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We study light scattering by systems combining randomly rough surface and volume dielectric fluctuations.
We introduce a general model including correlations between surface and volume disorders, and we study
the scattering properties within a single-scattering approach. We identify different regimes of surface and
volume dominated scattering depending on length scales characterizing the surface and volume disorders.
For uncorrelated disorders, we discuss the polarization response of each source of disorder, and show how
polarimetric measurements can be used to separate the surface and volume contributions in the total measured
diffusely scattered intensity. For correlated systems, we identify two configurations of volume disorder which,
respectively, couple weakly or strongly to surface scattering via surface-volume cross correlations. We illustrate
these effects on different configurations exhibiting interference patterns in the diffusely scattered intensity, which
may be of interest for the characterization of complex systems or for the design of optical components by
engineering the degree of surface-volume correlations.
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I. INTRODUCTION

The study of light scattering by disordered media has
mainly been carried out in parallel on two separated fronts:
one specialized on scattering by rough surfaces [1], and the
other specialized on scattering by volume disorder made of
discrete scatterers or fluctuations of the refractive index [2,3].
Some of the phenomena observed and predicted for surface
scattering are also found for volume scattering and vice
versa, a good illustrative example being coherent enhanced
backscattering [4–6].

However, the study of systems combining both surface
and volume disorders has remained relatively unexplored.
A single-scattering theory for combined randomly rough
surfaces and dielectric fluctuations confined to the vicinity
of the surface was developed by Elson in order to explain
the discrepancies of polarimetric measurements for metallic
rough surfaces compared to the expected results from pure
surface scattering theories [7]. Numerical studies beyond sin-
gle scattering in two dimensions then followed for treating
either the case of an individual object or the case of a
set of randomly positioned scatterers buried below a rough
surface [8–12]. A heuristic summing rule for the intensity of
the diffusely scattered light was proposed by Sentenac and
coworkers [12,13]. As a consequence, a splitting rule was
formulated, which states that the diffusely scattered intensity
for the combined surface and volume disordered medium can
be obtained as the sum of the diffusely scattered intensity
obtained for a volume disordered medium bounded by a
planar interface and the diffusely scattered intensity obtained
from the rough surface separating two homogeneous media,
with an effective dielectric constant describing the response
of the substrate. The splitting rule was first demonstrated
numerically for a wide range of parameters [12], and then

supported theoretically in a regime where the length scale of
the fluctuations is small compared to the wavelength [13]. The
assumption of independent stochastic processes for the sur-
face roughness and the volume disorder was made in deriving
the splitting rule; this may be a necessary condition for the
splitting rule to be valid, as intuited by the authors. It is known
that light scattering by correlated disordered media can exhibit
a wide range of phenomena such as structural coloration [14],
localization [15], enhanced transparency [16], and absorption
[17], to name a few. The effect of cross correlation between
surface and volume disorders on light scattering has essen-
tially been left unexplored, despite its potential interest for the
engineering of correlated photonic materials.

The coherent [18–20] and incoherent [18] multiple scat-
tering of electromagnetic waves in combined uncorrelated
surface and volume disorders has also been studied by dif-
ferent approaches, starting from the Lippmann-Schwinger
equation or from the radiative transfer equation. These studies
gave perspectives on the derivation of an effective medium
theory for volume disorder, and on the existence of regimes
in which the surface or volume scattering can be treated as a
perturbation.

In remote sensing, discriminating between surface and vol-
ume scattering is a key issue. Polarization measurements have
been suggested to discriminate between the two scattering
processes [21–23]. The main idea in these studies is that
volume scattering depolarizes more efficiently than surface
scattering. However, to our knowledge, no systematic study
of the regime of multiple scattering, combining measurement
of scattering mean free path and polarimetric measurement,
has been carried out so far. Comparing the depolarization
from rough surfaces and volume disorders having the same
scattering strength would clarify their respective contributions
to the depolarization process.
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The present paper revisits the single-scattering theory for
correlated surface and volume disorders. In most studies the
two stochastic processes were considered to be independent.
To our knowledge, the only study including the influence
of cross correlations was conducted by Elson [7]. However,
the model turned out to be valid only for processes sharing
the same correlation lengths. Here we start by introducing
a general model of correlated surface roughness and vol-
ume dielectric fluctuations in Sec. II. The model permits
arbitrary choices of autocorrelation functions for the surface
and volume processes, with different lengths scales, and
of cross-correlation function (with some constraints). The
single-scattering theory is derived in Sec. III starting from
the volume integral representation of the scattered field. We
recover Elson’s theory by treating both surface and volume
scattering on the same footing, and we derive expressions
for the diffusely scattered intensity for correlated disorders in
different asymptotic regimes. These asymptotic regimes are
analyzed for uncorrelated disorders, in Sec. IV, to map out
a diagram of predominance of volume to surface scattering.
Then, the effects of cross correlations are studied in different
configurations in Sec. V. We identify that cross correlations
have the strongest impact on scattering when the correlation
length along the depth of the layer of dielectric fluctuations
is large compared to, or on the order of, the thickness of
the heterogeneous medium. The possibility to design specific
interference patterns in the diffusely scattered intensity by
modulating the cross correlations is also examined. The pa-
per ends with a short discussion on the use of polarization
measurements for separating the two scattering contributions
in the single-scattering regime in Sec. VI.

The reader primarily interested in the physical understand-
ing rather than the technical theoretical details may skip most
of the derivation in Sec. III, and jump to the end of the
section to Eq. (37) and Table I. They summarize the main
theoretical results of the present paper and are the starting
point for all subsequent discussions. Their interpretation at a
more conceptual level is given in the last paragraph of Sec. III.

II. CORRELATED SURFACE AND VOLUME DISORDERS

A. Dielectric function and surface profile

The scattering system that we consider is composed
of a semi-infinite heterogeneous medium bounded by a
rough interface separating it from a homogeneous medium.
The homogeneous medium (medium 1) occupies region
�1, and is characterized by a dielectric constant ε1. The
heterogeneous medium (medium 2) occupies region �2,
and is characterized by a dielectric function of the form
ε2 + �ε(x ), where ε2 is a constant and x =
x1 ê1 +x2 ê2 +x3 ê3 = x‖ +x3 ê3 is a point in space. The
spatially dependent dielectric function in the whole space can
be written as

ε(x ) = ε1 + 1�2 (x ) (ε2 + �ε(x ) − ε1), (1)

where we have defined the indicator function 1A of a set A
as being equal to 1 if its argument belongs to A and zero
otherwise. In the following, we will assume that the interface
between the two media can be represented by the equation

x3 = ζ (x‖), where ζ is the surface profile function. We can
therefore write

1�2 (x ) = H(ζ (x‖) − x3), (2)

where H is the Heaviside step function. Note that the dielectric
fluctuation, �ε, may be defined and may take nonzero values
outside of �2, since its contribution in Eq. (1) is cut off by the
factor 1�2 (x ).

The definition of the dielectric function above can rep-
resent a rich variety of scattering systems. For instance, by
setting ζ = 0 and �ε = 0, we describe a system made of two
homogeneous semi-infinite media separated by a planar inter-
face. If ζ is a nontrivial function, the surface becomes rough.
It could be chosen to be periodic, or to be a realization of a
stochastic process. Similarly, the dielectric fluctuations could
be piecewise constant in some subdomains hence representing
a homogeneous host medium with inclusions, like particles,
which may have arbitrary shape, and relative positions. The
scattering system could represent a photonic crystal, or a
disordered medium with a continuously randomly fluctuating
permittivity.

B. Model of correlated processes

We now introduce a model for a disordered scattering
system where the surface profile and the dielectric fluctuations
are realizations of stochastic processes with correlations. We
start by representing the whole system, boundary and dielec-
tric fluctuations, as a stochastic process the realizations of
which are denoted by �ε̃(x ). It can be written as a function of
two subprocesses ζ (x‖) and �ε(x ) in the form

�ε̃(x ) = 1�2 (x ) �ε(x ) = H(ζ (x‖) − x3) �ε(x ). (3)

Next, we need to define a joint probability density for the two
subprocesses ζ and �ε. For the sake of simplicity, we define
the random vector uT = (ζ (x‖), ζ (x′

‖),�ε(x ),�ε(x′)), and
choose a Gaussian joint probability density:

p(u; x, x′) = exp
(− 1

2 uT �−1(x, x′) u
)

(2π )2 det(�(x, x′))1/2
. (4)

The covariance matrix �(x, x′) may depend on x and x′ but
must be symmetric and positive definite. We have chosen
here for simplicity to have vanishing averages 〈ζ (x‖)〉 = 0
and 〈�ε(x )〉 = 0, independently of the spatial position, where
the brackets 〈·〉 denote the ensemble average over realizations
of the stochastic process. The covariance matrix �(x, x′)
contains all the information about the possible correlations
between the surface profile and the volume dielectric fluc-
tuations. Note that the covariance matrix reduces to a 2 × 2
block-diagonal matrix for uncorrelated surface profile and
dielectric fluctuations. In such a case, the joint probability
density can be written as the product of two probability
densities for (ζ (x‖), ζ (x′

‖)) and (�ε(x ),�ε(x′)), respectively.
We now assume that the rms roughness of the surface is

independent of position 〈ζ 2(x‖)〉 = σ 2
ζ , and that the variance

of �ε(x ) depends only on x3, i.e., 〈�ε2(x )〉 = f 2(x3) σ 2
ε

(where σζ and σε are non-negative constants). Indeed, it could
be physically realistic to consider that the fluctuations of the
dielectric constant are somewhat bounded within a layer with
thickness L beneath the average surface. The function f may
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FIG. 1. Maps of permittivity for typical scattering systems. (a) Genuine volume configuration (�ε � L) and (b) surfacelike configuration
(�ε⊥ > L) for positively perfectly correlated surface and volume disorder. The white dashed line in (a) indicates the dielectric layer maximally
correlated to the surface. (c) Illustration of the definitions of angles and wave vectors.

then be taken to be a smooth sigmoid such that f (x3) → 1
as x3 → ∞, and f (x3) → 0 as x3 → −∞ with the transition
occurring around a characteristic depth L. Alternatively, one
could use the step function f (x3) = H(x3 + L). The latter will
be used in the following for the sake of simplicity. Assuming
wide-sense stationarity of the stochastic process, i.e., the co-
variances only depend on the difference between two points,
we can see that each 2 × 2 block of the covariance matrix is
symmetric and depends only on the following covariances:

〈ζ (x‖) ζ (x′
‖)〉 = σ 2

ζ Wζ (x‖ − x′
‖), (5a)

〈�ε(x ) �ε(x′)〉 = σ 2
ε f (x3) f (x′

3) Wε(x − x′), (5b)

〈ζ (x‖) �ε(x′)〉 = σζ σε f (x′
3) Wζε(x‖ − x′). (5c)

Here Wζ and Wε are the autocorrelation functions of the
stochastic processes ζ and �ε, respectively, and are such that
Wζ (0) = 1 and Wε(0) = 1. The function Wζε is the cross-
correlation function of the processes ζ and �ε. Note that
we do not necessarily have Wζε(0) = 1 (take, for example,
the case where ζ and �ε are uncorrelated, which gives
Wζε = 0 identically). The positiveness of the covariance ma-
trix imposes bounds on the cross-correlation function. In the
following we will assume Gaussian autocorrelation functions
given by

Wζ (x‖) = exp

(
−| x‖ |2

�2
ζ

)
, (6a)

Wε(x ) = exp

(
−| x‖ |2

�2
ε‖

− x2
3

�2
ε⊥

)
. (6b)

Here �ζ , �ε‖, and �ε⊥ denote the surface correlation length
and the transverse and the perpendicular correlation lengths
of the dielectric fluctuations, respectively. The corresponding
transverse power spectra, defined as the Fourier transforms of
the autocorrelation functions, are thus given by

Ŵζ (p) = π�2
ζ exp

(
−| p |2�2

ζ

4

)
, (7a)

Ŵε(p, x3) = Ŵε‖(p) exp

(
− x2

3

�2
ε⊥

)
, (7b)

where

Ŵε‖(p) = π�2
ε‖ exp

(
−| p |2�2

ε‖
4

)
. (8)

Here and in the following, we denote by

f̂ (p) =
∫

f (x‖) e−i p · x‖ d2x‖ (9)

the two-dimensional Fourier transform of a function f . We
model the cross-correlation function via the power spectra of
the autocorrelation functions as

Ŵζε(p, x3) = γ (p)Ŵ 1/2
ζ (p)Ŵ 1/2

ε‖ (p) exp

(
− (x3 + d )2

�2
ε⊥

)
.

