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Nonlinear electromagnetic pulse isolator
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A nonlinear medium with nonreciprocal propagation of electromagnetic field pulses is proposed and studied.
The medium consists of a long waveguide surrounded by two-level media implanted in a straight spiral.
Respective Maxwell-Bloch system describing evolution of the pulses in the waveguide with nonlinear feedback
is derived. The influence of the neighbors’ dipole fields taken into account in the tight bounding approximation
manifests itself in the appearance of the nonlinear differential terms. Under the condition of unidirectional
propagation of field pulses, the Maxwell-Bloch system of equations is reduced to an integrable system. Analysis
of obtained exact solutions have shown that these differential terms are responsible for the nonreciprocity of
the propagation of field pulses in the waveguide. Using the soliton solution as an example, it is shown that the
spiral arrangement of atoms yields critical dependence of the evolution of field pulses on the direction of their
propagation or on the chirality of the medium.
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I. INTRODUCTION

The ability to control energy flows using nonlinear proper-
ties of physical systems is of both theoretical and important
practical interest. Wave pulses can be controlled by creating a
nonlinear isolator in which electromagnetic waves are trans-
mitted differently for opposite directions of propagation. In a
linear T -symmetric system, this possibility is forbidden by the
reciprocity theorem [1]. Therefore, special attention is paid
to the study of nonlinear media with nonreciprocal proper-
ties. In electromagnetics, nonreciprocity is now an important
scientific and technological concept at both microwave and
optical [2] frequencies; see review describing the current state
of the problem [3]. Asymmetric wave propagation caused by
nonlinearity arises in various fields of physics, including non-
linear optics. The so-called fully optical diode was predicted
in [4–8], and then implemented experimentally in [9]. It is
proposed to use the left-side metamaterials [10], quasiperiodic
systems [11], coupled linear and nonlinear cavities [12–18],
or PT -symmetric waveguides [1] as media for creating diodes
or isolators. An electronic diode is a nonlinear semiconductor
circuit component that allows conduction of electrical current
in one direction only. A component with similar functionality
for electromagnetic waves, an electromagnetic isolator [19],
is based on the Faraday effect of rotation of the polarization
state and is also a key component in optical and microwave
systems [3]. In optics, the simplest isolator exploiting non-
reciprocal transmission of circularly polarized light consists
of a pair of polarizers and a Faraday rotator and it requires a
static magnetic field [2]. A similar approach is also used for
microwave devices. As another example, asymmetric trans-
mission in metamaterial structures is allowed if propagation
is accompanied by polarization conversion [6,8].
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The most detailed analytical information about evolution
of optical and other pulses may be obtained by solving an
initial-boundary problem for completely integrable equations
[20–22]. The first completely integrable Maxwell-Bloch equa-
tions describing electromagnetic wave evolution in a two-level
system (TLS) had been derived by using the slow varying
envelope approximation by Lamb [23]. Later, a set of inte-
grable generalizations, which describe electromagnetic pulse
evolution with and without application of the slow envelope
approximation, had been derived [22]. Some of these models
include the first and second derivatives of the TLS polarization
[24].

If the distance between atoms is much less than the res-
onance wavelength, then the dipole-dipole interaction (DDI)
can have a significant effect on the formation of localized
excitations in dipole media and on many other linear and non-
linear processes. In two-dimensional and three-dimensional
structures, for example, in magnets and liquid crystals, the
effects associated with DDI and geometric factors play a
critical role [25]. Optical chiral media with DDI can be formed
on the basis of the spiral arrangement of resonant atoms; see,
for example, Ref. [26]. Interfacing light with atoms localized
near nanophotonic structures has attracted increasing attention
in recent years. Exemplary experimental platforms include
waveguides [27,29], nanofibers [28], and molecular waveg-
uide [29].

The ultimate aim of the present work is to show that syner-
getic action of the chiral geometry of the DDI and nonlinear
feedback yields violation of the reciprocity conditions for the
propagation of optical solitons in a waveguide surrounded
with atoms imbedded into spirals chains. Such an artificial
nanosystem with coherent nonlinear feedback exhibits the
properties of an electromagnetic pulse insulator (EMPI) for
pulses without power limitation.

