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Quantum reflection refers to a nonvanishing reflection probability in the absence of a classically turning point.
Much attention has been paid to such reflections due to their fundamental, intriguing physics and potential
practical applications. Here we propose a scheme to realize a quantum reflection of nonlocal nonlinear optical
beams in a cold Rydberg atomic gas via electromagnetically induced transparency working in a dispersion
regime. Based on the long-range interaction between Rydberg atoms, we found that the system supports
low-power nonlocal optical solitons. Such nonlocal solitons can display a sharp transition between reflection,
trapping, and transmission when scattered by a linear attractive potential, created by gate photons stored in
another Rydberg state. Different from conventional physical systems explored up to now, the quantum reflection
of the nonlocal optical solitons in the Rydberg atomic gas exhibits interesting anomalous behavior, which can be
actively manipulated by tuning the incident velocity and intensity of the probe field, as well as the nonlocality
of the Kerr nonlinearity inherent in the Rydberg atomic gas. The results reported here are not only useful for
developing Rydberg nonlinear optics but also helpful for characterizing the physical property of the Rydberg gas
and for designing novel nonlinear optical devices.
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I. INTRODUCTION

Quantum reflection (QR) is a classically forbidden reflec-
tion in which a microscopic particle reflects from a potential
without reaching a classical turning point; it is a typical
and direct consequence of the wave nature of a microscopic
particle [1,2]. In particular, QR can occur for microscopic
particles when they are reflected by attractive potential wells.
In the past decades, tremendous efforts were focused on
the study on the QR of atoms and molecules hitting solid
surfaces [3–10]. Comparing with conventional particles, the
QR of matter-wave solitons have low scattering loss and large
reflection probability [11–16], which are helpful not only for
deepening the fundamental understanding of quantum theory
but also for realizing many practical applications.

In recent years, considerable efforts have been devoted
to the investigation into interfacing light with strongly in-
teracting Rydberg atomic gases under conditions of elec-
tromagnetically induced transparency (EIT) (see reviews in
Refs. [17–20] for details). One of main motivations for
such investigations is due to the fact that Rydberg states
have long coherent lifetime and extremely strong interaction
(i.e., Rydberg-Rydberg interaction) between remote atoms,
which can be effectively mapped to strong photon-photon
interaction [21,22]. As a result, the giant Kerr nonlinearity
at very low and even single-photon level can be realized,
which can be many orders of magnitude larger than that
obtained via conventional optical media [21–35] and may be
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actively controlled by tuning system parameters. Recently,
many experiments have demonstrated such strong, control-
lable photon-photon interaction [22,26,30] in Rydberg atomic
gases, which can be utilized to design a broad range of novel
optical devices, such as single-photon switches and tran-
sistors [36–38], quantum phase gates [39,40], deterministic
single-photon sources [41], and so on.

Owing to the fact that Maxwell’s wave equation for the
electric field in electrodynamics under a paraxial approxima-
tion is mathematically equivalent to the Schrödinger equation
in quantum mechanics, it is natural and will be interesting to
extend the study of QR study beyond matter waves. In this
work, we propose and analyze a scheme to realize an optical
analog of the QR of nonlocal nonlinear optical beams via a
Rydberg-EIT working in a dispersion regime (i.e., dispersive
Rydberg-EIT), in which a weak nonlinear probe laser field
couples the atomic ground state and an intermediate state
(which has a large detuning), and a strong control laser field
couples the intermediate state and a Rydberg state. Rydberg
dark-state polariton, i.e., a coherent superposition of light field
and atomic spin wave in the Rydberg gas, can form through
Rydberg-EIT. We design an attractive potential (called a
Rydberg-defect potential or Rydberg defect) by using gate
photons stored in an atomic array occupying another Rydberg
state. We show that, in such systems, the nonlocal nonlinear
optical response of the system is largely modified, and the
system may not only support nonlocal weak-light solitons
but also display interesting anomalous behavior for QR when
the optical solitons are scattered by the Rydberg defect. For
simplicity, we refer to such analog quantum reflection as
“quantum reflection” in the following.
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In Sec. II, we present our physical model and derive a
nonlinear envelope equation for the propagation of a probe
field under the condition of Rydberg-EIT by employing an
approach beyond the mean-field approximation for many-
atom correlations [31–34]. This nonlinear envelope equation
includes a term representing the local Rydberg-defect poten-
tial contributed by the gate photons, and a term representing
a nonlocal nonlinear attractive potential contributed by the
Rydberg-Rydberg interaction. In Sec. III, we demonstrate
that the nonlinear envelope equation allows nonlocal optical
soliton solutions, which have very low light power and may
experience a sharp transition between reflection and trans-
mission when scattered by the Rydberg defect. We find that
the QR of the nonlocal optical solitons depends significantly
on the incident velocity and incident power; in particular, the
QR exhibits counterintuitive (anomalous) behavior due to the
Rydberg blockade effect and is sensitive to the change of the
nonlocality degree of the Kerr nonlinearity, which are very
different from conventional QRs reported before. Thus, the
QR in such systems can be manipulated and controlled by
actively adjusting system parameters. Additionally, thanks to
the nonlocality of the Kerr nonlinearity, the system supports
stable (2 + 1)-dimensional [(2 + 1)D] nonlocal optical soli-
tons, which can also display a QR when scattered from the
Rydberg defect.

The nonlocal optical solitons in the Rydberg atomic gas
have advantages for detailed investigations into QR. The
reason is that such solitons are robust during propagation even
in high spatial dimensions and allow precise control of the
incident velocity, power, and nonlocality degree; furthermore,
they have clean reflection and transmission when scattered
from linear attractive potentials, which are observable under
current experimental conditions. The results reported here
open an avenue for the study of Rydberg nonlinear optics,
especially for the active control of QR in nonlocal nonlinear
systems and for the deep exploration of the intriguing physical
properties of Rydberg blockade and Rydberg defects, which
have potential practical applications in optical information
processing and transmission, including the design of novel
optical devices (such as optical splitters, switchers, and tran-
sistors) that can work at weak-light level.

II. MODEL

A. Model and nonlinear envelope equation

We consider a cold, lifetime-broadened three-level atomic
gas with a ladder-type EIT configuration [23], as illus-
trated in Fig. 1(a). The electric field of the laser fields
interacting with the atomic gas reads E(r, t ) = Ep + Ec =∑

l=p,c elEl exp[i(kl · r − ωl t )] + c.c., where el (kl ) is the
unit polarization vector (wave vector) of the electric-field
component with envelope El (l = p, c). Here, a weak, spa-
tially focused probe laser field Ep (with wave number kp =
ωp/c, angular frequency ωp, and half Rabi frequency �p)
couples to the transition between the ground state |1〉 and the
intermediate state |2〉; a strong, continuous-wave control laser
field Ec (with wave number kc = ωc/c, angular frequency ωc,
and half Rabi frequency �c) couples to the transition between
intermediate state |2〉 and the Rydberg |3〉. �2 and �3 are