(10)

Making use of the expressions for Ŵζ and Ŵε‖ above, it can be
rewritten as

Ŵζε(p, x3) = γ (p) π�ζ �ε‖ exp

(
−| p |2�2

‖
4

− (x3 + d )2

�2
ε⊥

)
,

(11)

where the transverse cross-correlation length �‖ is defined as

�2
‖ = 1

2

(
�2

ζ + �2
ε‖

)
. (12)

We have also introduced a distance d such that 0 � d �
L, as an arbitrary offset determining the slice of dielectric
fluctuation with which the surface is maximally correlated,
namely, the slice �ε(x‖,−d ). The factor γ (p) is a spectral
correlation modulator which tunes the cross correlation of
different transverse spectral components of ζ and �ε. It is in
general a complex valued function satisfying |γ (p)| � 1 and
γ (− p) = γ ∗(p). In principle, a more exotic dependency of
Ŵζε on x3 may be modeled by letting γ be a function of x3. We
restrict ourselves to the form given in Eq. (11) for simplicity.
The simplest example of a nontrivial spectral correlation
modulator would be a constant, γ (p) = γ ∈ [−1, 1]. In such a
case, since Wζ and Wε are both Gaussian, we can easily obtain
Wζε explicitly by an inverse Fourier transform of Eq. (11),
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leading to

Wζε(x ) = γ
2�ζ �ε‖

�2
ζ + �2

ε‖
exp

(
−| x‖ |2

�2
‖

− (x3 + d )2

�2
ε⊥

)
. (13)

Another example is γ (p) = γ0 exp(i p · a ) where a is an
arbitrary vector in the x1x2 plane. This spectral modulation
yields a cross-correlation function Wζε,a = Wζε(x − a ) with
Wζε given by Eq. (13).

Let us comment on the above construction of the cross-
correlation function. In this particular model, the transverse
cross-correlation length is such that its square is the average
of the squares of the respective surface and transverse per-
mittivity correlation lengths. In other words, we find that the
transverse correlation length �‖ lies between �ζ and �ε‖. In
the particular case where �ζ = �ε‖, one finds �‖ = �ζ = �ε‖,
and hence all correlation functions share the same trans-
verse length scale. In addition, in such a case, the prefactor
2�ζ �ε‖/(�2

ζ + �2
ε‖) becomes unity. This implies that for γ =

±1 the surface profile ζ (x‖) is proportional to the permit-
tivity slice �ε(x‖,−d ); more precisely, one has ζ (x‖) =
±σζ�ε(x‖,−d )/σε. In contrast, for �ζ �= �ε‖, the prefactor
2�ζ �ε‖/(�2

ζ + �2
ε‖) is strictly smaller than unity, which means

that even for |γ | = 1 the detuning of the correlation lengths
imposes bounds on the maximum correlation between ζ (x‖)
and �ε(x‖,−d ), namely, the prefactor 2�ζ �ε‖/(�2

ζ + �2
ε‖) is

exactly this bound. When one of the correlation lengths
dominates, say �ζ 
 �ε‖, the prefactor becomes 2�ζ �ε‖/(�2

ζ +
�2

ε‖) ∼ 2�ε‖/�ζ � 1, which essentially makes the cross cor-
relation negligible. The intuitive understanding of this result
is that one cannot get ζ (x‖) and �ε(x‖,−d ) arbitrarily cor-
related if each process satisfies wide-sense stationarity (i.e.,
statistical invariance by translation) with different correlation
lengths.

III. SCATTERING MODEL

A. Volume integral representation

Consider the scattering system defined in Sec. II, with
the dielectric function given by Eq. (1). The total electric
field E resulting from the interaction of an incident harmonic
field E0 with angular frequency ω with the scattering system
satisfies the Lippmann-Schwinger integral equation (see, e.g.,
Ref. [24])

E(x ) = E(0)(x ) + k2
0

∫
G(x, x′) [ε(x′) − εref (x′)] E(x′) d3x′,

(14)

where k0 = ω/c = 2π/λ, c being the speed of light in vac-
uum. Here E(0) is the total electric-field solution of the scat-
tering problem for a planar interface between media 1 and 2,
i.e., of a reference system with dielectric function

εref (x ) = ε1 + H(−x3) (ε2 − ε1). (15)

The tensor Green’s function G is the solution to

∇ × ∇ × G(x, x′) − εref (x ) k2
0 G(x, x′) = δ(x − x′) I, (16)

with outgoing wave conditions at infinity (radiation condi-
tion). Note that translational invariance along the x1x2 plane
allows us to write G(x, x′) = G(x‖ − x′

‖, x3, x′
3) whenever

this seems adequate. By expanding the dielectric function, we
can recast the integral in Eq. (14) as the sum of two terms:

E(x ) = E(0)(x ) + k2
0

∫
G(x, x′) (ε2 − ε1) h(x′) E(x′) d3x′

+ k2
0

∫
G(x, x′) �ε(x′) H(ζ (x′

‖) − x′
3) E(x′) d3x′,

(17)

with

h(x ) = H(ζ (x‖) − x3) − H(−x3). (18)

The first integral term on the right-hand side of Eq. (17)
corresponds to surface scattering. Indeed, the field is scattered
by a dielectric fluctuation in the selvedge region, induced
by the surface profile, which is piecewise constant and takes
values zero, ε2 − ε1, or ε1 − ε2 depending on the position x′
with respect to the interface and the reference plane x3 = 0.
The second integral term corresponds to scattering by the
volume dielectric fluctuations �ε located below the interface.
Note that the presence of the surface profile in the second term
must not be understood as surface scattering. Its role is merely
to delimit the volume in which the dielectric fluctuation �ε

contributes. Nevertheless, this indicates that even for a system
for which the stochastic processes ζ and �ε are uncorrelated,
having dielectric fluctuations bounded by the rough interface
induces a correlation between the field described by the
two integral terms. This correlation effect is a second-order
contribution in the product of ζ and �ε and will be neglected
in the following.

B. Single-scattering regime

By writing the total field in the form E = E(0) + E(s) with
E(0) the field in the reference system, and E(s) the scattered
field, and by assuming that E ≈ E(0) in the integrals in
Eq. (17), we obtain the (first) Born approximation for the
scattered field given by

E(1)(x ) = k2
0

∫
G(x, x′) (ε2 − ε1) h(x′) E(0)(x′) d3x′

+ k2
0

∫
G(x, x′) �ε̃(x′) E(0)(x′) d3x′. (19)

The Born approximation corresponds to single scattering ei-
ther at the surface or in the volume.

1. Zeroth-order field

Equation (19) requires the zeroth-order field, E(0), solution
of the scattering problem for the reference system. In the case
of an incident monochromatic plane wave, the zeroth-order
field can be written as the sum of the incident plane wave and
a reflected plane wave in medium 1, and as a transmitted plane
wave in medium 2. The expression of the zeroth-order field is
given in Appendix A.
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2. Volume contribution

The second term on the right-hand side of Eq. (19) can be
approximated by

E(1)
ε (x ) = k2

0

∫ 0

−L
G(·, x3, x′

3) ∗ [�ε(·, x′
3) E(0)(·, x′

3)](x‖) dx′
3,

(20)

where ∗ denotes the two-dimensional convolution product.
Here we have approximated the upper bound in the integral
over x′

3 by zero, i.e., ζ (x′
‖) ≈ 0. The small amplitude approx-

imation can be considered to be valid in the regime where the
typical amplitude of the surface profile is small compared to
the wavelength, i.e., σζ k1 � 1, σζ k2 � 1 with k1 = √

ε1k0,
and k2 = √

ε2k0. This approximation allows us to interchange
the order of integration and to obtain the convolution product
in the (x1, x2) variables as shown in Eq. (20). Taking the

Fourier transform of E(1)
ε with respect to x‖ yields

Ê(1)
ε (p, x3) = k2

0

∫ 0

−L
Ĝ(p, x3, x′

3)�ε̂(p − p0, x′
3)

× Ê(0)
2 (p0, x′

3) dx′
3, (21)

where we have used the convolution theorem and the fact
that the reference field for x′

3 < 0 is a plane wave. The factor
Ê(0)

2 (p0, x′
3) is the Fourier-Weyl amplitude of the transmitted

zeroth-order field [see Eq. (A5)].

3. Surface contribution

The surface contribution given by the first term on the
right-hand side of Eq. (19) can be treated in a similar fashion,
although some care is required. The surface term as written in
Eq. (19) reads

E(1)
ζ (x ) = k2

0 (ε2 − ε1)
∫
R2

∫ ζ (x′
‖ )

0
G(x‖ − x′

‖, x3, x′
3) E(0)(x′

‖, x′
3) dx′

3 d2x′
‖. (22)

However, the Born approximation as written above by approximating the total field E by E(0) is a poor choice in this case. The
following choice will prove to be more accurate:

E(1)
ζ (x ) = k2

0 (ε2 − ε1)
∫
R2

∫ ζ (x′
‖ )

0
G(x‖ − x′

‖, x3, x′
3) Ẽ(0)(x′

‖, x′
3) dx′

3 d2x′
‖. (23)

Here the field Ẽ(0)(x′
‖, x′

3) is the continuation of the reference field E(0)(x′
‖, x′

3) inside the grooves of the interface. More explicitly,

and using the notation from Appendix A, Ẽ(0)(x‖, x3) is given by

Ẽ(0)(x ) =
{

E0(x ) + [
r (p)

21 (p0) E0,p ê+
1,p(p0) + r (s)

21 (p0) E0,s ês(p0)
]

exp(i k+
1 (p0) · x ) if x3 > ζ (x‖)[

t (p)
21 (p0) E0,p ê−

2,p(p0) + t (s)
21 (p0) E0,s ês(p0)

]
exp(i k−

2 (p0) · x ) if x3 < ζ (x‖)
. (24)

Here E0,p and E0,s are the known field amplitudes of the p and
s polarization components of the incident plane wave E0 [see
Eq. (A1)], and ê±

j,p and ês are unit polarization vectors defined

in Eqs. (A3). The factors r (p)
21 , r (s)

21 and t (p)
21 , t (s)

21 are Fresnel
reflection and transmission factors [see Eq. (A4)]. The physi-
cal reason for the choice above can be understood as follows.
Picture a point x‖ +x3 ê3 in the vicinity of the surface such
that ζ (x‖) < x3 < 0, i.e., inside a groove and just above the
surface. The approximation given by Eq. (22) would assume
the total field at that point to be E(x‖, x3) ≈ E(0)(x‖, x3) =
E(0)

2 (x‖, x3), i.e., the zeroth-order field transmitted in medium
2. However, for a smooth perturbation of the surface profile,
the total field just above the interface is expected to be close
to the reference field in medium 1 rather than that in medium
2 (and conversely for a point just below the surface). A
more mathematically oriented justification may also be given.
The perturbation in the dielectric function at a given point,
x‖ +x3 ê3, with say x3 < 0, induced by the surface profile will
exhibit a jump from ε2 to ε1 as the amplitude of the profile
is continuously deformed from say ζ (x‖) = 0 to ζ (x‖) < x3.
Thus no matter how small |x3| is, the perturbation of the

dielectric function induced by the surface will lead to a jump
for sufficiently large values of σζ . Hence, even though the
perturbation of the profile is continuous, the induced dielectric
perturbation is not. This justifies the use of the continuation of
the reference field to points belonging to the same medium in
order to compensate for the discontinuous perturbation of the
dielectric function.