The paper is organized as follows. In the next section of this
article, a basic system of evolution equations is derived that
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FIG. 1. Structure of the chiral system. The directions of propaga-
tion of field pulses in thin waveguide along and against the axis z are
shown by red and blue arrows. Spheres show the TLSs embedded in
spirals.

describes the dynamics of ultrashort electromagnetic pulses
in a waveguide surrounded by helically arranged TLSs. In
Sec. II the zero curvature presentation of derived reduced
Maxwell-Bloch equations (RMBE) is derived. Soliton solu-
tions are shown in Sec. III. In Sec. IV the obtained results and
theirs applications are discussed. In the Appendix the ISTM
apparatus associated with the system under consideration is
presented.

II. PHYSICAL ONSETS OF THE MODEL

Nonlinear asymmetric transmission can only occur in the
presence of a strong intensity dependent propagation effect.
The idea is to exploit the intensity dependence of the gy-
rotropy in chiral media, which manifests itself as differential
circular birefringence and dichroism. The nonreciprocity phe-
nomenon is often associated with chiral media. The simplest
way to construct a chiral medium is to use straight, equally
oriented spirals of the same chirality. The rotation of the
polarization of the electromagnetic field propagating in the
waveguide along the axes of the spirals in such a medium
is determined by the interaction with the media dielectric
constant, which describes the effects of gyrotropy and bire-
fringence. If the spirals consist of nonlinear media, then for
a sufficiently strong field feedback may occur, which will
lead to an increase in the degree of nonreciprocity. Nonlinear
nonreciprocal media with lossless coherent interaction are of
particular interest. The scheme proposed here of a nonlinear
nonreciprocal medium consisting of a long waveguide sur-
rounded by helixes with implanted TLS has such properties.
This scheme is shown in Fig. 1, where it is assumed that
atoms or molecules are described by TLS, which are im-
planted on curves forming spirals in the immediate vicinity
of a long waveguide. The dipole moments of excited TLS
transitions generate an electromagnetic field acting on the
pulses propagating inside the waveguide. Note that, as helical
chains, cyanine dyes can be used in the J-aggregates in the
scheme under consideration. Such extended spiral molecular
structures can be synthesized as a result of self-assembly [30].
The dipole moments of cyanine dyes that form long bunches
in an aqueous solution [31,32] are of the order 10−14 cgs.

Consider a chain of atoms placed on the curve γ (s), where
variable s is a point lying on the curve γ and s = sn is the
position of the nth TLS. sn − sn−1 is the arc length between
the closest neighbor TLSs. The interaction energy of the field

Ẽ(s) with the polarization of the medium P̃(s) = ∑
n gd (s −

sn )̃ρ(sn) is proportional to −Ẽ · P̃m, where sn = an, n =
. . . − 2,−1, 0, 1, 2, . . . are the coordinates of the atoms on
the curve, ρ̃ is the induced polarization of one atom, and gd is
the interaction coefficient. The tilde sign above the functions
means that they are defined at a point on the curve s ∈ γ (s).
The close arrangement of atoms leads to nonlocal interaction.
To simplify the model, we use the approximation of near-
est neighbors, which has been previously applied to similar
molecular chains; see, for example, Refs. [33,34]. Note that
here we consider a scale smaller than the wavelength, i.e., the
dipole field decreases as a cube of distance, and ultrashort
pulses, i.e., the excitation of sufficiently distant neighboring
atoms can be neglected. In the approximation of the nearest
neighbors, we obtain

P̃(sn) ≈ ρ̃(γ (sn)) + gd (sn − sn−1 )̃ρ(γ (sn−1))

+ gd (sn − sn+1 )̃ρ(γ (sn+1)), (1)

where gd (sn − sn−1) is the coefficient of the interaction of
the nearest-neighboring TLSs with dipole moments �dn at the
point sn. This coefficient takes the form in the dipole-dipole
approximation

gd (sn − sn−1)

= 1

4πε0|�n|3
[

�dn · �dn−1 − 3

( �n
|�n| · �dn

)( �n
|�n| · �dn−1

)]
, (2)

where �n is a vector connecting points sn and sn−1, �dn is the
vector of dipole moment of the TLS at the point sn, and ε0

is the dielectric susceptibility of the vacuum. It is assumed
that |�n| = a, | �dn| = d ∀n. In the continuous approximation the
vector �n is directed along the tangential vector. For an electro-
magnetic field with transverse polarization, the expression (2)
is simplified:

gd (sn − sn−1) = g0 = d2

4πε0a|3 . (3)

The effects due to the curvature of the chains described in the
continuum limit by covariant derivatives are studied below.