FIG. 1. (a) Ladder-type excitation scheme of the Rydberg-EIT,
where a weak probe field couples the ground state |1〉 and the
intermediate state |2〉 (with half Rabi frequency �p), and a strong
control field couples |2〉 and the Rydberg state |3〉 (with half Rabi
frequency �c), respectively. �2 and �3 are, respectively, one- and
two-photon detunings, and �12 and �23 are, respectively, the sponta-
neous emission decay rates from |2〉 to |1〉 and |3〉 to |2〉. Vs(r − r′) is
the Rydberg-Rydberg interaction potential between atoms at r and r′,
respectively. (b) Schematic of the geometry for detecting the optical
analog of quantum reflection. The linear attractive potential (Rydberg
defect) is prepared (via the use of another Rydberg-EIT) by the gate
photons stored in atomic arrays in another Rydberg state |4〉 through
a gate laser field (with half Rabi frequency �g) and an assistant laser
field (with half Rabi frequency �a); see the level diagram shown
by the inset. The region where the defect locates is illustrated by
the domain with black color, where some Rydberg-blockade spheres
of radius Rb (with the solid circles representing atoms) are shown;
the center of the defect is at position x = xg and y = yg along the z
direction. The incident probe beam (with incident angle θ ) undergoes
reflection and transmission or is captured when it collides with the
defect.

respectively one- and two-photon detunings; �12 and �23 are,
respectively, the spontaneous emission decay rates from |2〉 to
|1〉 and |3〉 to |2〉. Vs(r − r′) ≡ −Cs

6/|r − r′|6 is the Rydberg-
Rydberg interaction potential between the atom at position r
and the atom at position r′. The reasons for exploiting the
Rydberg-EIT are to take advantage of both the EIT and the
Rydberg state. The former (EIT) can be used to suppress
spontaneous emission from the short-lived intermediate state
|2〉, and the latter (Rydberg state) is long-lived and can be used
to provide strong long-range Rydberg-Rydberg interaction
and hence giant nonlocal Kerr nonlinearity for the probe field.

To investigate the QR of the probe field, a linear optical
potential (called defect potential or defect) must be pre-
pared initially, which can be realized by using the following
method: We assume that some gate photons are stored (via
a Rydberg-EIT) in the atomic array in another Rydberg state
|4〉 [36,38,42–45] by using a gate laser field [with half Rabi
frequency �g that couples the levels |1〉 and |2〉; see the inset
on the right-hand side of Fig. 1(b)] and an assistant laser field
(with half Rabi frequency �a that couples the levels |2〉 and
|4〉). Note that such a scheme for preparing gate photons has
been widely employed for realizing all-optical switches and
transistors with Rydberg atoms in Refs. [36,38,43–45]; here
we use them to produce the attractive defect potential. In this
way, a Rydberg-defect potential (i.e., the defect formed by the
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gate photons stored in the Rydberg state |4〉) for the probe
field is created, by which the probe field will be scattered
when it is incident on the defect. In Fig. 1(b), the region of
the defect is illustrated by the domain with black color, where
some Rydberg-blockade spheres of radius Rb (with the solid
circles representing atoms) are shown; the center of the defect
is at position rg = (xg, yg, z), where xg and yg are fixed, but z
is arbitrary. The incident probe field (with incident angle θ )
will undergo reflection and transmission and may be captured
when scattered by the defect.

The dynamics of the system in the interaction picture
is described by the Hamiltonian Ĥ = Na

∫
d3rĤ(r, t ), with

Ĥ(r, t ) being the Hamiltonian density and Na the atomic
density. Under the electric-dipole and rotating-wave approx-
imations, the Hamiltonian density reads

Ĥ(r, t ) = −
3∑

α=1

h̄�α Ŝαα (r, t )

−h̄[�pŜ12(r, t ) + �cŜ23(r, t )+H.c.] + Ĥs + Ĥg,

(1a)

Ĥs(r, t ) = Na

∫
d3r′Ŝ33(r′, t )h̄Vs(r − r′)Ŝ33(r, t ), (1b)

Ĥg(r, t ) = Ng

∫
d3r′

gŜ44(r′
g, t )h̄Vd (r − r′

g)Ŝ33(r, t ), (1c)

where d3r = dxdydz, Ŝαβ = |β〉〈α|expi[(kβ − kα ) ·
r − (ωβ − ωα + �β − �α )t] are transition operators
related to the states |α〉 and |β〉 (α, β = 1, 2, 3, 4),
satisfying the commutation relation [Ŝαβ (r, t ), Ŝμν (r′, t )] =
(1/Na)δ(r − r′)[δαν Ŝμβ (r, t ) − δμβ Ŝαν (r′, t )], with h̄ωα

being the eigenenergy of the level |α〉, Ng being the
density of gate atoms, and �2 = ωp − (ω2 − ω1), and
�3 = ωp + ωc − (ω3 − ω1) being respectively the one-
photon and two-photon detunings; �p = (ep · p21)Ep/(2h̄)
and �c = (ec · p32)Ec/(2h̄) are respectively the half Rabi
frequencies of the probe and control fields (with pαβ

being the electric-dipole matrix element associated with
the transition from |β〉 to |α〉); the Hamiltonian Ĥs is the
contribution due to Rydberg-Rydberg interaction, with
Vs(r − r′) = −Cs

6/|r − r′|6 being the van der Waals (vdW)
interaction potential between the atom at r and the atom at
r′ (for the atoms at r′ being in the Rydberg state |3〉; Cs

6 is
the dispersion coefficient); Ĥg is the Hamiltonian describing
the Rydberg-Rydberg interaction between the atom in the
Rydberg state |3〉 and the atom in the Rydberg state |4〉 where
the gate photons are stored, and hence the vdW interaction
potential is Vd (r − r′

g) = −Cd
6 /|r − r′

g|6 the vdW interaction
potential (for the atoms at r′ = r′

g being in the Rydberg state
|4〉; Cd

6 is the corresponding dispersion coefficient), with
r′

g = (xg, yg, z′), where xg and yg are fixed and z′ is arbitrary.
Based on the Hamiltonian Ĥ given above, we obtain the

optical Bloch equation of one-atom density-matrix elements
ραβ (r, t ) ≡ 〈Ŝαβ (r, t )〉 with the form

i
∂

∂t
ρ11 − i�12ρ22 − �pρ12 + �∗

pρ21 = 0, (2a)

i
∂

∂t
ρ22 − i�23ρ33 + i�12ρ22 + �pρ12 − �∗

pρ21

−�cρ23 + �∗
cρ32 = 0, (2b)

i
∂

∂t
ρ33 + i�23ρ33 + �cρ23 − �∗

cρ32 = 0 (2c)

for diagonal elements, and(
i
∂

∂t
+ d21

)
ρ21 − �p(ρ22 − ρ11) + �∗

cρ31 = 0, (3a)

[
i
∂

∂t
+ d31 − �d (x, y)

]
ρ31 − �pρ32 + �cρ21

−Na

∫
d3r′Vs(r′ − r)ρ33,31(r′, r, t ) = 0, (3b)

[
i
∂

∂t
+ d32 − �d (x, y)

]
ρ32 − �∗

pρ31 − �c(ρ33 − ρ22)

−Na

∫
d3r′Vs(r′ − r)ρ33,32(r′, r, t ) = 0 (3c)

for nondiagonal elements, where dαβ = �α − �β + iγαβ

(α �= β ), with γαβ ≡ (�α + �β )/2 + γ col
αβ . Here �β ≡∑

α<β �αβ with �αβ the spontaneous emission decay
rate, and γ col

αβ the dephasing rate between |α〉 and
|β〉. In Eqs. (3b) and (3c), we have used the notation
ραβ,μν (r′, r, t ) ≡ 〈Ŝαβ (r′, t )Ŝμν (r, t )〉 for two-atom
density-matrix elements (i.e., two-atom correlators), whose
dynamics is described by additional equations, which are
related to the three-atom correlators, four-atom correlators,
etc. [31–34]. Explicit expressions of the equations for these
many-atom correlators are lengthy and are omitted here for
saving space.