We now apply the small amplitude approximation to
the lowest nonvanishing order in Eq. (23), i.e., we assume∫ ζ

0 f (x′
3)dx′

3 ≈ f (0sgn(ζ ) )ζ where f (0±) denotes the limit of
f when x′

3 goes to zero from above or below. This leads to

E(1)
ζ (x ) = k2

0 (ε2−ε1)
∑
±

G(·, x3, 0±) ∗ [
ζ±(·) Ẽ(0)(·, 0±)

]
(x‖)

= k2
0 (ε2 − ε1)

[
G(·, x3, 0+) ∗ [

ζ+(·) E(0)(·, 0−)
]
(x‖)

+ G(·, x3, 0−) ∗ [
ζ−(·) E(0)(·, 0+)

]
(x‖)

]
, (25)

where ζ+ = max(ζ , 0) and ζ− = min(ζ , 0). This approxima-
tion is expected to be accurate for small surface roughness,
i.e., σζ k1 � 1 and σζ k2 � 1. By taking the Fourier transform
of Eq. (25) with respect to x‖ and using the convolution
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theorem, we obtain

Ê(1)
ζ (p, x3) = k2

0 (ε2 − ε1)
[

Ĝ(p, x3, 0+) ζ̂+(p − p0) Ê(0)
2 (p0, 0) + Ĝ(p, x3, 0−) ζ̂−(p − p0) Ê(0)

1 (p0, 0)
]
, (26)

where ζ̂± denotes the Fourier transform of ζ±, and the ampli-
tudes Ê(0)

1 and Ê(0)
2 are defined in Appendix A [see Eqs. (A5)

and (A6)]. Next we use the following identity proven in
Appendix B:

Ĝ(p, x3, 0+) Ê(0)
2 (p0, 0) = Ĝ(p, x3, 0−) Ê(0)

1 (p0, 0). (27)

This result allows us, for instance, to factorize
Ĝ ( p, x3, 0−) Ê(0)

1 ( p0, 0) in Eq. (26). Making use of
ζ̂+ + ζ̂− = ζ̂ , we finally obtain

Ê(1)
ζ (p, x3) = k2

0 (ε2 − ε1) ζ̂ (p − p0) Ĝ(p, x3, 0−) Ê(0)
1 (p0, 0).

(28)

C. Scattering amplitudes and mean differential scattering
coefficients

1. Reflection amplitudes

The Weyl representation of the Green’s function as given in
Ref. [25] is recalled in Appendix B. Substituting the expres-
sions for the Green’s function Eqs. (B1) and (B4) and for the
reference field Eqs. (A6a) and (A6b) into Eqs. (21) and (28)
yields

Ê(1)
ε (p, x3) =

∑
μ=p,s

ê+
1,μ(p)

∑
ν=p,s

R(1)
ε,μν (p, p0) E0,ν

× exp(iα1(p) x3), (29a)

Ê(1)
ζ (p, x3) =

∑
μ=p,s

ê+
1,μ(p)

∑
ν=p,s

R(1)
ζ ,μν (p, p0) E0,ν

× exp(iα1(p) x3), (29b)

for x3 > 0. The first-order volume and surface reflection am-
plitudes are given by

R(1)
ε,μν (p, p0) = ik2

0

2α2(p)
ψ+(p, p0) ρε,μν (p, p0), (30a)

R(1)
ζ ,μν (p, p0) = ik2

0

2α2(p)
(ε2 − ε1)ζ̂ (p − p0) ρζ,μν (p, p0).

(30b)

In writing Eq. (30a), we have introduced the quantity

ψ±(p, p0) =
∫ 0

−L
�ε̂(p − p0, x′

3)

× exp[−i(±α2(p) + α2(p0)) x′
3] dx′

3. (31)

The polarization coupling amplitudes ρε,μν and ρζ,μν for the
polarization states μ, ν ∈ {p, s} are defined by

ρε,μν (p, p0) = t (μ)
12 (p) ê+

2,μ(p) · ê−
2,ν (p0) t (ν)

21 (p0), (32a)

ρζ,μν (p, p0) = t (μ)
12 (p) ê+

2,μ(p) · [
ê−

1,ν (p0) + r (ν)
21 (p0) ê+

1,ν (p0)
]
.

(32b)

The total scattered field for x3 > 0, including the surface
and volume contributions, can thus be written as

Ê(1)(p, x3) =
∑

μ=p,s

ê+
1,μ(p)

∑
ν=p,s

R(1)
μν (p, p0) E0,ν

× exp(iα1(p) x3), (33)

where we have identified the first-order (total) reflection am-
plitude R(1)

μν as

R(1)
μν (p, p0) = R(1)

ζ ,μν (p, p0) + R(1)
ε,μν (p, p0)

= ik2
0

2α2(p)
[(ε2 − ε1)ζ̂ (p − p0) ρζ,μν (p, p0)

+ψ+(p, p0) ρε,μν (p, p0)]. (34)

A similar expression for x3 < −L can be derived for the
transmission amplitude, and is detailed in Appendix C [see
Eq. (C8)].

2. Physical interpretation of the scattering amplitudes

The reflection amplitude Rμν (p, p0) is the probability am-
plitude for an incident plane wave with incident in-plane
wave vector p0 and polarization state ν to be scattered in
reflection in the direction defined by the in-plane wave vector
p with polarization state μ [see Fig. 1(c) for a schematic
representation of the incident and scattering wave vectors].
The superscript (1) indicates that it is the first-order correc-
tion to the reflection amplitude in a power expansion of the
disorder, the zeroth order being given by the Fresnel reflection
factor times a Dirac mass δ(p − p0) [see Eq. (A5)]. Equation
(34) shows that the first-order reflection amplitude R(1)

μν can
be decomposed as the sum of a contribution originating from
surface scattering and a contribution from volume scattering.
The volume scattering contribution, R(1)

ε,μν , is the product of a
factor ik2

0ψ
+/(2α2), independent of polarization, and which

sums the contribution of all single-scattering paths issued
from the dielectric fluctuations in the layer −L < x3 < 0,
and a factor ρε,μν , proportional to ê+

2,μ(p) · ê−
2,ν (p0), which

encodes the polarization coupling [Eq. (30a)]. The factor
ψ+ hence encodes the speckle field, i.e., the interference of
the scattering paths, and depends on the specific realization
of the disorder [presence of �ε in Eq. (31)]. The volume
polarization coupling factor, ρε,μν , is independent of the
specific realization of the disorder, and corresponds to the
polarization response of a dipole source below the reference
interface. This factor can be interpreted as follows. The ref-
erence field in medium 2, proportional to t (ν)

21 (p0) ê−
2,ν (p0),

is projected along the polarization vector ê+
2,μ(p) which is

the Snell-conjugate polarization vector of the measured wave
in medium 1, ê+

1,μ(p), and the transmission Fresnel factor

t (μ)
12 (p) accounts for transmission of the scattered path from

medium 2 to medium 1. The concept of Snell-conjugate
waves was introduced in Ref. [26] for light scattering by a
weakly rough interface. It was shown to be a useful tool for
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the physical interpretation of the perturbative solution of the
reduced Rayleigh equations to first order in the surface profile
function, and in particular in giving an explanation of the
Yoneda and Brewster scattering phenomena.

The surface contribution to the reflection amplitude can be
interpreted in a similar fashion. It is written as the product of
a factor ik2

0 (ε2 − ε1)ζ̂ /(2α2) which encodes the speckle field
(and depends on the realization of the disorder), and a polar-
ization coupling factor ρζ,μν . In fact, the factor (ε2 − ε1)ζ̂ can
be thought of as a particular case of ψ+ for an infinitesimal
layer of dielectric fluctuations with nonvanishing integral [a
Dirac layer �ε̂(p − p0, x′

3) = (ε2 − ε1)ζ̂ (p − p0) δ(x′
3)]. This

results from the small amplitude approximation. There is,
however, an important distinction between the polarization
coupling factors in the surface and volume contributions.

Scattering from the dielectric fluctuations results from
dipole sources excited in medium 2 by the reference field,
while scattering from the surface results from dipole sources
located near the interface, in either medium 1 or 2, but excited
by the continuation of the reference field in the vicinity of the
surface. In other words, the dipole sources in the selvedge re-
gion oscillate in phase with the elementary dipoles in the rest
of the medium in which they lie. It is interesting to note that
the contributions from the induced dipoles above and below
the reference plane share the same polarization coupling in
virtue of the identity Eq. (27). The result we have obtained
here for the surface contribution to the reflection amplitude is
in agreement with similar perturbation theories derived from
the extinction theorem, or the reduced Rayleigh equations
(see, e.g., Refs. [7,26,27]). In particular, our derivation based
on a volume integral representation provides a complementary
physical interpretation to that given recently in Ref. [26] based
on the reduced Rayleigh equations in terms of Snell-conjugate
waves.

The observation that the two sources of disorder have
different polarization responses is not only of fundamental
interest. In practice, it can be used to decompose the contri-
bution of the surface and of the volume to the total measured
diffusely scattered intensity. Indeed, experimentally, one only
measures the total scattered intensity, and estimating the
relative surface and volume contributions is a delicate task.
Our result shows that this decomposition can in principle be
done using polarimetric measurements. This observation was

already made by Elson in Ref. [7]. In fact, the aim of Elson’s
work was to explain experimental measurements for which the
ratio of scattered intensities for p and s polarizations varied
from sample to sample of rough heterogeneous silver surfaces.
We will elaborate on Elson’s idea and suggest a method for
decomposing the diffusely scattered intensity for uncorrelated
disorder in Sec. VI.

For scalar waves, the scattering amplitudes can be obtained
following a similar derivation as the one presented for polar-
ized electromagnetic waves. These expressions can be useful
as simplified expressions when polarization effects can be
neglected, or for the scattering of other kinds of waves. For
a scalar wave subjected to the continuity of the field and
its normal derivative across the interface [28], it suffices to
replace all the scalar products between polarization vectors in
the reflection amplitudes by unity and the Fresnel amplitudes
by the corresponding amplitudes for scalar waves. Explicitly,
we find

R(1)(p, p0) = ik2
0

2α2(p)
[(ε2 − ε1)ζ̂ (p − p0) + ψ+(p, p0)]

× t12(p) t21(p0). (35)

The transmission amplitude for scalar waves is given in Ap-
pendix C.

3. Mean differential scattering coefficients

Let us now examine how the electromagnetic fields scat-
tered by the surface and the volume interfere, and analyze the
role played by the cross correlation between the surface and
the volume disorder. To this end, we compute the diffusely
scattered intensity. To first order in the disorder amplitudes,
the diffuse component of the mean differential reflection
coefficient (MDRC) is obtained from the relation [26]〈
∂Rμν

∂�
(p, p0)

〉
diff

= lim
S→∞

ε
1/2
1 k0 Re(α1(p))2

S(2π )2α1(p0)

〈|R(1)
μν (p, p0)|2〉.

(36)

In this expression, S is the area of the mean surface in the x1x2

plane (meaning that the disorder is supported by a volume S ×
L). By substituting Eq. (34) into Eq. (36), a straightforward
but tedious calculation, reported in Appendix E, yields

〈
∂Rμν

∂�
(p, p0)

〉
diff

= C(r)(p, p0) k4
0

[
(ε2 − ε1)2σ 2

ζ Ŵζ (p − p0) |ρζ,μν (p, p0)|2 + 2(ε2 − ε1)σζ σε Ŵ 1/2
ζ (p − p0)

× Ŵ 1/2
ε‖ (p − p0) Re(γ (p − p0) J (�ε⊥, L, d, α+(p, p0)) ρζ,μν (p, p0) ρ∗

ε,μν (p, p0))

+ σ 2
ε Ŵε‖(p − p0) I

(
�ε⊥, L, α+(p, p0), α+(p, p0)

) |ρε,μν (p, p0)|2]. (37)

Here we have used the shorthand notation α±(p, p0) =
±α2(p) + α2(p0), and the dimensionless factor C(r)(p, p0)
is given in Appendix E. A similar expression is found for
the diffuse component of the mean differential transmission
coefficient (MDTC) (see Appendix E). For the discussion

of the results in Secs. IV and V, it will be convenient to
use the scalar wave approximation which is deduced from
Eq. (37) by replacing all the ρμν factors by t12(p)t21(p0)
which then all factorize as |t12(p)t21(p0)|2 outside of the
square bracket. The functions I and J appearing in Eq. (37)
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TABLE I. Asymptotics of the I and J integrals [Eq. (38)] in different regimes. Blanks in the last column denotes either an irrelevant regime
or an asymptotics which is not easily obtained.