The pulses of the field Ẽ propagate along and against the
direction of the axis z in a waveguide inside the helical chains;
see Fig. 1. In order to set up the appropriate tight-binding
model describing the 1D motion of the field pulses along a
waveguide, the 3D space helical structural properties of the
system will be taken into account. In the Cartesian coordinates
ex,y,z, the spiral γ (s) has the form

γ (s) = R[ex cos(φ) + ey sin(φ)] + ezCφP, (4)

where φ = s/L, L = √
P2 + R2, R and P are the radius and

step of the spiral, respectively, and C = ±1 is the chirality
of the spiral. For symmetrical helixes considered here the
curvature Ch = R/L2, as well as the torsion Th = CP/L2, are
constants. We assume that sn − sn−1 � R,P . The difference
between the projections of the atomic positions in the spiral
onto the longitudinal coordinate z has the form

zn − zn−1 = (sn − sn−1)CP/L ≡ aCP/L. (5)

The tangential T = ∂sγ (s); normal N and binormal B vectors
form the Frenet-Serret basis [25]. In Cartesian coordinates, the
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Frenet-Serret basis has the following representation:⎡⎣T
N
B

⎤⎦ = M̂

⎡⎣ez

ex

ey

⎤⎦

≡
⎡⎣−LCh sin(φ) LCh cos(φ) LTh

− cos(φ) − sin(φ) 0

LTh sin(φ) −LTh cos(φ) LCh

⎤⎦⎡⎣ez

ex

ey

⎤⎦. (6)

Here I consider for simplicity a limiting case of Ch → 0.
Then transform (6) reduces to the rotation of the normal
and binormal vectors around the z axis. To take into account
the influence of the fields of induced dipoles of neighbor-
ing atoms, we turn to the rotating coordinate system ρ̃ =
M̂(Ch → 0)P, Ẽ = M̂(Ch → 0)E , where P = {Px, Py, Pz}T ,
E = {Ex, Ey, Ez}T . Here functions without a tilde on them
are defined on the line z. When shifted by s → s ± a, the
vector of polarization P⊥ = {Px, Py}T changes as P⊥(s) →
M̂⊥(s)−1M̂⊥(s ± a)P⊥(s ± a) = M̂⊥(±a)P⊥(s ± a). In con-
trast to a rectilinear medium, a shift by ±a is accompa-
nied here by the rotation, which is described by the matrix
M̂⊥(±a), where

M̂⊥(s) =
[− cos(φ) − sin(φ)

sin(φ) − cos(φ)

]
. (7)

Using this property, we find from (1) taking into account
the projection onto axis z

M̂⊥(a)P⊥(s + a) + M̂⊥(−a)P⊥(s − a)

= 2̂IP⊥(s) − 2a2Th

[
0 1

−1 0

]
∂zP⊥(z)

+ a2̂I∂2
s P⊥(s) + O(a3), (8)

where Î is the unit 2 × 2 matrix. In the second term in the
right-hand side of Eq. (8) the projection to the z axis is used
with taking into account relation (5).

The integrability of the model allows one to reveal the
determining nonlinear effects, analyze the role of the ini-
tial conditions, and compare with the results of numerical
analysis of the more general model. To find a completely
integrable model the standard conditions, such as the absence
of losses and a one-dimensional approximation, have been
used. Additionally, the curvature of the spiral and the second
derivative with respect to s on the right side of (8) have been
neglected. For Ch = 0 and under proposition that medium
does not have intrinsic biaxial anisotropy the projection of the
field onto z axis can be set equal to zero. In the tight coupling
approximation, taking into account the fields of the nearest
neighbors, the Maxwell equations describing the evolution
of a two-component electric field in a rectilinear waveguide
propagating in or against the direction of the z axis (see Fig. 1)
have the form[

∂2
z − 1

c2
∂2

t

]
E⊥

= 4πNada

c2
∂2

t

[
(1 + 2g0) + γc

(
0 1

−1 0

)
∂z

]
P⊥. (9)

Here g0 = gd (±a), see Eq. (3), γc = −g02a2CP/L, c is the
light velocity, and E⊥ = {Ex(z, t ), Ey(z, t )}T . The matrix term
in the right-hand side of Eq. (9) with the coefficient γc is due to
the influence of the curvilinear arrangement of atoms around
the waveguide.