The position-dependent detuning in Eqs. (3b) and (3c)
reads

�d (x, y) = −N gL

∫
dz′ Cd

6

[(x − xg)2 + (y − yg)2 + (z − z′)2]3

= − 3πNgLCd
6

8(|x − xg|5 + |y − yg|5)
, (4)

with NgL the linear density of the atoms at the state |4〉.
�d (x, y) is contributed by the atoms at the Rydberg state |4〉
where the gate photons are stored, which will play the role
of the Rydberg-defect potential for the scattering of the probe
field; see below.

For investigating the scattering of the probe field by
the Rydberg-defect potential, we assume the size of the
atomic gas is much larger than the Rydberg blockade radius
Rb (≡[|Cd

6 d21|/(2|�c|2)]1/6). The propagation of the probe
field is described by the Maxwell equation, which under the
slowly varying amplitude approximation is reduced to

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + 1

2kp

(
∂2

∂x2
+ ∂2

∂y2

)
�p + kp

2
χp�p = 0,

(5)
where χp = Na(ep · p12)2ρ21/(ε0 h̄�p) is the optical suscep-
tibility, with ρ21(r, t ) ≡ 〈Ŝ21(r, t )〉 being the coherence be-
tween the states |1〉 and |2〉. For simplicity, we assume that
the probe field has a long time duration, so that the system
works in a steady state, and hence the time derivatives in the
Maxwell-Bloch (MB) Eqs. (2), (3), and (5) are negligible.

For a relatively weak probe field, the population in atomic
levels changes not much when the probe field is applied to the
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system, and hence a perturbation expansion beyond the mean-
field approximation for many-atom correlations can be em-
ployed to solve the Bloch equation Eqs. (2) and (3) [31–34].
The expression of the nonlinear optical susceptibility of the
probe field exact to the third order of the perturbation expan-
sion is given by [see Eq. (A11) of the Appendix]

χp � χ (1)
p + χ

(3)
p,1|Ep|2 +

∫
d3r′χ (3)

p,2(r′ − r)|Ep(r′)|2, (6)

with χ (1)
p = Na|p12|2a(1)

21 /(ε0h̄), χ
(3)
p,1 = Na|p12|4a(3)

21,1/(ε0h̄3),

and χ
(3)
p,2 = N 2

a |p12|4a(3)
21,2/(ε0h̄3). Explicit expressions of a(1)

21 ,

a(3)
21,1, and a(3)

21,2 are given by Eqs. (A1), (A.9), and (A10) of the
Appendix, respectively.

For simplicity, we assume that the spatial length of
the probe beam in the z direction is much larger than the
range of the Rydberg-Rydberg interaction, so that a local
approximation along the z direction can be made [24].
Hence, the last term of the susceptibility

∫
d3r′χ (3)

p,2(r′ −
r)|�p(r′)|2 � ∫

dx′dy′χ̃ (3)
p,2(x − x′, y − y′)|�p(x′, y′, z)|2,

with χ̃
(3)
p,2(x − x′, y − y′) = ∫

dz′χ (3)
p,2(r′ − r). Then the

Maxwell equation (5) is reduced to

i
∂�p

∂z
+ 1

2kp
∇2

⊥�p + kp

2
χ (1)

p �p + bkp

2

(
χ

(3)
p,1|�p|2

+
∫

dx′dy′χ̃ (3)
p,2(x − x′, y − y′)|�p(x′, y′, z)|2

)
�p = 0,

(7)

where ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2, b = (h̄/|p12|)2 is the coupling

coefficient, χ (1)
p is the linear susceptibility [proportional to

the position-dependent detuning �d (x, y) given by Eq. (4)
and related to the Rydberg-defect potential], χ

(3)
p,1 is local

third-order nonlinear susceptibility, and χ̃
(3)
p,2 is the kernel of

nonlocal third-order nonlinear susceptibility (contributed by
the long-range Rydberg-Rydberg interaction). Note that the
local nonlinear susceptibility is proportional to the atomic
density (i.e., χ (3)

p,1 ∝ Na), and it vanishes when the two-photon
detuning �3 = 0; however, the nonlocal nonlinear suscepti-
bility has a nonlinear dependence on the atomic density (i.e.,
χ

(3)
p,2 ∝ N 2

a ), and it is nonzero for �3 = 0. Thus one sees that
the nonlocal Kerr nonlinearity can be much greater than the
local one for a large atom density.

For the convenience of later calculations, we convert
Eq. (7) into the dimensionless form

i
∂U

∂s
= −

(
∂2

∂ξ 2
+ ∂2

∂η2

)
U + V (ξ, η)U +

[
W1|U |2

+
∫

dξ ′dη′W2
(
ξ − ξ ′, η − η′)|U (

ξ ′, η′, s
)|2

]
U,

(8)

where U = �p/�p0, (ξ, η) = (x, y)/R0, and s = z/(2Ldiff )
are dimensionless variables, with �p0, R0, and Ldiff ≡ kpR2

0
representing respectively typical half Rabi frequency, width
of the probe beam, and diffraction length of the probe
field; V ≡ −k2

pR2
0χ

(1)
p (x, y), W1 ≡ −bk2

pR2
0U 2

0 χ
(3)
p,1, and W2 ≡

−bk2
pR4

0U 2
0 χ̃

(3)
p,2 are, respectively, the dimensionless linear po-

tential (i.e., the Rydberg-defect potential contributed by the

FIG. 2. (a) Dimensionless attractive Rydberg-defect potential V
in (1 + 1)D as a function of dimensionless coordinate ξ = x/R0 for
�2 = −2π × 160 MHz. The solid black line and the dashed red
line are the real part of V , Re(V ), and the imaginary part of V ,
Im(V ), respectively. (b) Reflection coefficient R (dashed red line)
and transmission coefficient T (solid blue line) of a linear probe field
as functions of dimensionless incident velocity v.

gate photons stored in the Rydberg state |4〉), the coefficient
of the local Kerr nonlinearity (contributed by the atom-photon
interaction), and the coefficient of the nonlocal Kerr nonlin-
earity (contributed by the Rydberg-Rydberg interaction). The
term in the square bracket on the right-hand side of Eq. (8) can
be regarded as a nonlinear potential for the propagation of the
probe field. Due to the strong Rydberg-Rydberg interaction,
the nonlocal Kerr nonlinearity is much larger than the local
one, and thus the term W1|U |2U is negligible (see Sec. III A).

B. Attractive Rydberg-defect potential

We first discuss the physical properties of the Rydberg-
defect potential V (ξ, η) in Eq. (8). To be concrete, we take
laser-cooled strontium (88Sr) atomic gas as a realistic candi-
date for our theoretical model described above. The energy-
levels shown in Fig. 1(a) are selected to be |1〉 = |5s2 1S0〉,
|2〉 = |5s5p1P1〉, |3〉 = |5sns1S0〉, and |4〉 = |5sn′s1S0〉. For
the principal quantum number n = n′ = 60, the dispersion
coefficients are Cs

6 = Cd
6 � 2π × 81.6 GHz μm6 [46]. For

such choice, the vdW interaction is isotropically attractive,
and hence the Rydberg-defect potential V (ξ, η) is attractive
and the nonlocal Kerr nonlinearity is a self-focusing one.
The spontaneous emission rates read �12 = 2π × 16 MHz
and �23 = 2π × 16.7 kHz. Other system parameters are given
by Na = 3 × 1010 cm−3, NgL = 200 cm−1, �3 = 0, R0 =
10 μm, and �c = 2π × 16 MHz; especially, a large one-
photon detuning �2 = −2π × 160 MHz is taken to make the
system work in a regime of dispersive Rydberg-EIT.