Asymptotic regime I (�ε⊥, L, α, α) J (�ε⊥, L, 0, α) J (�ε⊥, L, d, α)a

�ε⊥ � L and k0�ε⊥ � 1 (regime 1)
√

π L �ε⊥
√

π �ε⊥/2
�ε⊥ 
 L and k0�ε⊥ � 1 (regime 2) L2 L

�ε⊥ � L (regime 3)
√

π L �ε⊥ exp
( − α2�2

ε⊥
4

) √
π

2 �ε⊥ exp
( − α2�2

ε⊥
4

) √
π �ε⊥ exp

( − α2�2
ε⊥

4

)
cos(αd )

�ε⊥ 
 L (regime 4) 4 sin2(αL/2)
α2

sin(αL)
α

aAn additional assumption is made: �ε⊥ � min(d, L − d, L).

are defined as

I (�ε⊥, L, α, β ) =
∫ 0

−L

∫ 0

−L
exp

[
− (x3 − x′

3)2

�2
ε⊥

]

× exp[−iα x3 + iβ∗ x′
3] dx3 dx′

3, (38a)

J (�ε⊥, L, d, α) =
∫ 0

−L
exp

[
− (x3 + d )2

�2
ε⊥

]
× exp[iα x3] dx3. (38b)

In general, the above integrals have to be evaluated numer-
ically. There are, however, asymptotic expressions that can be
derived analytically which correspond to particular configura-
tions of the dielectric fluctuations: the genuine volume config-
uration for which �ε⊥ � L and the surfacelike configuration
for which �ε⊥ 
 L. The genuine volume and surfacelike
configurations correspond to Figs. 1(a) and 1(b), respectively.
Note that in the configuration �ε⊥ 
 L the depth of the
maximally correlated slice d does not play any role since any
slice �ε(x‖ , x3) is essentially equally correlated to the surface
profile. In the genuine volume configuration, we consider the
situations d = 0 and �ε⊥ � min(d, L − d, L). Moreover, one
may assume a subwavelength regime for the dielectric fluc-
tuation in the x3 direction, i.e., k0�ε⊥ � 1, which simplifies
further the asymptotics. With these assumptions, we obtain
different asymptotic regimes, that are identified in Table I (the
derivation is given in Appendix F).

In summary, the theoretical results presented in Eq. (37)
can be read, at a more conceptual level, as a classical inter-
ference formula for the intensity resulting from two types of
paths:

〈Itot〉 = 〈
Iζ

〉 + 〈Icorr〉 + 〈Iε〉. (39)

Here Iζ and Iε are, respectively, the intensities for paths scat-
tered from the surface or volume dielectric fluctuations only.
The term Icorr corresponds to the interference between the two
types of paths which survives the averaging in the presence
of surface-volume cross correlation. Each of the terms in
Eq. (39) scales differently with different parameters of the
surface and volume disorders, as shown by the asymptotics
and scalings in Table I.

IV. REGIMES OF PREDOMINANCE FOR
UNCORRELATED SURFACE AND VOLUME DISORDER

In this section we study the relative weight of the surface
and volume contributions to the scattered intensity as a func-
tion of the parameters defining the disordered system. To this

end, we consider the diffuse reflectance, which, for an incident
ν-polarized electromagnetic plane wave, is defined as

Rν,diff (p0) =
∑

μ=p,s

∫ 〈
∂Rμν

∂�
(p, p0)

〉
diff

d�. (40)

For unpolarized light, the diffuse reflectance is given by
Rdiff = (Rp,diff + Rs,diff )/2. Next, we define the volume to
surface diffuse reflectance ratio

η = Rdiff,ε/Rdiff,ζ , (41)

where Rdiff,ε (Rdiff,ζ ) corresponds to the diffuse reflectance
when only the volume (surface) disorder is present. The
parameter η thus gives the regimes for which (i) volume
scattering is negligible compared to surface scattering (η �
1), (ii) volume scattering dominates over surface scattering
(η 
 1), or (iii) volume scattering is of the same order as
surface scattering (η ≈ 1).

In all the illustrative examples that we will consider below,
we will assume that ε1 = 1 and ε2 = 2.25. In addition, σε

will be chosen in such a way that the scattering mean free
path for the volume disorder, �s, estimated from Eq. (G2)
(see Appendix G), yields an optical thickness L/�s = 0.5
independently of the configuration, thus ensuring the validity
of the single-scattering approximation. In the present section,
the two sources of disorder are taken to be uncorrelated (γ =
0). The total diffusely scattered intensity can thus be written
as the sum of the intensity of the subsystems for which either
only the rough surface or the volume disorder contributes.
The results presented in the figures will be obtained based on
the polarized expressions [Eq. (37)] in the case of incident
unpolarized light for normal incidence. However, the scalar
wave approximation [scalar version of Eq. (37)] of the form〈

∂R

∂�

〉
diff

∝ (ε2 − ε1)2k4
0 σ 2

ζ Ŵζ + σ 2
ε k4

0 Ŵε‖ I, (42)

for γ = 0, will be sufficient to understand the phenomena of
interest, and will be used in the discussion for the sake of
simplicity. The different regimes are analyzed by plugging the
asymptotics of I given in Table I in Eq. (42).

A. Regime 1

By inspection of Eq. (42) and Table I in regime 1, and
up to a common prefactor, the surface contribution to the
diffuse component of the MDRC scales as (ε2 − ε1)2 k4

0 σ 2
ζ �2

ζ ,
and the volume contribution scales as π1/2σ 2

ε k4
0 �2

ε‖�ε⊥L. For
broad power spectral densities, i.e., correlation lengths small
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compared to the wavelength, the diffuse reflectance will also
scale proportionally to the square of the transverse correlation
lengths. For power spectral densities which are relatively
well confined within the propagation domain | p |2 < ε1k2

0 ,
i.e., for transverse correlation lengths not too small compared
to the wavelength, we can assume

∫
Ŵ (p) d2 p = (2π )2 for

Ŵ = Ŵζ or Ŵε‖, and that the remaining p dependence in the
diffuse component of the MDRC is smooth, to obtain that the
surface and volume contributions to the diffuse reflectance
become essentially independent of the transverse correlation
lengths, and scale respectively as (ε2 − ε1)2 k2

0 σ 2
ζ , while the

volume contribution scales as π1/2σ 2
ε k2

0 �ε⊥L. To summarize,
in regime 1, the volume to surface diffuse reflectance ratio can
be estimated to be

η1 = π1/2σ 2
ε �ε⊥L

(ε2 − ε1)2σ 2
ζ

, (43)

for narrow power spectral densities. If the volume disorder
has a broad transverse spectral density (k0�ε‖ � 1) the above
expression must be corrected by a factor �2

ε‖. Similarly, if the
surface disorder has a broad spectral density (k0�ζ � 1) the
above expression must be corrected by a factor 1/�2

ζ . This
remark being made, we will only consider narrow spectral
densities from here on.

B. Regime 2

In this regime, a similar analysis shows that the volume
contribution to the diffuse component of the MDRC scales as
σ 2

ε k4
0 �2

ε‖L2 (see asymptotics of I in Table I). Consequently, the
volume to surface diffuse reflectance ratio is estimated to be

η2 = σ 2
ε L2

(ε2 − ε1)2σ 2
ζ

. (44)

C. Comparison of regime 1 and 2

We can appreciate the similarity between the surface and
volume contributions, in regime 2. Indeed, the volume term,
proportional to σ 2

ε k4
0�

2
ε‖L2, is similar to the surface term,

proportional to (ε2 − ε1)2k4
0�

2
ζ σ

2
ζ , in Eq. (42). The role of the

dielectric jump ε2 − ε1 is played by the rms of the dielectric
fluctuation σε; the role of the rms surface roughness σζ is
played by the depth L; and the role of the in-plane correlation
length �ζ is played by �ε‖. The denomination of surfacelike
configuration thus takes its full meaning. Conversely, if we
adopt a volume scattering point of view, we can also consider
that scattering by a rough surface is equivalent to scattering by
a volume with dielectric fluctuations invariant along x3 where
σζ is identified with L. The genuine volume configuration
(regime 1) differs from the surfacelike configuration (regime
2) essentially by the factor L2 which becomes �ε⊥L. A first ex-
planation for this difference would be that the power scattered
by the volume is always proportional to the depth L and to
the correlation length �ε⊥ independently of the configuration.
However, in the surfacelike configuration, since �ε⊥ 
 L, the
effective out-of-plane correlation length is in fact L because
of the depth cutoff. Thus �ε⊥ is replaced by L in the surface-
like configuration. A second interpretation of the scattering
strength in regime 1 is obtained by estimating the scattering
mean free path �s for a system with dielectric fluctuations

in an otherwise homogeneous medium. Considering isotropic
dielectric fluctuations for simplicity, i.e., �ε‖ = �ε⊥ = �ε, the
weight of the volume scattering term in Eq. (37) becomes

π3/2k4
0σ

2
ε �3

εL = 4π

ε2
2

�−1
s L. (45)

The scattering mean free path �s for an infinite medium with
average dielectric function ε2 (and wave number k2 = √

ε2k0)
and isotropic dielectric fluctuations with Gaussian statistics is
(see Appendix G)

�−1
s = π1/2

4
σ 2

ε k4
2 �3

ε. (46)

Equation (45) thus states that, in the single-scattering regime,
the strength of the volume scattering term is controlled by the
optical thickness of the layer L/�s, i.e., by the average number
of scattering events inside the layer.

So far we have compared the diffuse reflectance for surface
and volume scattering in order to determine their respective
regimes of predominance. Note that if we compare their
contributions in an elementary solid angle, scattering can be
dominated by either surface or volume disorder depending
on the scattering angle. Figures 2(a)–2(c) present the diffuse
component of the MDRC for normally incident and unpolar-
ized light for different cases of uncorrelated surface and vol-
ume disorders in regime 2. Figures 2(a) and 2(b) illustrate the
cases for which the surface and volume transverse correlation
lengths are equal, �ζ = �ε‖. We observe that either the power
diffusely reflected by the surface dominates over the power
reflected by the bulk [Fig. 2(a)] or both disorders contribute
equally to the diffusely reflected power [Fig. 2(b)]. In contrast,
Fig. 2(c) illustrates the case for which both contributions to
the integrated reflected power are equal, but the transverse
correlation lengths are different [�ζ �= �ε‖]. This results in sur-
face scattering and bulk scattering each having their angular
regions of predominance.

D. Regime 3

We now analyze the reflectance beyond the regime
k0�ε⊥ � 1. Note that the surface contribution still remains
in the subwavelength limit (k jσζ � 1) since this assump-
tion has been made in the first place in the deriva-
tion. In regime 3, the volume term in Eq. (42) scales
as π1/2σ 2

ε k4
0 �ε⊥ L �2

ε‖ exp (−α+2(p, p0)�2
ε⊥/4), i.e., it chiefly

decays exponentially with increasing k2
0�

2
ε⊥. The exponential

decay comes from the specific form assumed for the x3 depen-
dency of the correlation function Wε. Other forms of the cor-
relation function would lead to a different decaying function.
Nevertheless, the diffusely reflected intensity decreases with
decreasing wavelength or alternatively increasing correlation
length �ε⊥. The physical reason for this decay can be under-
stood in terms of the anisotropy factor for the volume disorder.
In scattering by a particle, it is known that as one increases the
size of the particle compared to the wavelength the scattering
becomes peaked in the forward direction. In the case of
continuous dielectric fluctuations, the size of the particle is
played by the correlation length. Hence, for increasing cor-
relation length �ε⊥ beyond the wavelength, scattering by the
dielectric fluctuations increases in the forward direction. Thus
the reflected scattered light intensity decreases (and, although
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FIG. 2. Diffuse component of the unpolarized mean differential reflection coefficient for scattering in the plane of incidence as a
function of the scattering angle. The surfacelike configuration is considered in all cases (L � �ε⊥), in the regime L � λ (a–c), and in
the regime L > λ (d). (a) Surface scattering dominates over volume scattering. (b) Equal contribution from surface and volume scattering.
(c) Equal integrated contribution from surface and volume disorder but �ζ > �ε‖. (d) Equal contribution and �ζ = �ε‖ but in the interference
regime. In all cases, the surface profile and dielectric fluctuations are uncorrelated and the optical thickness associated with volume
scattering, evaluated following Eq. (G2), is fixed to L/�s = 0.5. The parameters assumed were �ε‖ = λ/2, �ε⊥ = 20λ, �ζ = λ/2 (a, b, d)
or �ζ = λ (c); L = λ/20 (a–c) or L = 10λ (d); σε = 0.36 (a–c) or σε = 0.026 (d); and σζ = λ/40 (a), σζ = 14 × 10−3λ (b, c), or σζ = 1.56
× 10−3λ (d).

not shown here, scattering increases in transmission). Beyond
the subwavelength regime, the genuine volume configuration
yields a wavelength dependent parameter η which reads

η3 = η1 exp
(−k2

2 �2
ε⊥

)
. (47)

E. Regime 4

In regime 4, the contribution from the volume
disorder to the diffusely reflected intensity behaves
as 4k4

0σ
2
ε Ŵε‖(p − p0) sin2 [α+(p, p0)L/2]/α+2(p, p0). It

exhibits oscillations, hence generating rings in the diffusely
reflected intensity, the frequency of which increases with
the depth L [see Fig. 2(d)]. This is a clear interference
phenomenon which survives the averaging. Furthermore, this
contribution is bounded by 4k4

0σ
2
ε Ŵε‖(p − p0)/α+2(p, p0)

and the diffusely reflected power thus scales as 4σ 2
ε k2

0 �2
ε‖/ε2.

