorem, this vector
evaluates to

〈σ+(0)s(τ )σ−(0)〉ss = 〈σ+σ−〉ss〈s(τ )〉ρ(0)=|1〉〈1| = 1

2

Y 2

1 + Y 2
〈s(τ )〉ρ(0)=|1〉〈1|,

giving

〈σ+(0)σz(τ )σ−(0)〉ss = −1

2

Y 2

(1 + Y 2)2

[
1 + Y 2e−(3γ /4)τ

(
cosh δτ + 3γ

4δ
sinh δτ

)]
, (A14)

and

〈σ+(0)σ̃±(τ )σ−(0)〉ss = − 1

2
√

2

Y 3

(1 + Y 2)2

[
1 − e−(3γ /4)τ

(
cosh δτ + 3γ

4δ
sinh δτ

)]
− 1√

2

Y 3

1 + Y 2
e−(3γ /4)τ γ

4δ
sinh δτ. (A15)

Finally,

g(2)
ss (τ ) = (2〈σ+σ−〉ss )−1 [1 + 〈σz(τ )〉ρ(0)=|1〉〈1|] = 1 − e−(3γ /4)τ

(
cosh δτ + 3γ

4δ
sinh δτ

)
. (A16)
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