For 4πNad2
a /h̄ωa � 1, where Na, da, ωa are the density

of the TLSs, the dipole moment, and transition frequency,
respectively, the unidirectional propagation approximation of
light pulses is applicable in an extended one-dimensional
medium [35]. In most two-level media for the characteristic
values of dipole moments used in experiments, the unidirec-
tional propagation approximation is possible at a sufficiently
high density of Na ∼ 10−18 cm −3. The unidirectional propa-
gation approximation meets the formal conditions:

∂z + ε∂ct � ∂t , ∂z, (10)

where ε = 1 corresponds to the field propagation direction
from z = −∞ to z = ∞, and ε = −1 corresponds to the
opposite direction. Then using (10) we present the left-hand
side of Eq. (9) as[

∂2
z − 1

c2
∂2

t

] Ex,yc2

4πNad2
a (1 + 2g0)

=
[
∂z + ε

c
∂t

][
∂z − ε

c
∂t

] Ex,yh̄c2

4πNad2
a ω(1 + 2g0)

≈ −2∂t∂χEx,y, (11)

where Ex,y = d0Ex,y/(h̄ω) is the dimensionless amplitude and

χ = 4π Nad2
a ω0(1 + 2g0)

h̄c2
(εz − ct ). (12)

Under the conditions (10), Eq. (9) takes the form

∂Ex

∂χ
= q

∂Px

∂ς
+ b

∂2Py

∂ς2
, (13)

∂Ey

∂χ
= q

∂Py

∂ς
− b

∂2Px

∂ς2
, (14)

where q = −1, ς = tω, ε = εC, and

b = −εg0ω

(1 + 2g0)Lc
. (15)

Given the dimensionless normalization of time variable and
the components of the field amplitude, let us represent the
Bloch equations for a two-level medium in the form

∂ςPx = −Py + EySz, (16)

∂ςPy = Py − ExSz, (17)

∂ςSz = ExPy − EyPx, (18)

where Sz is the normalized difference of the levels populations
[36]. Note that the equations (16)–(18) are invariant with
respect to the rotation described by the matrix (7). Rewrite
Eqs. (13), (14), and (16)–(18) as

∂E

∂χ
= q

∂S

∂ς
− ib

∂2S

∂ς2
, (19)

∂ςS = iS − iESz, (20)
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∂ςSz = i

2
(ES∗ − E∗S), (21)

where E = Ex + iEy and S = Px + iPy.
For the dipole field g0 < 0 and supposing that 1 + 2g0 > 0,

I put b = ε|b|, since ε = ±1. The RMBE (19)–(21) are the
compatibility conditions for the following linear systems:

∂ςψ =
[ −iλ γxE

γ̃xE∗ iλ

]
ψ, (22)

∂χψ =

⎡⎢⎢⎣ i
λ(2bλ − q)

2λ + 1
Sz γx

[
b + q

2λ + 1
S − bESz

]
γ̃x

[
b + q

2λ + 1
S∗ − bE∗Sz

]
−i

λ(2bλ − q)

2λ + 1
Sz

⎤⎥⎥⎦ψ,

(23)

where γx = ελ
√|b| and γ̃x = −[λ − q/(2b)]

√|b|.

III. SOLITON SOLUTION

To demonstrate the features of the optical diode mech-
anism, we study the properties of the soliton solution of
the system (19)—(21) for different ε. The right side of the
equation (19) describes the source that supports the pulse of
the field having the soliton form propagating in the waveguide.
To find soliton solutions, we reduce the spectral problem (SP)
(22) to one previously studied in application of the inverse
scattering transform to other physical models. For this aim,
let us denote λ = η + f , f = q/(4b), and G = √|b|E ei 2 f ς .
Replace ψ = � e−iσ3 f ς (σ3 is the Pauli matrix). Then intro-
duce the functions F (τ ) such that G = F (τ )/F3(τ ) and τ as
a new variable by the relation dς = F3(τ )dτ , where F3 =√

1 − ε|F |2. Then the SP (22) transforms to the following
form:

∂τ� =
[ −iηF3 ε(η + f )F

−(η − f )F ∗ iηF3

]
�. (24)

The linear system (24) had been studied, for instance, in [37].
Respective apparatus developed for analogous SP can be used
for constructing soliton solutions. SPs close to (24) were used
to solve the equations of the chiral field, two- and four-wave
interaction, and Landau-Lifshitz equations; see, for example,
in [24,37–41].