For simplicity, we consider (1 + 1)D Rydberg-defect po-
tential V = V (ξ ) by taking xg = 30 μm and yg arbitrary [a
generalization to (2 + 1)D case will be discussed Sec. III D].
Based on the above parameters, one obtains the blockade
radius Rb � 8 μm and the diffraction length Ldiff � 1.36 mm.
Figure 2(a) shows V as a function of ξ = x/R0. The real
part [Re(V )] and imaginary parts [Im(V )] are plotted for
�2 � �12 by the solid black line and the dashed red line,
respectively. We see that Im(V ) is much smaller than Re(V ),
which means that the optical absorption of the probe field is
negligible and originates from the EIT effect and the condition
of large one-photon detuning; moreover, Re(V ) is an attractive
potential well and there is a saturation near ξ = xg/R0 = 3,
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FIG. 3. (a) Spatial distribution of W2 (i.e., the dimensionless coefficient of the nonlocal Kerr nonlinearity) as a function of ξ = x/R0, in
which the solid black (dashed red) line is its real part Re(W2) [imaginary part Im(W2)] for η = 0. (b) Nonlocal optical soliton, by taking its
dimensionless amplitude |U | as a function of x/R0 and z/(2Ldiff ). (c) Collision between two nonlocal optical solitons.

which is due to the Rydberg blockade effect that suppresses
the excitation of atoms to the Rydberg state and hence causes
the potential V to saturate to a finite value.

The (1 + 1)D reflection and transmission of the probe field
can be studied by using Eq. (8) and ∂/∂η = 0, V = V (ξ ),
and W1 = W2 = 0. Assume the probe beam is incident on the
Rydberg-defect potential V (ξ ) from the left-hand side [see
Fig. 1(b)]. Generally, full reflection, transmission, or trapping
will occur. These scattering behaviors can be respectively de-
scribed by the reflection coefficient R, transmission coefficient
T , and trapping coefficient L, defined by [47]

R =
∫ ξl

−∞ dξ |U (ξ, z = Lm )|2∫ +∞
−∞ dξ |U (ξ, z = 0)|2 ,

T =
∫ +∞
ξr

dξ |U (ξ, z = Lm )|2∫ +∞
−∞ dξ |U (ξ, z = 0)|2 ,

L =
∫ ξr

ξl
dξ |U (ξ, z = Lm )|2∫ +∞

−∞ dξ |U (ξ, z = 0)|2 , (9)

with Lm being the length of the medium along the z dir f ection,
ξl (ξr) being the position on the ξ axis at which the influence
of the potential on the left-hand (right-hand) side of the de-
fect potential is negligible, with T + L + R = 1. Figure 2(b)
shows the result of a numerical simulation on the (1 + 1)D
reflection and transmission of a linear probe field, with the
dashed red (solid black) line denoting the reflection (transmis-
sion) coefficient as a function of the dimensionless incident
velocity of the probe-field photons v [48]. One sees that, as
v is increased, a QR occurs for the incident probe beam and
there exists a smooth transition between the reflection and the
transmission. Note that, in the present study, we are interested
only in the QR of nonlocal solitons, the linear probe field
is not trapped when it is incident upon the Rydberg-defect
potential with the system parameters considered here (i.e.,
trapping coefficient L is zero for linear probe fields).

III. QUANTUM REFLECTION OF
NONLOCAL OPTICAL SOLITONS

A. (1 + 1)D nonlocal optical solitons

We now turn to consider the nonlinear propagation
of the probe field. Based on the system parameters
given in the beginning of Sec. II B, together with �p0 =
33 MHz, we can estimate the nonlinear coefficients W1

and W2 in the nonlinear envelope equation (8), which
are respectively given by W1 ≈ (4.95 + i0.49) × 10−10 and∫

dξdηW2(ξ, η) ≈ −3.17 − i0.08. We see that, due to the
strong Rydberg-Rydberg interaction, the nonlocal Kerr non-
linearity is ten orders of magnitude greater than the local one
and hence the later can be safely neglected.

Figure 3(a) illustrates the spatial distribution of W2(ξ, η)
as a function of ξ , with the solid black (dashed red) line
representing its real part Re(W2) [imaginary part Im(W2)] for
η = 0. We see that Im(W2) is much smaller than Re(W2),
which is also due to the EIT effect and the large one-photon
detuning; additionally, Re(W2) is also an attractive potential
well [and hence the nonlinear potential in Eq. (8) is an
attractive one), which comes from our choice 88Sr atoms,
for which the n1S0 state is isotropically attractive (Cs

6 > 0).
Such a choice allows us to obtain bright soliton solutions and
investigate the QR property of the solitons.

We investigate first the propagation and scattering of (1 +
1)D nonlocal optical solitons, which can be obtained by
the following assumptions: (i) the probe field has a wide
distribution in the y direction so that its y dependence can be
neglected, and (ii) the gate photon distribution in the Rydberg
state |4〉 is prepared to be independent of y. Hence in Eq. (8)
one has V = V (ξ ), W2 = W2(ξ ), and the term ∂2U/∂η2 can be
neglected. As a result, after disregarding the negligible local
nonlinear potential W1|U |2, Eq. (8) is simplified into

i
∂U

∂s
= −∂2U

∂ξ 2
+ V (ξ )U + Vnon(ξ,U )U, (10)

with the nonlocal nonlinear potential given by Vnon(ξ,U ) =∫
dξ ′W2(ξ − ξ ′)|U (ξ ′)|2.
In the absence of the linear attractive potential V , Eq. (10)

allows for various nonlocal optical soliton solutions. Plot-
ted in Fig. 3(b) is the propagation of a nonlocal optical
soliton by taking its amplitude |U | as a function of x/R0

and z/(2Ldiff ), obtained by exploiting the split-step Fourier
method [49] with the initial condition U (ξ, s = 0) = sech(ξ ).
We see that the nonlocal optical soliton is robust during
propagation. To test the stability of the soliton, a collision
between two such solitons is also studied, with the result
shown in Fig. 3(c). The initial condition for the collision
calculation is given by U (ξ, s = 0) = sech(ξ + 5)exp(iξ ) +
sech(ξ − 5)exp(−iξ ). One sees that the both solitons resume
their original shapes after the collision.

The peak power Pmax for generating the nonlocal optical
soliton can be estimated by using the Poynting vector [33,34],

053845-5



BAI, ZHANG, AND HUANG PHYSICAL REVIEW A 101, 053845 (2020)

FIG. 4. Quantum reflection of (1 + 1)D nonlocal optical soliton.
(a) Soliton-amplitude function |U | for �p0 = 33 MHz as a function
of x/R0 and z/(2Ldiff ) when it is incident from the left-hand side of
the attractive Rydberg defect. The soliton is almost fully reflected
by the defect with a small incident velocity v = 0.35. The dashed
green line denotes the central position of the defect, and the width
of the defect is marked by two dashed red lines. (b) The sharp
transition between nearly full reflection and nearly full transmission
of the soliton, with reflection coefficient R (dashed red line) and
transmission coefficient T (solid blue line) as functions of incident
velocity v. The inset (dashed-dotted green curve) gives the trapping
coefficient L of the soliton as a function of v.

which, based on the system parameters given above, reads

Pmax � 1.5 nW, (11)

with corresponding average peak intensity given by Imax �
1.2 mW cm−2. Consequently, for generating such nonlocal
optical solitons only a very weak light power is needed.
This is in contrast with cases of nonresonant media (such as
optical fiber), where much higher light power is required for
the formation of optical solitons. We stress that the choice
of |n1S0〉 states of 88Sr atoms stated above is to obtain the
self-focusing Kerr nonlinearity for balancing the diffraction
effect of the system. Except for 88Sr, a recent study showed
that the |n3S0〉 states of 87Sr atoms can also provide attrac-
tive Rydberg-Rydberg interaction for some principal quantum
numbers n [50], which provides another Rydberg gas that
supports the formation of nonlocal bright solitons.