This is a radically different scaling from that observed in the
subwavelength regime (regime 2). In particular, the scaling
in regime 4 is proportional to k2

0 , which differs from the
k4

0 scaling in regime 2, and becomes independent of the
depth L. The depth only controls the angular positions of the
interference rings. The parameter η of the volume to surface

power ratio thus reads

η4 = 4σ 2
ε

ε2 (ε2 − ε1)2k2
0 σ 2

ζ

. (48)

The behavior in this regime contrasts with the behavior in the
subwavelength regime since the volume to surface power ratio
η depends on the wavelength. This means that the system may
undergo a transition from a surface dominated regime to a
volume dominated regime as the wavelength is varied.

Figure 3 illustrates the different regimes of volume scat-
tering in more detail. Figure 3(a) presents a contour map
of the normalized diffuse reflectance Rdiff/(σ 2

ε k0L) in the
(k0L, k0�ε⊥) plane and Figs. 3(b) and 3(c) are cross sections
of Rdiff/σ

2
ε for fixed values of k0�ε⊥ and k0L, respectively.

The two curves in theses figures labeled as “Exact” were
obtained by numerical evaluation of the I and J integrals
[Eq. (38)] instead of the asymptotic expressions (Table I).
The different aforementioned regimes are readily observed
in Fig. 3(a) from the features of the diffuse reflectance. The
subwavelength regimes in the genuine volume configuration
(regime 1) and in the surfacelike configuration (regime 2),
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FIG. 3. (a) Volume diffuse reflectance for unpolarized light Rdiff = Rdiff,ε in the (k0L, k0�ε⊥) plane. The white dashed lines delimit the
different regimes. (b) Cross section showing Rdiff as a function of k0L for k0�ε⊥ = 6π [horizontal red dash-dotted line in (a)]. (c) Cross section
showing Rdiff as a function of k0�ε⊥ for k0L = 6π [vertical red dash-dotted line in (a)]. The surface was planar, the transverse correlation
length was set to �ε‖ = λ/4, and the angle of incidence was θ0 = 0◦. We have normalized the volume diffuse reflectance by σ 2

ε since it is
always proportional to σ 2

ε independently of the regime. This allows us to compare the different regimes without taking care of tuning σε to stay
within the single-scattering regime as �ε⊥ and L vary. In (a), the diffuse reflectance is further normalized by k0L in order to compensate for the
linear increase of Rdiff with L in regime 1 (which would otherwise dominate the color map at large k0L).

respectively, are bounded by local maxima ridges in the
(k0L, k0�ε⊥) plane. Indeed, we recognize on the cross sections
a quadratic increase of the reflectance with k0�ε⊥ [see inset
in Fig. 3(b)] and a linear increase with k0L [Fig. 3(c)] in
the subwavelength limit. In regime 4, we observe that the
reflectance oscillates with k0L, as interference rings appear in
the MDRC [this is also seen in Fig. 5(a) that will be discussed
below]. The oscillations are damped and stabilize around a
constant value as k0L increases. This is due to the fact that
as more rings appear in the MDRC the integration of the
MDRC becomes less sensitive to the apparition of new rings
[see Figs. 3(a) and 3(b)]. In regime 3, we initially observe an
exponential decay with k2

0�
2
ε⊥, which saturates to an almost

constant value for large k0�ε⊥ (the asymptotic expression
becomes inaccurate), matching the value one would obtain
coming from regime 4 by increasing k0L as the oscillations
dampen [i.e., coming from either side of the diagonal in
Fig. 3(a)].

V. CORRELATED SURFACE AND VOLUME DISORDER

A. Surfacelike configuration

1. Uniform spectral correlation

We now turn to the situation of correlated surface and
volume disorder. In the surfacelike configuration, the depth
d of the maximally correlated slice plays a negligible role. We
will first take γ (p) = γ ∈ [−1, 1] to be a real constant. This
corresponds to the case of the surface profile being correlated
with any slice �ε(·, x3) without specific tuning of the spectral
correlations. In regime 2, the expression in the square brackets
in the scalar approximation of Eq. (37) reads

〈
∂R

∂�

〉
diff

∝ (ε2 − ε1)2σ 2
ζ Ŵζ + σ 2

ε L2Ŵε‖

+ 2(ε2 − ε1)σζσεγ LŴ 1/2
ζ Ŵ 1/2

ε‖ , (49)

where we have dropped the arguments in the functions for
clarity. Note that the positivity of the intensity is ensured
by the stochastic model itself. Indeed, it suffices to apply
the well-known inequality 2|ab| � a2 + b2 with a = (ε2 −
ε1)σζŴ 1/2

ζ and b = σεLŴ 1/2
ε‖ , and to notice that |γ | � 1

to check that the right-hand side of Eq. (49) is positive.
From this simple remark, it also follows that in order to
maximize the effect of the cross correlations on the inten-
sity one must have |γ | = 1 and equal transverse correlation
lengths �ζ = �ε‖. In this case, we may assume γ = ±1, which
yields 〈

∂R

∂�

〉
diff

∝ [(ε2 − ε1)σζ ± σεL]2Ŵζ . (50)

Consequently, for (ε2 − ε1)σζ = σεL, i.e., for equal contribu-
tion from the surface and volume disorder to the scattering
(η2 = 1), the resulting diffusely scattered intensity may com-
pletely vanish (γ = −1) or may double (γ = 1) compared
to the uncorrelated case. Such situations are illustrated in
Fig. 4(a) where the diffuse component of the MDRC for in-
plane scattering is presented for uncorrelated, positively cor-
related, and negatively correlated surface and volume disorder
in regime 2. The reason why the MDRC does not perfectly
vanish for γ = −1 (nor is it exactly doubled for γ = 1) is that
we used the numerical evaluation of I and J (which can be
considered as exact) rather than their asymptotic expressions.
As L → 0, the asymptotic expressions would become more
accurate and the signal would indeed vanish for γ = −1. It
is important to note that we have constructed a first example
for which the splitting rule [12,13] for the intensity does not
apply, even in the single-scattering regime. The splitting rule
fails here due to the constructive or destructive interference
induced by the cross correlation between paths scattered on
the surface or in the volume. This result should not come as
a surprise though. Indeed, in the chosen regime, the dielectric
fluctuations occur only in a thin layer below the surface since
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FIG. 4. The diffuse component of the MDRC for a normally incident and unpolarized plane wave in the surfacelike configuration for
(a) k0L � 1, (b) k0L > 1, and (c) in the genuine volume regime. For (a) and (b) the parameters are identical to those of Fig. 2(b). For (c) the
parameters are L = 10λ, �ζ = �ε‖ = �ε⊥ = λ/2, d = L − �ε⊥, σζ = 3.2 × 10−3λ, and σε = 0.051. The dashed black line corresponds to the
response of a system for which η ≈ 1 and uncorrelated surface and volume disorder γ = 0. The blue (resp. orange) solid line corresponds to a
correlated surface and volume disorder with γ = 1 (resp. γ = −1).

we have L � �ε⊥ � λ. Positively correlating the surface
profile and the dielectric fluctuations can be considered as
producing an effective surface with larger dielectric jumps or
larger rms roughness, hence enhancing the diffusely scattered
power. Conversely, negatively correlating the surface profile
and the dielectric fluctuations can be considered as dampening
the dielectric jumps for the equivalent surface, hence reducing
the scattered power. As an illustrative picture, the reader may
refer to the scattering geometry in Fig. 1(b) and let L be
as small as the rms roughness of the surface profile. Note
that a similar enhancement or attenuation of scattering due to
surface-surface correlation was observed for randomly rough
films [29–32].

Can such dramatic effects be observed beyond the sub-
wavelength regime? We have seen in Fig. 2(d) that in regime
4 the contribution from the permittivity fluctuations to the
diffuse component of the MDRC exhibits interference rings,
which adds to the broad bell shaped signal coming from
the surface. Let us revisit this situation in the presence of
correlations between the surface profile and the permittivity
fluctuations. In this regime, the diffuse component of the
MDRC is proportional to

〈
∂R

∂�

〉
diff

∝ (ε2 − ε1)2σ 2
ζ Ŵζ + σ 2

ε Ŵε‖
4 sin2(αL/2)

α2

+ 2(ε2 − ε1)σζσεγŴ 1/2
ζ Ŵ 1/2

ε‖
sin(αL)

α
. (51)

Here again it is straightforward to verify that the intensity
remains positive. In contrast to the subwavelength case, we
observe that the oscillations in the coupling term have the
same frequency as the oscillations of the volume contribution
but phase shifted by π/2. This results in a modification of the
interference pattern as illustrated in Fig. 4(b). Figure 5 shows
the full angular distribution of the diffuse component of the
MDRC for the three aforementioned cases (γ = 0,±1) where
the modulation of the interference rings can be appreciated.

2. Modulated spectral correlation

Let us now explore the additional degree of freedom of-
fered by the spectral correlation modulator, and let γ ex-
plicitly depend on the in-plane wave vector p. To this end,
we reconsider the situation in Fig. 4(a) (regime 2) but for
different forms for γ , namely, a shift of cross correlation
γ (p) = γ0 exp(i p · a ), and a shift combined with a spectral
forbidden region of correlation localized in either the domain
| p | < k1/2 or the domain | p | > k1/2 (see the caption of
Fig. 6 for details). Figure 6 presents the diffuse component
of the MDRC for these three cases. First, we observe in
Figs. 6(a) and 6(d) that the correlation shift induces inter-
ference fringes the frequency of which in the p plane and
orientation are determined by the shift vector a. We also
note that the resulting MDRC is bounded by the MDRCs
obtained in Fig. 4(a) for uniform spectral correlations, and
thus they determine the envelope of the oscillating MDRC in
Fig. 6(a). Note that the maxima and minima of the MDRC
can be exchanged by choosing γ0 to be equal to either −1 or
1. The two other forms of γ that we consider in Figs. 6(b),
6(c) 6(e), and 6(f) exhibit fringes as in the previous case
but only in the determined allowed regions, either outside
[Figs. 6(b) and 6(e)] or inside [Figs. 6(c) and 6(f)] of the
domain | p | < k1/2.

These examples of engineering of the cross correlation
illustrate a very general concept. The average interference pat-
tern results from constructive and destructive interference be-
tween correlated optical paths. In the single-scattering regime,
an average interference pattern results either from the design
of the power spectral density of a single stochastic process
(e.g., the surface profile) or from the design of the cross-
spectral power density between two stochastic processes.
Well-known examples, in the case of a single stochastic
process, are the surface scattering of band-limited uniform
diffusers [33] and the volume scattering of hyperuniform lat-
tices of scatterers [16,34]. The originality here is that we have
assumed Gaussian forms of the autopower spectral densities
for the surface and volume disorder, which independently
diffuse broadly, but which can exhibit exotic interference
patterns when correlated.
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FIG. 5. The diffuse component of the MDRC in the p plane (axis normalized as p = √
ε1k0 p̂) for a normally incident and unpolarized

plane wave. The system is in the surfacelike configuration in the regime L > λ. (a) Uncorrelated (γ = 0), (b) positively correlated (γ = 1),
and (c) negatively correlated (γ = −1) surface and permittivity fluctuations. The remaining parameters were those assumed in producing the
results of Fig. 2(d).