Effect of the nonreciprocal propagation may be demon-
strated on the simplest, but nontrivial soliton solution. For ini-
tial boundary data, E±∞ = 0, χ = 0, Sz(χ ) = −1, P(χ ) =
0, we find the functions F3, F defying soliton solution; see,
for details, in the Appendix,

F3(τ, χ ) = | cosh(θ + iδ)|2 − εκ2

| cosh(θ + iδ)|2 + εκ2
, (25)

F (τ, χ ) = 2κ cosh (θ + iδ)e2iθ2

| cosh(θ + iδ)|2 + εκ2
, (26)

where θ = θ1 + iθ2,

θ1 = 2 Im (η)[τ − bw0(χ − χ1)], (27)

θ2 = −2b − q

2
w0(χ − χ2), (28)
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FIG. 2. Pulse shapes of the fields |G(ς )| propagating along (ε =
1) the axis z and in the opposite direction (ε = −1) are shown by
solid and dashed lines, respectively, for η1 = 0.4, |q/b| = 1.5, C =
1. Units are dimensionless. Estimation of the physical quantities
yields as follows. For the wavelength 5 μm the pulse energy is
100 μJ (|G|2 ∼ 1.5 × 102) and the power pulse duration is about 100
fs corresponding to ωt ∼ 6.

f + η∗

f + η
= e−2iδ, κ = Im(η)

| f + η| , (29)

and χ1,2 are some constants determined from the ini-
tial conditions. For η = iη1, η1 ∈ R one gets w0(η1) =
(16b2η2

1 + q2)/[16b2η2
1 + (q − 2b)2].

The function τ (t ) is found implicitly by integrating the
equality F3(τ )dτ = d ωt ,

A arctan

{√
2[cos(2δ)+2εκ2−1] tanh[2η1(τ−τ0 )]√

1−8εκ2 cos(2δ)−cos(4δ)−8κ4

}
√

1 − 8εκ2 cos(2δ) − cos(4δ) − 8κ4
+ τ = ωt . (30)

Here A = √
8εκ2/η1, τ0 = bw0(χ − χ1).

The time dependence of the soliton amplitude |G(t )| =
|F |/F3 is shown in Fig. 2. The amplitude of the field mo-
mentum critically depends on the sign of ε, that is, either
on the direction of propagation or on the chirality C, as it is
shown in Fig. 2. The ratio of these amplitudes increases with
the simultaneous growth of η1 and | f | and decreases with
increasing | f − η1|. For η1 ∼ 1 and increasing |b| nonlinear
interaction in the chiral medium leads to the formation of
ultrashort pulses or low amplitude pulses in dependence of the
direction of propagation. Due to the geometrical and nonlinear
effects pulse propagating along in the waveguide along z
axis takes the form of an ultrashort pulse for ε = 1. The
same effects under the same initial conditions and parameters
lead to formation of the long pulse with the low amplitude
propagating in the opposite direction (ε = −1).

Let for definite the chirality C = 1. The ratio of the ampli-
tudes of solitons propagating in opposite directions T depends
on the values of |b|; see Eq. (14). Figure 3 shows the growth
of T at η → f . Unlike the nonlinear media considered in
the works of [13,15], interaction with the TLS chain leads to
strong feedback, which increases with increasing amplitude.
It should be noted that the same but more strong dependence
is manifested for η1 > 1.
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T

FIG. 3. Numerical results. The ratio of the amplitudes of solitons
propagating to the right and to the left T vs the amplitude η for b =
1/4.4.

IV. DISCUSSION AND CONCLUSION

The integrable RMBE (19)–(21) describe the nonreciprocal
propagation of electromagnetic pulses in a nonlinear medium
and are derived by using the unidirectional propagation ap-
proximation. This approximation makes it possible to use the
RMBE for modeling the properties of micro- and nanoscale
EMPI operating beyond the slow envelope approximation.
Spatial anisotropy in the system shown in Fig. 1 arising due
to the chiral arrangement of the TLSs around the waveguide
plays a critical role. The nonreciprocal propagation effect
arises due to the local anisotropy and interaction of the field
pulse with the induced polarization of the TLSs. Note the
difference from the two-level medium models in which the
quasistatic approximation is used and the contribution of
polarizations are taken into account by introducing a local
Lorentz field; see, for example, in Ref. [42]. In these cases
the Lorentz field is the result of averaging over sizes much
larger than the distance between atoms.