B. Quantum Reflection of (1 + 1)D nonlocal optical solitons

We now study what happens when a nonlocal optical
soliton is scattered by a Rydberg-defect potential V (ξ ). We
assume that the soliton is incident from the left side and has
the form U (ξ, z = 0) = A sech[(ξ − ξ0)/w0]exp(ivξ ), with
A = 1, w0 = 1. The initial position of the soliton, ξ0 = x0/R0,
is chosen to be far from the Rydberg defect by taking ξ0 = −2.

Figure 4(a) shows the result of a numerical simulation for
such scattering with a small incident velocity v = 0.35, by
taking for �p0 = 33 MHz and the soliton-amplitude function
|U | as a function of x/R0 and z/(2Ldiff ). In the figure, the
dashed green line denotes the central position of the defect,
and the width of the defect (i.e., the Rydberg blockade region)
is marked by two dashed red lines. We see that the nonlocal
soliton is almost fully reflected, which is a typical character
of QR since the potential V is attractive. Physically, the QR
can be understood as a specific interference phenomenon
of incoming and outgoing waves [51,52] when the nonlocal
optical soliton interacts with the attractive Rydberg-defect po-
tential, absent for the scattering of classical particles because

such phenomenon cannot be predicted based on the theory of
Newtonian mechanics.

To acquire a deep understanding of the QR of nonlocal
solitons, a further numerical simulations is carried out for
different incident velocity v. Shown in Fig. 4(b) is the result of
the transmission coefficient T (solid blue line) and reflection
coefficient R (dashed red line) as functions of v for �p0 =
33 MHz. We see that, compared with the linear case obtained
in Fig. 2(b), the dependence of the reflection coefficient R and
the transmission coefficient T on the incident velocity v is
drastically changed for the scattering of the nonlocal optical
soliton. In particular, a pronounced new character appears due
to the nonlocal nonlinear interaction, i.e., a sharp transition
between the reflection and the transmission is observed with a
well-defined critical velocity v = vc = 0.42. For v < vc the
soliton scattering is dominated by nearly a full reflection;
however, for v > vc the soliton scattering is dominated by
nearly a full transmission. In the respective dominant regimes,
the reflection (or transmission) of the soliton can be larger
than 97%. Note that the nonlocal soliton can experience a
self-trapping near the critical velocity vc. The inset of Fig. 4(b)
(dashed-dotted green line) gives the trapping coefficient L of
the soliton as a function of v.

The QR phenomenon of the nonlocal soliton described
above can be explained by using a two-mode picture [2,11].
Since the attractive Rydberg-defect potential V (ξ ) [Fig. 2(a)]
allows bound states, when a low-velocity soliton approaches
and overlaps with the defect potential the solution U of
Eq. (10) can be taken as a superposition of the soliton
mode US and the trapped (bound state) mode UT , i.e.,
U (ξ, s) = US (ξ, s) + UT (ξ, s). Then off-diagonal terms, i.e.,
U ∗

S (ξ, s)V (ξ )UT (ξ, s) and U ∗
T (ξ, s)V (ξ )US (ξ, s), appear in

the energy-density expression of the system, which will lead
to a repulsive force between the two modes if they are out
of phase, and hence a destructive interference arises so that
a full reflection of the soliton occurs once the repulsive force
due to this destructive interference overcomes the attractive
force provided by the Rydberg-defect potential. Note that the
nonlocal nonlinear potential Vnon(ξ,U ) in the present system
plays a specific role for the QR, which results in anomalous
characteristics for the QR; see the next section.

C. Anomalous quantum reflection of the (1 + 1)D nonlocal
optical solitons and their active control

We now investigate what will happen for the nonlocal op-
tical soliton scattering if the incident velocity of the soliton is
fixed but its incident intensity �p0 is changed. For illustration,
we take v = 0.5 and other system parameters the same as
those used in Fig. 4.

Shown in Figs. 5(a)–5(c) is the numerical result of the
soliton scattering when it is incident from the left side of the
Rydberg defect by choosing �p0 = 32.3, 33.4, and 35 MHz,
respectively. From the figure, we see that the soliton gets a
nearly full transmission for the weak incident power [�p0 =
32.3 MHz, panel (a)], and a full reflection for the strong inci-
dent power [�p0 = 35 MHz, panel (c)]. For the intermediate
incident power [�p0 = 33.4 MHz, panel (b)], most of the
incoming power of the soliton is captured by the defect with
trapped probability L = 92%. It seems that such scattering

053845-6



QUANTUM REFLECTIONS OF NONLOCAL OPTICAL … PHYSICAL REVIEW A 101, 053845 (2020)

FIG. 5. Anomalous scattering behavior of the (1 + 1)D nonlocal optical solitons. Panels (a)–(c) show the nearly full transmission, trapping,
and reflection of the soliton when the soliton is scattered by the Rydberg-defect potential, with the dimensionless incident velocity fixed
(v = 0.5) and the incident half Rabi frequency taken to be �p0 = 32.3 MHz, �p0 = 33.4 MHz, �p0 = 35 MHz, respectively. As in Fig. 4(a),
here the dashed green line denotes the central position of the defect, and the width of the defect is marked by two dashed red lines. (d) “Phase
diagram” of the soliton scattering by taking the reflection coefficient R as a function of the incident velocity v and �p0. The domain with the
blue (purple) color is that of nearly full transmission (reflection). The line between the domains of the nearly full transmission and the nearly
full reflection is a crossover one, where soliton trapping occurs. Dots (with pink color) “a,” “b,” and “c” indicate the values of the reflection
coefficient R for the cases shown in panels (a)–(c), respectively. (e) Solid black line shows nonlinear potential Vnon(ξ,U ) as a function of ξ ;
dashed red line shows soliton-amplitude function U ; both Vnon and U are dimensionless.

behavior of the soliton is counterintuitive (anomalous), since
generally a full transmission (reflection) should occur for
large (small) incident power.

To get a general picture, a further numerical simulation
is carried out for acquiring a “phase diagram” of the soliton
scattering by taking the reflection coefficient R as a function
of v and �p0, with the result of the simulation presented in
Fig. 5(d). In the figure, the domain with the blue color and the
domain with purple color are regions for nearly full transmis-
sion and nearly full reflection, respectively. The line between
these two domains is the boundary representing the crossover
from the nearly full transmission to the nearly full reflection,
where soliton trapping occurs. Dots (with pink color) “a,” “b,”
and “c” indicate the values of reflection coefficient R for the
cases shown respectively in Figs. 5(a)–5(c), respectively, of
the figure. From the figure, we see that the full transmission
(reflection) for small (large) �p0 is not a particular behavior
but a general behavior in our system.