Beyond the subwavelength regime, the interference pattern
observed in regime 2 remains but is combined with the
interference rings discussed previously in Figs. 4 and 5. We
would like to stress the physical origin of these two types of
interference. The rings observed in the regime k0L > 1 result
from the constructive and destructive interferences between
optical paths scattered along a line x‖ = const, for which �ε

is constant (keep in mind that we consider the surfacelike

regime here). On the other hand, the interference pattern orig-
inating from the cross correlation is chiefly an effect resulting
from correlated paths involving scattering centers located at
different positions in the x1x2 plane. A clear example is the
shift of correlation, which even in the subwavelength regime,
i.e., when the phase shifts due to propagation along x3 can
be neglected, produces interference fringes which are entirely
determined by the in-plane shift vector a.
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FIG. 6. The diffuse component of the MDRC as a function of the angle of scattering for in-plane scattering (a–c) and in the p plane (d–f).
All parameters are identical to those assumed in producing the results in Fig. 2(b) except for the spectral correlation modulator γ . (a, d) Shift
modulation: γ (p) = γ0 exp(i p · a ) with a = 5λ ê1. (b, e) Shift and forbidden correlation in the central region: γ (p) = γ0 exp(i p · a ) [1 −
ϕ(2| p |/k1)]. (c, f) Shift and forbidden correlation in the outer region: γ (p) = γ0 exp(i p · a ) ϕ(2| p |/k1). The function ϕ is a smooth function
with compact support [−1, 1] taking values between 0 and 1: ϕ(x) = H(1 − x2) exp[4 + 4/(x2 − 1)].
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B. Genuine volume configuration

In regimes 1 and 3, the physics discussed in the surfacelike
configuration (regimes 2 and 4) remains valid but the interfer-
ence effect induced by the cross correlation is weaker. Indeed,
in regime 1, for example, the expression for the MDRC in the
scalar wave approximation reads〈

∂R

∂�

〉
diff

∝ (ε2 − ε1)2σ 2
ζ Ŵζ + √

πL�ε⊥ σ 2
ε Ŵε‖

+ 2(ε2 − ε1)σζ σε

√
π

2
�ε⊥ γŴ 1/2

ζ Ŵ 1/2
ε‖ . (52)

We see that while the volume term scales as L�ε⊥ the cross
term scales as �ε⊥, which is the length scale for the range
of the cross correlation. This is in contrast with regime 2
where the cross term scales as L. Consequently, the cross
term is small compared to the volume term (and the surface
term for η = 1) in the regime �ε⊥ � L. This situation is
illustrated in Fig. 4(c) where the depth of the maximally cor-
related dielectric layer was chosen to be taken one correlation
length away from the bottom edge of the fluctuating domain,
d = L − �ε⊥. We observe that the diffuse component of the
MDRC for the correlated systems oscillates weakly around
that of the uncorrelated system. The physical origin of these
oscillations is similar to that of the Selényi rings occurring
in rough dielectric films [32,35,36]. The reason for the less
pronounced effect is that only a thin layer, of thickness �ε⊥,
contributes to the average interference effect, on top of the
background signal coming from the thick layer of thickness
L − �ε⊥ the dielectric fluctuations of which are not correlated
to the surface. The amplitude of the oscillations with respect
to the uncorrelated signal thus scales roughly as �ε⊥/L.

VI. POLARIZATION RESPONSE AND SURFACE-VOLUME
DECOMPOSITION

Before concluding, it is interesting to discuss how the
polarization response can be used to decompose the total
scattered intensity into its surface and volume contributions
in the case of uncorrelated surface and volume disorder. The
starting point of this discussion will be based on Eq. (37) for
γ = 0. The diffuse component of the MDRC in this case is of
the form〈

∂Rμν

∂�
(p, p0)

〉
diff

= S (p, p0) |ρζ,μν (p, p0)|2

+ V (p, p0) |ρε,μν (p, p0)|2. (53)

The functions S and V are proportional to σ 2
ζ Ŵζ and σ 2

ε Ŵε,
respectively. In an experimental setup for optical sample char-
acterization, these functions are unknowns. However, within
the single-scattering approximation, the polarization coupling
factors are known. To determine S and V (and consequently
assess the surface and volume statistical property of the sam-
ple) one may proceed as follows. Measure 〈 ∂Rpp

∂�
(p, p0)〉

diff

and 〈 ∂Rss
∂�

(p, p0)〉
diff

in the plane of incidence for a given
oblique angle of incidence (or a set of angles of incidence) for
which ρζ,pp(p, p0) �= ρε,pp(p, p0). Note that in the plane of
incidence ρζ,ss = ρε,ss. We thus have for each set of measure-
ments in a direction p a linear set of two equations with two

unknowns, namely, Eq. (53) with μ = ν = p or μ = ν = s,
which can be inverted to give

S = |ρε,ss|2
〈 ∂Rpp

∂�

〉
diff − |ρε,pp|2

〈
∂Rss
∂�

〉
diff

|ρε,ss|2|ρζ,pp|2 − |ρε,pp|2|ρζ,ss|2 , (54a)

V = |ρζ,ss|2
〈 ∂Rpp

∂�

〉
diff − |ρζ,pp|2

〈
∂Rss
∂�

〉
diff

|ρζ,ss|2|ρε,pp|2 − |ρζ,pp|2|ρε,ss|2 . (54b)

A situation of particular interest is that corresponding to
the Brewster scattering angle, for which ρζ,pp vanishes. This
angle of scattering depends on the angle of incidence and
can readily be predicted from the definition of ρζ,pp [26]. In
principle, one could vary the angles of incidence and of ob-
servation so that ρζ,pp = 0, and measure an intensity resulting
only from volume scattering. However, it may be simpler to
use Eq. (54), which is valid for any set of angles of incidence
and scattering provided that ρζ,pp(p, p0) �= ρε,pp(p, p0) (in
the plane of incidence).

VII. CONCLUSION AND PERSPECTIVES

The single-scattering theory derived in this paper has al-
lowed us to obtain a number of results. First, we have mapped
out a diagram of predominance of surface and volume scat-
tering depending on length scales characteristic of the disor-
der. Second, we have shown how polarimetric measurements
can be used to discriminate surface scattering from volume
scattering in the total diffusely scattered intensity. Finally, we
have explored interference effects induced by surface-volume
correlations. This study required the construction of a model
of surface-volume correlation, to understand the degrees of
freedom involved, and how the latter can be used either
for shaping the diffuse interference pattern or for assessing
statistical information about the disorder.

New perspectives are now open in different directions.
First, it will be of interest to investigate to which extent the
presented regimes and interference effects are robust when
multiple scattering events are taken into account. Second,
despite its relative simplicity, the single-scattering theory is
of interest for a wide range of applications. A first application
is the optical characterization of disordered thin films, where
both fluctuation of refractive index, due to material phase sep-
aration, and surface roughness can simultaneously be present
and correlated [37,38]. Another application is the detection
of label-free single nano-objects (like proteins) in optical
interferometric microscopy. The Rayleigh scattering signal
from such small objects is often merged in a background of
speckles coming from weak, nanometric, surface roughness
or density fluctuations in the substrate or cover slip [39,40].
Including small objects in the framework presented in the pa-
per is straightforward, opening a way to analytical treatments
for precise background subtraction by taking advantage of
the knowledge of the interference between the background
speckle field and the field scattered by the nano-object. Fi-
nally, we have shown that the cross correlation function could
in principle be designed to create exotic interference patterns
in the diffusely scattered light. This is a general single-
scattering result for two types of correlated disorders, here a
surface and a volume with a fluctuating index of refraction.
These results suggest that information could in principle be
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encoded in a pair of disordered media which would only be
decoded by a light scattering experiment from or through
both media. This idea is reminiscent of that of optical image
encryption with random phase masks introduced by Refregier
and Javidi in Ref. [41].
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APPENDIX A: ZEROTH-ORDER FIELD

Equation (19) giving the field obtained by the Born ap-
proximation requires the zeroth-order field E(0) solution of the
scattering problem for the reference system. If we consider the

case of a monochromatic incident plane wave

E0(x ) = [E0,p ê−
1,p(p0) + E0,s ês(p0)] exp(i k−

1 (p0) · x ), (A1)

the reference field is given by

E(0)(x ) =
{

E0(x ) + [
r (p)

21 (p0) E0,p ê+
1,p(p0) + r (s)

21 (p0) E0,s ês(p0)
]

exp(i k+
1 (p0) · x ) if x3 > 0[

t (p)
21 (p0) E0,p ê−

2,p(p0) + t (s)
21 (p0) E0,s ês(p0)

]
exp(i k−

2 (p0) · x ) if x3 < 0
. (A2)

Here we have defined the wave vectors and polarization
vectors parametrized by p = p1 ê1 +p2 ê2 and j ∈ {1, 2} by

k±
j (p) = p ±α j (p) ê3, (A3a)

k j = | k±
j | = ε

1/2
j k0, (A3b)

α j (p) = (
k2

j − p2
)1/2

, Re(α j ) � 0, Im(α j ) � 0, (A3c)

ês(p) = ê3 × p̂, (A3d)

ê±
j,p(p) = ±α j (p) p̂ −| p | ê3

k j
, (A3e)

and the Fresnel factors for a plane wave incident from medium
i to j are given by

r (s)
ji (p) = αi(p) − α j (p)

αi(p) + α j (p)
, (A4a)

r (p)
ji (p) = ε jαi(p) − εiα j (p)

ε jαi(p) + εiα j (p)
, (A4b)

t (s)
ji (p) = 2αi(p)

αi(p) + α j (p)
, (A4c)

t (p)
ji (p) = 2

√
ε jεiαi(p)

ε jαi(p) + εiα j (p)
. (A4d)

The two-dimensional Fourier transform of the zeroth-order
field, also known as Weyl expansion, thus reads

Ê(0)(p, x3) =
{

(2π )2 δ(p − p0) Ê(0)
1 (p0, x3) if x3 > 0

(2π )2 δ(p − p0) Ê(0)
2 (p0, x3) if x3 < 0

,

(A5)

where the zeroth-order fields Ê(0)
1 and Ê(0)

2 are given by

Ê(0)
1 (p0, x3) =[E0,p ê−

1,p(p0) + E0,s ês(p0)] exp(−iα1(p0) x3)

+ [
r (p)

21 (p0) E0,p ê+
1,p(p0) + r (s)

21 (p0) E0,s ês(p0)
]

× exp
(
iα1(p0) x3

)
, (A6a)

Ê(0)
2 (p0, x3) =[

t (p)
21 (p0) E0,p ê−

2,p(p0) + t (s)
21 (p0) E0,s ês(p0)

]
× exp(−iα2(p0) x3). (A6b)

APPENDIX B: DERIVATION OF IDENTITY (27)

We prove here the identity given in Eq. (27) for x3 > 0
(the case x3 < 0 is obtained in a similar manner). To this end,
let us recall the expression of the Green’s function as given
in Ref. [25]. The Green’s function for the reference system
expressed for x3 > x′

3 > 0 reads

Ĝ(p, x3, x′
3) = Ĝ(d )

1 (p, x3 − x′
3) + Ĝ(r)(p, x3, x′

3), (B1)

with

Ĝ(d )
1 (p, x3 − x′

3) = i

2α1(p)
[ê+

1,p(p) ⊗ ê+
1,p(p)

+ ês(p) ⊗ ês(p)] exp(iα1(p)(x3 − x′
3)),
(B2)

Ĝ(r)(p, x3, x′
3) = i

2α1(p)

[
r (p)

21 (p) ê+
1,p(p) ⊗ ê−

1,p(p) + r (s)
21 (p)

× ês(p) ⊗ ês(p)
]

exp(iα1(p)(x3 + x′
3)).