In deriving the RMBE to preserve complete integrability,
the second-order dispersion (SOD) terms in the right-hand
sides of Eq. (8) (∝∂2

z P⊥) have been neglected. These terms
arise due to the DDI in the tight coupling approximation.
The SOD terms can be neglected provided that ∂z � 2Th

or for 2λlight � L, where λlight is the wavelength of light
corresponding to the transition energy of the TLS. The last
inequality means that the number of spiral rings located at
a wavelength distance is larger than unity. Numerical study
shows that the SOD broadens the form of pulses. The change
in the shape of the pulse with an increase in the ratio γ =
Th/λlight is shown in Fig. 4 (see also Fig. 5). γ −1 is propor-
tional to the effective number of full helical turns of a spiral
at a wavelength. For nonsingular regime SOD equally reduces
the amplitudes of pulses of the same shape, propagating in
both directions, i.e., the ratio of their amplitudes does not
change. At the same time for parameter values η → f the
shape of the field pulse tends to singular; see Fig. 3. With
an increase in the amplitude and steepness of the pulse front,
the influence of the SOD increases. More detailed study
of the contributions of the SOD and other terms violating
integrability requires further numerical investigation.

The geometry similar to that considered in this paper was
used to observe Berry’s topological phase in Ref. [16]. The
key element in the experiment was a single-mode, helically

- 4 - 2 0 2 4
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2

4

6

8

10

ω t

|G
|

FIG. 4. Dependence of the form of the soliton on parameter b,
obtained by analyzing the solution. The field intensity |G(ς = ωt )|2
for 1/|b| = 20, 12, 6 are shown by solid (red), dot-dashed (blue), and
dotted (magenta) lines, respectively. Parameters are η1 = 1, C = 1.
Units are dimensionless.

wound optical fiber, inside which a photon of a given helicity
could be adiabatically transported around a closed path in
momentum space. As in the present work, the photon polar-
ization is controlled by the spiral structure of the surrounding
waveguide. However, in contrast to Tomita’s work [16], in
the RMBE (19)–(21) nonlinear feedback plays a critical role.
The field in the waveguide causes a change in the populations
of the TLS levels and the induced dipole moments of the
transitions, whose local fields in turn alter the polarization and
amplitude of the field in a waveguide. As a result, the field
acquires a nonlinear phase, which may be treated as analog
of the Berry phase. The influence of this nonlinear phase
is manifested in the appearance of a force, which for some
parameter values suppresses the propagation of the pulse in
one of the directions.

The authors of Ref. [17] have demonstrated polarization-
dependent optical elements based on the Pancharatnam-Berry
phase. The constructed elements are based on geometric phase
modification resulting from space-variant polarization manip-
ulation. The scheme shown in Fig. 1 considered here can be
treated in a similar way if one considers the scattering of the
field in a waveguide by a “frozen” excitation of a TLS in the
spirals. Determining the form of frozen excitation requires an
investigation of solutions to the inverse problem.

−4 −2 0 2 4
0.0
0.5
1.0
1.5
2.0
2.5
3.0

ωτ

|Γ
|

FIG. 5. Same as in Fig. 4 except that the pulse propagates in the
opposite direction, i.e., C = −1.
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Topological insulators are predicted for an electromagnetic
wave. Substantial effort has been directed towards realizing
topological insulators for electromagnetic waves; see citations
in Ref. [18]. This is in the spirit of the proposed Floquet
topological insulators, in which temporal variations in solid-
state systems induce topological edge states. The authors of
Ref. [18] have proposed and experimentally demonstrated a
photonic topological insulator as a photonic lattice exhibiting
topologically protected transport of visible light on the lattice
edges. The scheme shown in Fig. 1 may be used as an element
to form an array of evanescently coupled helical waveguides.
However, taking into account the effects associated with the
periodicity of the system for a nonlinear medium seems
too complicated and cumbersome for analysis. Therefore,
the completely integrable model derived in this work, which
allows one to study the strongly nonlinear interaction stage
leading to nonreciprocity, is of particular interest.

In Ref. [3], a classification of nonreciprocal systems is
given. According to this classification, the model derived here
corresponds to time-reversal symmetric breaking by spatial
asymmetry and nonlinear self-biasing; see Chap. XXL in [3].
However, in contrast, the RMBE (19)–(21) has a number of
fundamental differences from those described in review [3].
(I) There is no restriction on excitations and intensity. For
large amplitudes of pulses, the nonreciprocity effect is more
pronounced. (II) There is no restriction on excitation in only
one direction. (III) There are no restrictions on the generation
of harmonics. (IV) The interaction is purely coherent, that is,
there are no losses in the system.