The anomalous behavior of the soliton scattering shown
here can be explained as follows: Note that, due to the
contribution of the stored gate photons in the Rydberg defect,
the nonlinear potential Vnon(ξ,U ) in Eq. (10) has a shape of
“double well,” shown in Fig. 5(e) by the solid black line as
a function of ξ (the Rydberg defect is assumed to be located
at ξ ≡ x/R0 = 3). The soliton-amplitude function U is also

illustrated by the dashed red line [53]. From the figure, we
see that the nonlinear potential Vnon(ξ,U ) is attractive far
from the Rydberg defect and repulsive close to the defect.
We have thus the following conclusions: (i) Far from the
Rydberg defect, the linear potential V (ξ ) is zero and the
nonlinear potential Vnon(ξ,U ) is attractive. The probe beam
can form a soliton [through solving Eq. (10)] by using a
suitable incident condition. (ii) Near the Rydberg defect, V (ξ )
is nonzero and attractive [i.e., a potential well; see Fig. 2(a)];
however, the nonlinear potential Vnon(ξ,U ) is a potential
barrier and hence it is repulsive [54] [see Fig. 5(e)]. If the
incident probe-beam intensity is small (i.e., �p0 is small), the
nonlinear potential Vnon(ξ,U ) plays no significant role and
hence is negligible. In this case, if the incident probe-beam
velocity v is not small [e.g., v = 0.5 used in Figs. 5(a)–5(c)],
the probe beam displays no full reflection and trapping but a
full transmission, which is just the phenomenon observed in
Fig. 5(a). Nevertheless, if �p0 is large, the nonlinear potential
Vnon(ξ,U ) plays a significant role and a full reflection occurs
for the probe beam with the same incident velocity v. Based
on this explanation, the “phase diagram” of the scattering of
the probe beam given in Fig. 5(d) can be well understood
physically.

Note that the nonlinear repulsive potential Vnon(ξ,U ) de-
pends not only on the probe-field intensity but also on the
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FIG. 6. Active control of the QR of the nonlocal optical solitons.
(a) Reflection coefficient R as a function of �p0 and σ (nonlocality
degree of the Kerr nonlinearity). (b) Reflection R as a function of �p0

and σ for the case when the Rydberg defect is assumed to have no
influence on the nonlocal Kerr nonlinearity. For details, see the text.

nonlocality degree of the Kerr nonlinearity defined by [34]

σ = Rb/R0. (12)

Shown in Fig. 6(a) is the result of a numerical simulation of
the reflection coefficient R of the nonlocal soliton by taking
the Rydberg blockade radius Rb = 8 μm and varying the
radius of the beam R0 from 5 to 20 μm. It reveals that the
reflection R is strongly dependent not only on the probe-
field intensity (i.e., �p0) but also on the nonlocality degree
of the Kerr nonlinearity (i.e., σ ). Thus, in addition to �p0,
the parameter σ can be taken to manipulate and control the
scattering of the nonlocal soliton. On the contrary, one can
also employ the scattering data of the soliton to investigate the
physical property of the system, including the measurement of
the nonlocality degree of the Kerr nonlinearity (and hence the
radius of the Rydberg blockade).

We stress that there is another feature on the soliton scatter-
ing in our system, i.e., the existence of the Rydberg defect has
a strong influence on the nonlocal Kerr nonlinearity, which
makes the QR of the nonlocal optical soliton very different
from those reported before. To see this clearly, a simulation
is carried out by taking �d = 0 in W2 [i.e., the coefficient
describing the nonlocal Kerr nonlinearity; see Eq. (8)], with
the result given in Fig. 6(b). We find that, for weak probe
field (�p0 = 26 MHz), the reflection coefficient R is the same
as that in Fig 6(a) (where �d �= 0 in W2) for 0.4 < σ < 0.8.
However, the strong reflection for σ > 1.4 shown in Fig. 6(a)
is absent in Fig. 6(b), which means that the influence of
the Rydberg defect on the nonlinear potential Vnon(ξ,U ) is
significant for large σ , by which a strong repulsive force
appears, acts on the nonlocal soliton, and results in a large
reflection coefficient R. By comparing Fig. 6(a) with Fig. 6(b)
for different �p0, we see that, as a function of σ , the reflection
coefficient R has a minimum in Fig. 6(a) but the minimum
is absent in Fig. 6(b); generally speaking, the soliton reflec-
tion in the case of Fig. 6(b) is much weaker than that in
Fig. 6(a). These interesting anomalous behaviors of the soliton
scattering and their controllability found here might be useful
to design power and nonlocality-dependent optical splitters,
switches, and transistors.

D. Scattering of (2 + 1)D nonlocal optical solitons

In general, high-dimensional solitons are unstable
during propagation [55,56]. However, as demonstrated

FIG. 7. Scattering of (2 + 1)D nonlocal optical soliton by a
Rydberg defect, by taking the soliton amplitude |U | as a function
of ξ = x/R0, η = y/R0, and s = z/(2Ldiff ). The soliton (bright spot)
is transmitted for �p0 = 18 MHz [panel (a)], trapped for �p0 =
19.2 MHz [panel (b)], or reflected for �p0 = 20.4 MHz [panel (c)]
from the defect. The dashed red circle denotes the central position of
the defect. (d) The scattering of a (2 + 1)D nonlocal optical vortex
for �p0 = 31.3 MHz, which disintegrates into two solitons after
colliding with the Rydberg defect.

recently [24,33,34], high-dimensional optical solitons are
quite stable in Rydberg atomic gases due to the existence of
the nonlocal Rydberg-Rydberg interaction. Here we show that
(2 + 1)D nonlocal optical solitons may have QR when they
collide with a 2D Rydberg defect [57] in the present system.

To this end, a numerical simulation of the scattering of a
(2 + 1)D soliton from the attractive Rydberg defect is imple-
mented based on Eq. (8) by taking the incident wave func-
tion U (ξ, η, s = 0) = exp[−(ξ 2 + η2) + i(vξ ξ + vηη)], with
vξ and vη being the dimensionless incident velocities of the
soliton in the ξ and η directions, respectively. As an example,
in the simulation we have taken vξ = vη = 0.5, R0 = 10 μm,
Na = 3 × 1010 cm−3, and the other parameters as given pre-
viously.

Shown in Fig. 7 is the result of the simulation, where
Figs. 7(a)–7(c) are for the cases of �p0 = 18, 19.2, and
20.4 MHz, respectively. In the figure, the dashed red circle
denotes the central position of the Rydberg defect. We see
that, similar to the (1 + 1)D case, the soliton (illustrated by
a bright spot) is transmitted for �p0 = 18 MHz [Fig. 7(a)],
trapped for �p0 = 19.2 MHz [Fig. 7(b)], and reflected for
�p0 = 20.4 MHz [Fig. 7(c)] from the defect.

As an extension, the scattering of (2 + 1)D nonlocal op-
tical vortices is also investigated. Although nonlocal optical
vortices with lower-order angular momenta may be quite
stable during free propagation in the Rydberg atomic gas [34],
we find that they are generally split into several parts after
colliding with a Rydberg defect. Figure 7(d) shows the result
of the scattering of a vortex taking a Laguerre-Gauss mode
with radial index p = 0 and azimuthal index m = 1 for �p0 =
31.3 MHz. We see that the vortex is disintegrated into two
solitons after colliding with the Rydberg defect.