(B3)

The term Ĝ(d )
1 is the Green’s function in the homogeneous

space with dielectric constant ε1 and corresponds to the con-
tribution of the direct path from the source point x′

3 to the
observation point x3. The term Ĝ(r) corresponds to the contri-
bution of the reflected path on the reference interface (x3 = 0).
The Green’s function for the reference system expressed for
x3 > 0 and x′

3 < 0 reads

Ĝ(p, x3, x′
3) = i

2α2(p)

[
t (p)
12 (p) ê+

1,p(p) ⊗ ê+
2,p(p)

+ t (s)
12 (p) ês(p) ⊗ ês(p)

]
× exp(iα1(p) x3 − iα2(p) x′

3), (B4)
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and corresponds to a transmitted path from a source below
the reference interface to an observation point above the

interface. By using Eqs. (B1), (B4), and (A6) we get on the
one hand

Ĝ(p, x3, 0+) Ê2(p0, 0) = i

2α1(p)

[
ê+

1,p(p) ⊗ (
ê+

1,p(p) + r (p)
21 (p) ê−

1,p(p)
) + (

1 + r (s)
21 (p)

)
ês(p) ⊗ ês(p)

]
× [

t (p)
21 (p0) E0,p ê−

2,p(p0) + t (s)
21 (p0) E0,s ês(p0)

]
exp(iα1(p) x3)

=
∑

μ=p,s

ê+
1,μ(p)

∑
ν=p,s

ρμν (p, p0) E0,ν exp(iα1(p) x3), (B5)

where we have used the convention ê±
j,s(p) ≡ ês(p) and where ρμν (p, p0) is given by

ρμν (p, p0) = i

2α1(p)

[
ê+

1,μ(p) + r (μ)
21 (p) ê−

1,μ(p)
] · t (ν)

21 (p0) ê−
2,ν (p0). (B6)

On the other hand, we have

Ĝ(p, x3, 0−) Ê1(p0, 0) = i

2α2(p)

[
t (p)
12 (p) ê+

1,p(p) ⊗ ê+
2,p(p) + t (s)

12 (p) ês(p) ⊗ ês(p)
]

exp(iα1(p) x3)

× [
E0,p

(
ê−

1,p(p0) + r (p)
21 (p0) ê+

1,p(p0)
) + E0,s

(
1 + r (s)

21 (p0)
)

ês(p0)
]

=
∑

μ=p,s

ê+
1,μ(p)

∑
ν=p,s

ρ ′
μν (p, p0) E0,ν exp(iα1(p) x3), (B7)

where ρ ′
μν (p, p0) is given by

ρ ′
μν (p, p0) = i

2α2(p)
t (μ)
12 (p) ê+

2,μ(p) · [
ê−

1,ν (p0) + r (ν)
21 (p0) ê+

1,ν (p0)
]
. (B8)

Thus showing that Ĝ(p, x3, 0+) Ê2(p0, 0) = Ĝ(p, x3, 0−) Ê1(p0, 0) is equivalent to showing that ρμν (p, p0) = ρ ′
μν (p, p0). Note

that this should hold for all μ, ν ∈ {p, s} and p, p0 ∈ R2. Tedious but straightforward algebra leads to ρμν (p, p0) = ρ ′
μν (p, p0) by

substituting Eqs. (A3) and (A4) into Eqs. (B6) and (B8). We show here the main steps for the case μ = ν = p, but the remaining
polarization couplings can be treated in a similar manner. Let us first insert Eqs. (A3e), (A4b), and (A4d) into Eq. (B6), and we
get

ρpp(p, p0) =
i
√

ε1ε2α1(p0)

[(
ε2α1(p) + ε1α2(p)

)( − α1(p)α2(p0) p̂ · p̂0 +| p || p0 |)
+(

ε2α1(p) − ε1α2(p)
)(

α1(p)α2(p0) p̂ · p̂0 +| p || p0 |)
]

k1k2α1(p)
(
ε2α1(p) + ε1α2(p)

)(
ε2α1(p0) + ε1α2(p0)

)
= 2i

√
ε1ε2α1(p0)

[
ε2| p || p0 | − ε1α2(p)α2(p0) p̂ · p̂0

]
k1k2

(
ε2α1(p) + ε1α2(p)

)(
ε2α1(p0) + ε1α2(p0)

) , (B9)

and similarly, by inserting Eqs. (A3e), (A4b), and (A4d) into Eq. (B8), we get

ρ ′
pp(p, p0) =

i
√

ε1ε2

[(
ε2α1(p0) + ε1α2(p0)

)( − α2(p)α1(p0) p̂ · p̂0 +| p || p0 |)
+(

ε2α1(p0) − ε1α2(p0)
)(

α2(p)α1(p0) p̂ · p̂0 +| p || p0 |)
]

k1k2
(
ε2α1(p) + ε1α2(p)

)(
ε2α1(p0) + ε1α2(p0)

)
= 2i

√
ε1ε2α1(p0)

[
ε2| p || p0 | − ε1α2(p)α2(p0) p̂ · p̂0

]
k1k2

(
ε2α1(p) + ε1α2(p)

)(
ε2α1(p0) + ε1α2(p0)

) = ρpp(p, p0). (B10)

APPENDIX C: DERIVATION OF THE TRANSMISSION AMPLITUDE

We derive here the transmission amplitudes. The derivation is similar to that of the reflection amplitudes. To this end, we
need the Weyl expansion of the Green’s function for observation points x3 < −L. The Green’s function for the reference system
expressed for x3 < −L < x′

3 < 0 reads [25]

Ĝ(p, x3, x′
3) = Ĝ(d )

2 (p, x3 − x′
3) + Ĝ(r)(p, x3, x′

3), (C1)
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with

Ĝ(d )
2 (p, x3 − x′

3) = i

2α2(p)
[ê−

2,p(p) ⊗ ê−
2,p(p) + ês(p) ⊗ ês(p)] exp(−iα2(p) (x3 − x′

3)), (C2a)

Ĝ(r)(p, x3, x′
3) = i

2α2(p)

[
r (p)

12 (p) ê−
2,p(p) ⊗ ê+

2,p(p) + r (s)
12 (p) ês(p) ⊗ ês(p)

]
exp(−iα2(p)(x3 + x′

3)). (C2b)

The two terms in Eq. (C1) correspond, respectively, to the Green’s function of the infinite homogeneous medium with dielectric
constant ε2, Ĝ(d )

2 , which encodes the contribution of a dipole source located at x′
3 to the field measured at point x3 by taking a

direct path, and a correction due to the presence of the interface with medium 1, Ĝ(r), which encodes the contribution of a dipole
source located at x′

3 to the field measured at x3 by taking a path reflecting on the interface x3 = 0. For x3 < 0 < x′
3 the Green’s

function reads [25]

Ĝ(p, x3, x′
3) = i

2α1(p)

[
t (p)
21 (p) ê−

2,p(p) ⊗ ê−
1,p(p) + t (s)

21 (p) ês(p) ⊗ ês(p)
]

exp(−iα2(p) x3 + iα1(p) x′
3), (C3)

and corresponds to a transmitted path from a source above the reference interface to an observation point below the interface.
Inserting the expression for the Green’s function Eqs. (C1) and (C3) and for the reference field Eqs. (A6a) and (A6b) into
Eqs. (21) and (28) yields for x3 < −L

Ê(1)
ε (p, x3) =

∑
μ=p,s

ê−
2,μ(p)

∑
ν=p,s

[
T (1,d )

ε,μν (p, p0) + T (1,r)
ε,μν (p, p0)

]
E0,ν exp(−iα2(p) x3), (C4a)

Ê(1)
ζ (p, x3) =

∑
μ=p,s

ê−
2,μ(p)

∑
ν=p,s

T (1)
ζ ,μν (p, p0) E0,ν exp(−iα2(p) x3), (C4b)

with

T (1,d )
ε,μν (p, p0) = ik2

0

2α2(p)
ψ−(p, p0) τ (d )

ε,μν (p, p0), (C5a)

T (1,r)
ε,μν (p, p0) = ik2

0

2α2(p)
ψ+(p, p0) τ (r)

ε,μν (p, p0), (C5b)

T (1)
ζ ,μν (p, p0) = ik2

0

2α1(p)
(ε2 − ε1)ζ̂ (p − p0) τζ ,μν (p, p0),

(C5c)

and where the polarization coupling factors τ (d )
ε,μν , τ (r)

ε,μν , and
τζ ,μν are defined by

τ (d )
ε,μν (p, p0) = ê−

2,μ(p) · ê−
2,ν (p0) t (ν)

21 (p0) (C6a)

τ (r)
ε,μν (p, p0) = r (μ)

12 (p) ê+
2,μ(p) · ê−

2,ν (p0) t (ν)
21 (p0) (C6b)

τζ ,μν (p, p0) = t (ν)
21 (p) ê−

1,μ(p) · ê−
2,ν (p0) t (ν)

21 (p0) . (C6c)

The definition of ψ± is given in Eq. (31). The total scattered
field for x3 < −L is thus given by

Ê(1)(p, x3) =
∑

μ=p,s

ê−
2,μ(p)

∑
ν=p,s

T (1)
μν (p, p0) E0,ν

× exp(−iα2(p) x3), (C7)

where we have identified the first-order transmission ampli-
tude T (1)

μν as

T (1)
μν (p, p0) = T (1)

ζ ,μν (p, p0) + T (1,d )
ε,μν (p, p0) + T (1,r)

ε,μν (p, p0)

= ik2
0

2α2(p)

[
α2(p)

α1(p)
(ε2 − ε1)ζ̂ (p − p0)τζ ,μν (p, p0) + ψ−(p, p0)τ (d )

ε,μν (p, p0) + ψ+(p, p0)τ (r)
ε,μν (p, p0)

]
. (C8)

The scalar wave transmission amplitude is given by

T (1)(p, p0) = ik2
0

2

[
t12(p)

α1(p)
(ε2 − ε1)ζ̂ (p − p0) + 1

α2(p)
(ψ−(p, p0) + r12(p)ψ+(p, p0))

]
t21(p0). (C9)

APPENDIX D: COMPUTATION OF COVARIANCES

In the evaluation of the diffuse component of the MDRC and MDTC, we have to compute various covariances of the transverse
Fourier transforms of ζ and �ε. For example, we have

S−1 〈
ζ̂ (p − p0)ζ̂ ∗(p − p0)

〉 = S−1
∫

S

∫
S

〈
ζ (x‖)ζ (x′

‖)
〉
e−i(p − p0 )·(x‖ − x′

‖ )d2x‖ d2x′
‖

= σ 2
ζ

S

∫
S

∫
S

Wζ (x‖ − x′
‖) e−i(p − p0 )·(x‖ − x′

‖ )d2x‖ d2x′
‖
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= σ 2
ζ

S

∫
S

∫
S−x′

‖

Wζ (u) e−i(p − p0 )·u d2u d2x′
‖

= σ 2
ζ

S

∫
S

∫
R2

1S−x′
‖ (u) Wζ (u) e−i(p − p0 )·u d2u d2x′

‖. (D1)

In this last equality we recognize the inner integral to be the Fourier transform of the product 1S−x′
‖ Wζ . Applying the convolution

theorem we obtain

S−1
〈
ζ̂ (p − p0)ζ̂ ∗(p − p0)

〉 = σ 2
ζ

S

∫
S

∫
R2

1̂S−x′
‖ (q) Ŵζ (p − p0 − q )

d2q

(2π )2
d2x′

‖

= σ 2
ζ

S

∫
S

∫
R2

1̂S (q) Ŵζ (p − p0 − q ) ei q · x′
‖

d2q

(2π )2
d2x′

‖

= σ 2
ζ

S

∫
S

∫
R2

4 sin(q1D/2) sin(q2D/2)

q1q2
Ŵζ (p − p0 − q ) ei q · x′

‖
d2q

(2π )2
d2x′

‖. (D2)

Here we have assumed a square domain of size S = D × D
for which the Fourier transform of the indicator function is
well known. By interchanging the order of integration and
integrating over x′

‖, we obtain an additional Fourier transform
of the indicator of the domain S, hence

S−1 〈
ζ̂ (p − p0)ζ̂ ∗(p − p0)

〉
= σ 2

ζ

∫
R2

4 sin2(q1D/2) sin2(q2D/2)

π2q2
1q2

2S
Ŵζ (p − p0 − q ) d2q.