In the system shown in Fig. 1, along with the violation
of spatial symmetry, there is a nonlinear feedback due to
the coherent interaction of the polarization of the wave with
the TLS transition. This feedback interaction leads to a non-
linear rotation of the polarization in the same or opposite
direction, which occurs in the linear limit. This rotation is
described by the gradient off-diagonal term on the right side of
Eq. (19). This mechanism differs from that of known models
of nonreciprocal nonlinear media. The proposed model with
strong nonlinearity can be considered as an alternative to the
known nonlinear models with weak nonlinearity, considered,
for instance, in Refs. [13,15].

Note, finally, that the soliton solution of RMBE (19)–(21)
demonstrates a qualitative change in the form and parameters
of the soliton when the sign ε or the sign C changes. The phys-
ical mechanism of action of EMPI is based on the interaction
of induced dipoles in a medium with torsion Th �= 0. Formally,
a change in sign of ε corresponds to a change in the direction

of the charge current, which is described by the second term
on the right side of Eq. (19). The signs ε ± 1 correspond to
integrable models with different symmetry properties of the
solutions of the spectral problem (24). As a consequence, the
evolution of the forward and backward waves is described
by systems of nonlinear equations with different properties.
Generalization of the derived model paves the way to the
investigation of a family of nonlinear waves featuring a strong
interaction between the chiral chains of the TLSs and polar-
ization of the electromagnetic pulses.
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APPENDIX: ISTM EQUATIONS

Application of the technique of the inverse scattering trans-
form to the SP (24) follows a well-known approach; see, for
instance, in [38,39]. The solutions of the spectral problem (14)
in the main text have the involution

� = M�(λ∗)∗M−1, (A1)

where

M =
(

0 ε
λ+ f
f −λ

1 0

)
. (A2)

The respective Jost functions �1,2 corresponded to decaying
as τ → ±∞ potential and its derivatives for ground state
F3(ς ) = 1, F (ς ) = 0 possess the following asymptotics:

� = exp (−iλσ3ς ), τ → ±∞. (A3)

The symmetry properties (A1) correspond to the following
respective matrix forms of the Jost functions:

� =
(

ψ±
1 εψ± ∗

2
λ+ f
f −λ

ψ±
2 ψ± ∗

1

)
. (A4)

Respective functions are related by the scattering matrices Ŝ

�− = �+Ŝ, (A5)

where

Ŝ =
(

a b∗
−εb(λ − f )/(λ + f ) a∗

)
. (A6)

The Jost functions have the presentation

�+(ς ) = e−iλσ3ς +
∫ ∞

θ

(
λK (ς, s) ε(λ + f )Q∗(ς, s)

(λ − f )Q(ς, s) λK∗(ς, s)

)
e−iλσ3sds. (A7)

Using these presentations of the Jost functions we derive from
the spectral problem (14) in the main text and (A3)

F = 2[1 − iK (ς, ς )]Q∗(ς, ς )

[1 − iK (ς, ς )][1 + iK∗(ς, ς )] + ε|Q(ς, ς )|2 , (A8)

F3 = [1 − iK (ς, ς )][1 + iK∗(ς, ς )] − ε|Q(ς, ς )|2
[1 − iK (ς, ς )][1 + iK∗(ς, ς )] + ε|Q(ς, ς )|2 . (A9)

The Marchenko-type equations are

ε( f − i∂y)Q(ς, y) + G(ς + y)

=
∫ ∞

ς

K∗(ς, s)i∂yG(s + y)ds, (A10)
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i∂yK (ς, y) = −
∫ ∞

ς

Q∗(ς, s)
(

f + i∂y
)
G(s + y)ds,

(A11)

where

G(y) =
∫
U

b(χ )eiλy

a

dλ

2π i
. (A12)

U is the contour of integration in the upper half-plane.

The scattering data dependence vs χ for S3(χ, ς ) =
S0, S(χ, ς ) = 0, ς → ±∞ is determined by function

b(χ ) = b(0) exp

{
iS0

[
(bq + 4η)[(b2 − 2)q + 4bη]

2(bq + 4η + 2)

]}
.

(A13)

Here η is a complex number in the upper half-plane. For one
pole η1 one may rewrite b(η1)/∂ηa(η → η1) = eχ1+iχ2 .
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