IV. SUMMARY

In this work, we have suggested a scheme to realize a
QR of nonlocal nonlinear optical beams in a cold atomic
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gas via a dispersive Rydberg-EIT. By an approach beyond
the mean-field approximation, we have derived a nonlinear
envelope equation for the propagation of the probe laser
field, which includes a local linear attractive (Rydberg-defect)
potential and a nonlocal nonlinear attractive potential. We
have demonstrated that the system supports nonlocal optical
solitons, which have very low power and display a sharp
transition between reflection and transmission when they are
scattered by the Rydberg-defect potential. We have found
that, different from conventional QRs, the QR of the non-
local optical solitons in our system depend significantly on
the nonlocality degree of the Kerr nonlinearity and display
anomalous and controlled QR behavior contributed by the
Rydberg blockade effect.

QR is a specific interference phenomenon of matter waves
that is absent for the motion of classical particles and general
wave motions. Compared with conventional QR, the QR re-
ported in our study is easy to realize and can be controlled and

manipulated actively. Our work opens an avenue for studying
the QR in systems with nonlocal nonlinearity and for reveal-
ing novel optical phenomena based on cold Rydberg atomic
gases. The research results reported here are useful not only
for developing Rydberg nonlinear optics and characterizing
physical property of Rydberg gases but also for designing
novel optical devices at weak-light levels.
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APPENDIX: EXPANSION EQUATIONS OF DENSITY-MATRIX ELEMENTS AND THEIR SOLUTIONS

Due to the strong Rydberg-Rydberg interaction, the Bloch equations (2) and (3) for one-atom density-matrix elements
ραβ (r, t ) ≡ 〈Ŝαβ (r, t )〉 involve two-atom density-matrix elements ραβ,μν (r′, r, t ) ≡ 〈Ŝαβ (r′, t )Ŝμν (r, t )〉, and hence when solv-
ing the one-atom density-matrix elements one must solve the equations of motions for these two-atom density-matrix elements.
However, the equations for the two-atom density-matrix elements involve three-atom density-matrix elements, and so on. For
large atom density, these equation chains must be solved by using suitable techniques beyond the mean-field approximation.

Here we adopt the method developed in Refs. [31–34] to solve these equations under the condition of Rydberg-EIT. We
assume that, initially, all atoms are prepared in the ground state |1〉. Since the probe field is weak, we can take it as a small
parameter (i.e., �p ∼ ε) to make a perturbation expansion, which reads ρα1 = ∑

l=0 ε2l+1ρ
(2l+1)
α1 , ρ32 = ∑

l=1 ε2lρ
(2l )
32 , ρββ =∑

l=0 ε2lρ
(2l )
ββ [ρ (0)

ββ = δβ1δβ1 (α = 2, 3; β = 1, 2, 3)], ραβ,μν = ∑
l=2 εlρ

(l )
αβ,μν . Substituting this expansion into Eqs. (2), (3)

and (5), and those for high-order correlators, and comparing the coefficients of εl (l = 1, 2, 3, . . .), we obtain a chain of linear
but inhomogeneous equations which can be solved order by order.

First-order approximation (l = 1). The solution in this order describes the linear excitation of the system and no Rydberg-
Rydberg interaction is involved. It reads ρ

(1)
21 = a(1)

21 �p and ρ
(1)
31 = a(1)

31 �p, with

a(1)
21 = (d31 − �d )/D1, (A1)

a(1)
31 = −�c/D1, and D1 = |�c|2 − d21(d31 − �d ) [�d ≡ �d (x, y) is given by Eq. (4)]. Other density-matrix elements are zero.

Second-order approximation (l = 2). In this order the solution for the diagonal elements reads ρ (2)
αα = a(2)

αα |�p|2 (α = 1, 2, 3),
with

a(2)
11 = [i�23 − 2|�c|2M1]M2 − i�12|�c|2M3

−�12�23 − i�12|�c|2M1
, (A2a)

a(2)
33 = 1

i�12

(
M2 − i�12a(2)

11

)
, (A2b)

a(2)
22 = −a(2)

11 − a(2)
33 , (A2c)

a(2)
32 = 1

d32

(
−�c

D1
+ 2�ca(2)

33 + �ca(2)
11

)
, (A2d)

with

M1 = 1

d32 − �d
− 1

d∗
32 − �d

, (A3a)

M2 = d∗
31 − �d

D1

∗
− d31 − �d

D1
, (A3b)

M3 = 1

D∗
1(d∗

32 − �d )
− 1

D1(d32 − �d )
. (A3c)
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The two-atom density-matrix elements ραβ,μν have nonzero solutions only starting from the second-order approximation.
Based on the above results, we can obtain the equations for them, which are given by

⎡
⎣2d21 0 2�∗

c
0 2d31 − 2�d − Vs 2�c

�c �∗
c d21 + d31 − �d

⎤
⎦

⎡
⎢⎣

ρ
(2)
21,21

ρ
(2)
31,31

ρ
(2)
31,21

⎤
⎥⎦ =

⎡
⎢⎣

−2 d31
D1

0
�c
D1

⎤
⎥⎦�2

p, (A4)

⎡
⎢⎣

d21 + d12 0 −�c �∗
c

−�∗
c �∗

c d21 + d13 + �d 0
0 d31 + d13 �c −�∗

c
−�c �c 0 d∗

21 + d∗
13 + �d

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

ρ
(2)
21,12

ρ
(2)
31,13

ρ
(2)
21,13

ρ
∗(2)
21,13

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

d31
D1

− d∗
31

D∗
1

�∗
c

D∗
1

0
�c
D1

⎤
⎥⎥⎥⎦|�p|2, (A5)

with ρ
(2)
α1,β1 = a(2)

α1,β1�
2
p, ρ

(2)
α1,1β = a(2)

α1,1β |�p|2 (α, β = 2, 3). The expression of ρ
(2)
αβ,μν can be directly obtained by solving

Eqs. (A4) and (A5), which are lengthy and thus not written down explicitly here.
Third-order approximation (l = 3). Equations for two-atom correlators ραβ,μν at this order read

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M31 �∗
c −i�23 0 �∗

c −�c 0 0
�c M32 0 −i�23 0 0 �∗

c −�c

0 0 M33 �∗
c −�∗

c �c 0 0
0 0 �c M34 0 0 −�∗

c �c

�c 0 −�c 0 M35 0 �∗
c 0

−�∗
c 0 �∗

c 0 0 M36 0 �∗
c

0 �c 0 −�c �c 0 M37 0
0 −�∗

c 0 �∗
c 0 �c 0 M38

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
(3)
22,21

ρ
(3)
22,31

ρ
(3)
33,21

ρ
(3)
33,31

ρ
(3)
32,21

ρ
(3)
21,23

ρ
(3)
32,31

ρ
(3)
31,23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a(2)
21,12 + a(2)

21,21 − a(2)
22

−a(2)
31,12 + a(2)

21,31

−a(2)
33

0

a(2)
21,31 − a(2)

32

−a∗(2)
32 − a(2)

21,13

a(2)
31,31

−a(2)
31,13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

|�p
(
r′)|2�p(r),

(A6)

where M31 = i�12 + d21, M32 = i�12 + d31 − �d , M33 = i�23 + d21, M34 = d31 + i�23 − �d − Vs, M35 = d32 + d21 − �d ,
M36 = d23 + d21 + �d , M37 = d32 + d31 − 2�d − Vs, and M38 = d23 + d31. From these equations we obtain the third-order
solution ρ

(3)
33,31 = a(3)

33,31|�p(r′)|2�p(r), with

a(3)
33,31 = P0 + P1Vs(r′ − r) + P2Vs(r′ − r)2

Q0 + Q1Vs(r′ − r) + Q2Vs(r′ − r)2 + Q3Vs(r′ − r)3
, (A7)

where D1 = |�c|2 − d21(d31 − �d ), D2 = |�c|2 − d21(d21 + d31 − �d ), Pn and Qn (n = 0, 1, 2, 3) are functions of the sponta-
neous emission decay rate γμν , detunings �μ, and the half Rabi frequency �c.