(D3)

Now noticing that in the limit D → ∞ the function q �→
2 sin2(qD/2)

πq2D converges in the sense of distributions towards a
Dirac mass centered at zero, we obtain

lim
S→∞

S−1 〈ζ̂ (p − p0)ζ̂ ∗(p − p0)〉 = σ 2
ζ Ŵζ (p − p0). (D4)

The remaining covariances are evaluated in a similar way and
we get

lim
S→∞

S−1 〈�ε̂(p − p0, x3) �ε̂∗(p − p0, x′
3)〉

= σ 2
ε Ŵε‖(p − p0) f (x3) f (x′

3) exp

[
− (x3 − x′

3)2

�2
ε⊥

]
, (D5)

lim
S→∞

S−1
〈
ζ̂ (p − p0) �ε̂∗(p − p0, x′

3)
〉

= σζσε γ (p − p0)Ŵ 1/2
ζ (p − p0)Ŵ 1/2

ε‖ (p − p0) f (x′
3)

× exp

[
− (x′

3 + d )2

�2
ε⊥

]
. (D6)

In addition, from the definition of ψ± in Eq. (31) and from the
above formulas, we have the following covariances for a, b =
±:

lim
S→∞

S−1 〈ψa(p, p0)ψb∗(p, p0)〉 =
∫∫

lim
S→∞

S−1 〈�ε̂(p − p0, x3) �ε̂∗(p − p0, x′
3)〉 exp(−iαa(p, p0)x3 + iαb∗(p, p0)x′

3) dx3 dx′
3

= σ 2
ε Ŵε‖(p − p0)

∫ 0

−L

∫ 0

−L
exp

[
− (x3 − x′

3)2

�2
ε⊥

]
exp(−iαa(p, p0)x3 + iαb∗(p, p0)x′

3) dx3 dx′
3

= σ 2
ε Ŵε‖(p − p0) I

(
�ε⊥, L, αa(p, p0), αb(p, p0)

)
, (D7)

lim
S→∞

S−1
〈
ζ (p − p0)ψb∗(p, p0)

〉
=

∫
lim

S→∞
S−1

〈
ζ̂ (p − p0) �ε̂∗(p − p0, x3)

〉
exp(iαb∗(p, p0)x3) dx3

= σζσε γ (p − p0)Ŵ 1/2
ζ (p − p0)Ŵ 1/2

ε‖ (p − p0)
∫ 0

−L
exp

[
− (x3 + d )2

�2
ε⊥

]
exp(iαb∗(p, p0)x3) dx3

= σζσε γ (p − p0)Ŵ 1/2
ζ (p − p0)Ŵ 1/2

ε‖ (p − p0) J (�ε⊥, L, d, αb(p, p0)), (D8)

where the functions I and J are defined as

I (�ε⊥, L, α, β ) =
∫ 0

−L

∫ 0

−L
exp

[
− (x3 − x′

3)2

�2
ε⊥

]
exp[−iα x3 + iβ∗ x′

3] dx3 dx′
3, (D9a)

J (�ε⊥, L, d, α) =
∫ 0

−L
exp

[
− (x3 + d )2

�2
ε⊥

]
exp[iα x3] dx3, (D9b)

and where we have introduced α±(p, p0) = ±α2(p) + α2(p0).
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APPENDIX E: DERIVATION OF THE DIFFUSE COMPONENT OF THE MDRC AND MDTC

To evaluate the diffuse component of the MDRC and MDTC it suffices to substitute Eq. (34) into Eq. (36) and to use the
covariances from Appendix D. The diffuse component of the MDRC reads〈

∂Rμν

∂�
(p, p0)

〉
diff

= lim
S→∞

ε
1/2
1 k0 Re

(
α1(p)

)2

S(2π )2α1(p0)

〈|R(1)
μν (p, p0)|2〉

= ε
1/2
1 k5

0 Re
(
α1(p)

)2

4|α2(p)|2(2π )2α1(p0)
lim

S→∞

[
(ε2 − ε1)2

〈|ζ (p − p0)|2〉
S

|ρζ,μν (p, p0)|2

+ 2Re

(
(ε2 − ε1)

〈
ζ (p − p0)ψ+∗(p, p0)

〉
S

ρζ,μν (p, p0)ρ∗
ε,μν (p, p0)

)
+

〈|ψ+(p, p0)|2〉
S

|ρε,μν (p, p0)|2
]

= C(r)(p, p0)

[
(ε2 − ε1)2k4

0σ
2
ζ Ŵζ (p − p0) |ρζ,μν (p, p0)|2

+ 2Re

(
(ε2 − ε1)k4

0σζσε γ (p − p0)Ŵ 1/2
ζ (p − p0)Ŵ 1/2

ε‖ (p − p0)

× J
(
�ε⊥, L, d, α+(p, p0)

)
ρζ,μν (p, p0)ρ∗

ε,μν (p, p0)

)

+ σ 2
ε k4

0Ŵε‖(p − p0)I
(
�ε⊥, L, α+(p, p0), α+(p, p0)

)|ρε,μν (p, p0)|2
]
. (E1)

A similar derivation yields the diffuse component of the MDTC:〈
∂Tμν

∂�
(p, p0)

〉
diff

= lim
S→∞

ε
1/2
2 k0 Re

(
α2(p)

)2

S(2π )2α1(p0)

〈|T (1)
μν (p, p0)|2〉

= C(t )(p, p0)

[∣∣∣∣α2(p)

α1(p)

∣∣∣∣
2

(ε2 − ε1)2k4
0σ

2
ζ Ŵζ (p − p0) |τζ ,μν (p, p0)|2

+ 2Re

(
α2(p)

α1(p)
(ε2 − ε1)k4

0σζσε γ (p − p0)Ŵ 1/2
ζ (p − p0)Ŵ 1/2

ε‖ (p − p0)

× τζ ,μν (p, p0)
[
J
(
�ε⊥, L, d, α−(p, p0)

)
τ (d )∗
ε,μν (p, p0) + J

(
�ε⊥, L, d, α+(p, p0)

)
τ (r)∗
ε,μν (p, p0)

])

+ 2Re
(
σ 2

ε Ŵε‖(p − p0) I
(
�ε⊥, L, α−(p, p0), α+(p, p0)

)
τ (d )
ε,μν (p, p0)τ (r)∗

ε,μν (p, p0)
)

+ σ 2
ε Ŵε‖(p − p0) I

(
�ε⊥, L, α−(p, p0), α−(p, p0)

) |τ (d )
ε,μν (p, p0)|2

+ σ 2
ε Ŵε‖(p − p0) I

(
�ε⊥, L, α+(p, p0), α+(p, p0)

) |τ (r)
ε,μν (p, p0)|2

]
. (E2)

Here we have introduced

C(r)(p, p0) = ε
1/2
1 k0 Re

(
α1(p)

)2

4(2π )2 |α2(p)|2 α1(p0)
, (E3a)

C(t )(p, p0) = ε
1/2
2 k0 Re

(
α2(p)

)2

4(2π )2 |α2(p)|2 α1(p0)
. (E3b)

APPENDIX F: DERIVATION OF THE ASYMPTOTICS OF I
AND J (TABLE I)

Let us start with the asymptotic expression of J when
�ε⊥ � L. We will use the short hand notation α = ±α2(p) +

α2(p0) which we assume to be real. We have

J =
∫ 0

−L
exp

[
− (x3 + d )2

�2
ε⊥

]
exp (iα x3) dx3

= �ε⊥
∫ d/�ε⊥

(−L+d )/�ε⊥
exp

(−u2
)

cos (α�ε⊥ u − αd ) du

= �ε⊥ cos(αd )
∫ d/�ε⊥

(−L+d )/�ε⊥
exp(−u2) cos(α�ε⊥ u) du

+ �ε⊥ sin(αd )
∫ d/�ε⊥

(−L+d )/�ε⊥
exp

(−u2
)

sin (α�ε⊥ u) du,

(F1)
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where we have made the change of variable u = x3+d
�ε⊥

. For d =
0, we obtain

J = �ε⊥
∫ 0

−L/�ε⊥
exp(−u2) cos (α�ε⊥ u) du

= �ε⊥
2

∫ L/�ε⊥

−L/�ε⊥
exp(−u2) cos (α�ε⊥ u) du, (F2)

where we have used the fact that the integrand is an even
function. Since �ε⊥ � L we can approximate the integral over

[−L/�ε⊥, L/�ε⊥] by an integral over R and we obtain

J ∼ �ε⊥
2

∫
R

exp(−u2) cos (α�ε⊥ u) du

=
√

π

2
�ε⊥ exp

(
−α2 �2

ε⊥
4

)
. (F3)

For �ε⊥ � d and �ε⊥ � L − d , we can replace the integra-
tion over [(−L + d )/�ε⊥, d/�ε⊥] by an integration over R in
Eq. (F1) and we get

J ∼ √
π�ε⊥ exp

(
−α2 �2

ε⊥
4

)
cos(αd ), (F4)

where the second integral vanishes since the integrand is an
odd function.

In the same asymptotic regime, the I integral yields for
α, β ∈ R

I (�ε⊥, L, α, β ) =
∫ 0

−L

∫ 0

−L
exp

[
− (x3 − x′

3)2

�2
ε⊥

]
exp[−iα x3 + iβx′

3] dx3 dx′
3

≈ 1

2
�2

ε⊥

∫ L/�ε⊥

−L/�ε⊥

∫ L/�ε⊥

−L/�ε⊥
exp[−(u − v)2] exp[−iα �ε⊥ u + iβ �ε⊥ v] du dv

∼ 1

2
�2

ε⊥

∫ L/�ε⊥

−L/�ε⊥

∫ ∞

−∞
exp[−w2] exp[−iα �ε⊥ w] dw exp[i(β − α)�ε⊥v] dv

= √
π �2

ε⊥ exp

(
−α2�2

ε⊥
4

)
sin

(
(β − α)L

)
(β − α)�ε⊥

. (F5)

Taking the limit β → α, we also have

I (�ε⊥, L, α, α) ∼ √
π �ε⊥ L exp

(
−α2�2

ε⊥
4

)
. (F6)

If in addition we have �ε⊥ � λ, we get

I (�ε⊥, L, α, α) ∼ √
π �ε⊥ L. (F7)

Now for L � �ε⊥ we have

J =
∫ 0

−L
exp

[
− (x3 + d )2

�2
ε⊥

]
cos (α x3) dx3

∼
∫ 0

−L
1 cos (α x3) dx3 = sin (αL)

α
. (F8)

Here we have approximated the exponential exp (− (x3+d )2

�2
ε⊥

) ≈
1 for small arguments (x3+d )2

�2
ε⊥

� L2

�2
ε⊥

� 1. If in addition λ 

L, we have

J ∼ L. (F9)

In the same asymptotic regime, the I integral reads

I (�ε⊥, L, α, β ) =
∫ 0

−L

∫ 0

−L
exp

[
− (x3 − x′

3)2

�2
ε⊥

]

× exp[−iα x3 + iβx′
3] dx3 dx′

3

∼
∫ 0

−L

∫ 0

−L
1 exp[−iα x3 + iβx′

3] dx3 dx′
3

=
∫ 0

−L
exp(−iα x3) dx3

∫ 0

−L
exp(iβ x′

3) dx′
3

= 4

αβ
sin(αL/2) sin(βL/2) exp(i(β − α)L/2).

(F10)

For β = α, we have

I (�ε⊥, L, α, α) = 4

α2
sin2(αL/2). (F11)

If in addition we assume L � λ then

I (�ε⊥, L, α, α) ∼ L2. (F12)

APPENDIX G: SCATTERING MEAN FREE PATH

We recall here the derivation of the scattering mean free
path �s for an infinite medium with a fluctuating dielectric
function ε(x ) = ε0 + �ε(x ) characterized by〈

�ε(x )
〉 = 0, (G1a)

〈�ε(x )�ε(x′)〉 = σ 2
ε Wε(x − x′)

= σ 2
ε exp

[
−

3∑
j=1

(x j − x′
j )

2

�2
ε j

]
. (G1b)

Here ε0 and k0 denote, respectively, the average dielectric
constant (homogeneous background) and the corresponding
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wave number. For a continuously fluctuating dielectric func-
tion, the scattering mean free path is linked to the three-
dimensional Fourier transform of the autocorrelation function
of �ε as follows [42]:

�−1
s (u) = k4

0

16π2

∫
4π

σ 2
ε Ŵε[kr (u′ − u )] d�′, (G2)

where kr is the wave number in the effective medium, u and
u′ are vectors on the unit sphere, and the integration is over u′.
We have used Eq. (G2) to evaluate numerically the scattering
mean free path for u = ê3 and deduce the optical thickness for
anisotropic dielectric fluctuations in the examples shown in
the present paper. In the case of isotropic correlation, i.e., �1 =
�2 = �3 and Ŵ (k ) = Ŵ (| k |), the scattering mean free path is
independent of u, and by the use of the angle θ between u and
u′ and of a change of variables q = kr | u′ − u | the scattering

mean free path reads

�−1
s = σ 2

ε k4
0

8πk2
r

∫ 2kr

0
Ŵε(q) q dq. (G3)

For a Gaussian correlation function we thus have

�−1
s = σ 2

ε k4
0

8πk2
r

∫ 2kr

0
π3/2 �3

ε exp

(
−q2�2

ε

4

)
q dq

= π1/2σ 2
ε k4

0�ε

4k2
r

[
1 − exp

(−k2
r �

2
ε

)]
, (G4)

which in the regime kr�ε � 1 leads to

�−1
s = π1/2

4
σ 2

ε k4
0�

3
ε. (G5)
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