Consequently, the solution of ρ
(3)
21 takes the form

ρ
(3)
21 = a(3)

21,1|�p|2�p + Na

∫
d3r′a(3)

21,2(r, r′)|�p(r′)|2�p(r), (A8)

with the coefficients given by

a(3)
21,1 = �∗

ca(2)
32 + (ω + d31 − �d )

(
2a(2)

11 + a(2)
33

)
D1

, (A9)

a(3)
21,2 = −2|�c|4(d21 + d31 − �d )Vs(r′ − r)/(|D1|2D1)

2d21|�c|2 + D2[2d31 − 2�d − Vs(r′ − r)]
, (A10)

where D2 = |�c|2 − d21(d21 + d31 − �d ).
Combining the results given by ρ

(1)
21 and ρ

(3)
21 given above, we obtain the optical susceptibility for the probe field with the form

χp = Na(ep · p12)2ρ21/(ε0h̄�p)

= χ (1)
p + χ

(3)
p,1|�p|2 +

∫
d3r′χ (3)

p,2(r′ − r)|�p(r′)|2, (A11)

where χ (1)
p = Na|ep · p12|2a(1)

21 /(ε0 h̄) is the linear susceptibility, χ
(3)
p,1 = Na|ep · p12|2a(3)

21,1/(ε0h̄) is the local nonlinear suscepti-

bility, and χ
(3)
p,2 = N 2

a |p12|2a(3)
21,2/(ε0h̄) describes the kernel of the nonlocal nonlinear susceptibility contributed by the long-range

Rydberg-Rydberg interaction in the system.

053845-10



QUANTUM REFLECTIONS OF NONLOCAL OPTICAL … PHYSICAL REVIEW A 101, 053845 (2020)

[1] H. Friedrich and J. Trost, Working with WKB waves far from
the semiclassical limit, Phys. Rep. 397, 359 (2004).

[2] R. H. Goodman, P. J. Holmes, and Michael I. Weinstein, Strong
NLS soliton-defect interactions, Physica D 192, 215 (2004).

[3] J. J. Berkhout, O. J. Luiten, I. D. Setija, T. W. Hijmans, T.
Mizusaki, and J. T. M. Walraven, Quantum Reflection: Focus-
ing of Hydrogen Atoms with a Concave Mirror, Phys. Rev. Lett.
63, 1689 (1989).

[4] F. Shimizu, Specular Reflection of Very Slow Metastable Neon
Atoms from a Solid Surface, Phys. Rev. Lett. 86, 987 (2001).

[5] T. A. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek,
D. E. Pritchard, and W. Ketterle, Quantum Reflection from a
Solid Surface at Normal Incidence, Phys. Rev. Lett. 93, 223201
(2004).

[6] R. G. Scott, A. M. Martin, T. M. Fromhold, and F. W. Sheard,
Anomalous Quantum Reflection of Bose-Einstein Condensates
from a Silicon Surface: The Role of Dynamical Excitations,
Phys. Rev. Lett. 95, 073201 (2005).

[7] T. A. Pasquini, M. Saba, G.-B. Jo, Y. Shin, W. Ketterle, and
D. E. Pritchard, Low Velocity Quantum Reflection of Bose-
Einstein Condensates, Phys. Rev. Lett. 97, 093201 (2006).

[8] B. S. Zhao, G. Meijer, and W. Schollköpf, Quantum reflection
of He2 several nanometers above a grating surface, Science 331,
892 (2011).

[9] B. A. Stickler, U. Even, and K. Hornberger, Quantum reflec-
tion and interference of matter waves from periodically doped
surfaces, Phys. Rev. A 91, 013614 (2015).

[10] A. R. Barnea, B. A. Stickler, O. Cheshnovsky, K. Hornberger,
and U. Even, Electrically controlled quantum reflection, Phys.
Rev. A 95, 043639 (2017).

[11] C. Lee and J. Brand, Enhanced quantum reflection of matter-
wave solitons, Europhys. Lett. 73, 321 (2006).

[12] M. Liu, L. She, H. W. Xiong, and M. S. Zhan, Quantum
reflection of vortices in Bose-Einstein condensates, Phys. Rev.
A 74, 043619 (2006).

[13] S. L. Cornish, N. G. Parker, A. M. Martin, T. E. Judd, R. G.
Scott, T. M. Fromholdd, and C. S. Adams, Quantum reflection
of bright matter-wave solitons, Physica D 238, 1299 (2009).

[14] T. Ernst and J. Brand, Resonant trapping in the transport of a
matter-wave soliton through a quantum well, Phys. Rev. A 81,
033614 (2010).

[15] A. L. Marchant, T. P. Billam, T. P. Wiles, M. M. H. Yu,
S. A. Gardiner, and S. L. Cornish, Controlled formation and
reflection of a bright solitary matter-wave, Nat. Commun. 4,
1865 (2013).

[16] A. L. Marchant, T. P. Billam, M. M. H. Yu, A. Rakonjac, J. L.
Helm, J. Polo, C. Weiss, S. A. Gardiner, and S. L. Cornish,
Quantum reflection of bright solitary matter waves from a
narrow attractive potential, Phys. Rev. A 93, 021604(R) (2016).

[17] M. Saffman, T. G. Walker, and K. Mølmer, Quantum informa-
tion with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).

[18] J. D. Pritchard, K. J. Weatherill, and C. S. Adams, Nonlin-
ear optics using cold Rydberg atoms, in Annual Review of
Cold Atoms and Molecules (World Scientific, Singapore, 2012),
Vol. 1, p. 301.

[19] O. Firstenberg, C. S. Adams, and S. Hofferberth, Nonlinear
quantum optics mediated by Rydberg interactions, J. Phys. B:
At., Mol. Opt. Phys. 49, 152003 (2016).

[20] C. Murray and T. Pohl, Quantum and nonlinear optics in
strongly interacting atomic ensembles, in Advances in Atomic,

Molecular, and Optical Physics (Academic Press, New York,
2016), Vol. 65, Chap. 7, pp. 321–372.

[21] A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and
M. D. Lukin, Photon-Photon Interactions via Rydberg Block-
ade, Phys. Rev. Lett. 107, 133602 (2011).

[22] H. Busche, P. Huillery, S. Ball, T. Ilieva, M. P. A. Jones, and
C. S. Adams, Contactless nonlinear optics mediated by long-
range Rydberg interactions, Nat. Phys. 13, 655 (2016).

[23] J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill,
M. P. A. Jones, and C. S. Adams, Cooperative Atom-Light
Interaction in a Blockaded Rydberg Ensemble, Phys. Rev. Lett.
105, 193603 (2010).

[24] S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, Nonlocal Nonlin-
ear Optics in Cold Rydberg Gases, Phys. Rev. Lett. 107, 153001
(2011).

[25] J. Stanojevic, V. Parigi, E. Bimbard, A. Ourjoumtsev, and
P. Grangier, Dispersive optical nonlinearities in a Rydberg
electromagnetically-induced-transparency medium, Phys. Rev.
A 88, 053845 (2013).

[26] O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D.
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