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Strong mechanical squeezing in a standard optomechanical system by pump modulation
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We propose a simple yet surprisingly effective mechanical squeezing scheme in a standard optomechanical
system that is beneficial for the amplitude modulation of the pump laser. By merely introducing a specific
kind of periodic modulation into the single-tone driving field to cool down the mechanical Bogoliubov mode,
strong mechanical squeezing, far beyond 3 dB, can be engineered without the requirement for any additional
techniques. Specifically, we find that the amount of squeezing is not simply dependent on the order of magnitude
of the effective optomechanical coupling but strongly on the ratio of sideband strengths for it. To maximize
the mechanical squeezing, we numerically and analytically optimize this ratio in the steady-state regime,
respectively. The mechanical squeezing engineered in our scheme also is extremely robust and can survive at
a high bath temperature. Compared with previous schemes based on the two-tone pump technique, our scheme
involves fewer external control laser sources and can be extended to other quantum systems to achieve a strong
squeezing effect.
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I. INTRODUCTION

In recent years, with the enormous advances in optome-
chanics, including the experimental realization of quantum
ground-state cooling for mechanical oscillators [1–6] and
exploitation of strong optomechanical coupling [7–9], the
optomechanical system, the study of a controllable radiation-
pressure interaction between optical (microwave) and me-
chanical degrees of freedom, has been the flexible platform
for the quantum manipulation of macroscopic mechanical
oscillators in the fields of fundamental research and ap-
plied science [10–13]. Particularly, the exploration of the
quantum-to-classical transition [11,14], the search for novel
quantum effects at the macroscale [15], and the pursuit to
measure extremely weak signals (gravitational waves) with
an ultrahigh precision at the quantum level of sensitivity
[16,17] have been the primary thrust for engineering strong
mechanical squeezing in optomechanical systems. Therefore,
many significant efforts have been devoted to developing
alternative mechanical squeezing methods and techniques.
In the early parametric amplification mechanical squeezing
scheme, similar to the parametric technique applied to optical
squeezing [18], due to the limitation of system instability,
the amount of mechanical squeezing could not be reduced to
below one-half the standard quantum limit (i.e., the so-called
3-dB limit) [19]. Based on the cavity optomechanical system,
many schemes have also been proposed to generate mechan-
ical squeezing, such as modulation of the external driving
field [20–22], quantum squeezing transfer from the optical
parametric amplifier to the mechanical oscillator [23], and
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XX -type interaction induced by a mechanical non-Markovian
reservoir [24]. Although the above schemes possess respective
advantages under certain circumstances, the achieved me-
chanical squeezing is relatively weak and fails to break the
3-dB limit. As a consequence, to overcome this limit, other
strong mechanical squeezing schemes have been proposed
accordingly, including squeezed light driving and squeezing
transfer [25], quadratic optomechanical coupling [26], dissi-
pative optomechanical coupling [27,28], and Duffing nonlin-
earity [29–31]. We have also investigated the joint mechanical
squeezing effect between two kinds of squeezing techniques
instead of only one squeezing manipulation method in the
above schemes and found that strong mechanical squeezing,
beyond the 3-dB limit, can be easily engineered, but each kind
of independent squeezing component is permitted below 3 dB
[32]. Furthermore, some schemes have even resorted to more
complex techniques, such as quantum measurement [33–35],
quantum feedback [36], modulations of radiation-pressure
coupling and mechanical spring constant [37], combination
of both linear and quadratical optomechanical couplings and
squeezed light injection [38], and simultaneous linear and
nonlinear couplings and amplitude-modulated driving field
[39].

In fact, another powerful approach to effectively ma-
nipulate quantum states is reservoir engineering. Due to
the advantages of the independence of the initial state for
the system and the robustness with respect to decoherence
for the environment, this technique is extremely high perfor-
mance in experimental implementations and has been widely
applied in cavity (circuit) quantum electrodynamics [40–44]
and cavity optomechanics [45–53]. In Ref. [45], a stationary
two-mode squeezed vacuum state of two mechanical oscilla-
tors can be generated by cavity dissipation. The highly entan-
gled cavity fields can be achieved by mechanical dissipation
in a three-mode optomechanical system where two optical or
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microwave cavity modes are coupled to a common mechanical
mode [46]. Very recently, the theoretical work in Ref. [46] has
been successfully demonstrated in experiments and the sta-
tionary emission of entangled microwave radiation fields was
observed [47]. However, Ref. [48] considered a different case
where two mechanical oscillators are independently coupled
to a common cavity mode and strong mechanical-mechanical
entanglement can be prepared by the engineering of a single
reservoir. Based on this scheme, the stabilized entanglement
between two massive micromechanical oscillators has also
been reported experimentally using the technique of reservoir
engineering [49]. The typical mechanical squeezing scheme
applying the reservoir engineering technique to optomechan-
ics is driving an optical or microwave cavity with a pair
of pump tones at ωc ∓ ωm (ωc is the optical or microwave
frequency while ωm is the mechanical frequency) [50], and it
is required that the red-detuned pump should be at a higher
power than the blue-detuned pump. Subsequently, utilizing
the reservoir engineering technique based on two-tone driv-
ing, some experimental works have manipulated a microme-
chanical oscillator into a quantum squeezed state [51–53].
Hence, a novel and interesting idea arises: Can the above
schemes [50–53] work well when there is only a single-tone
pump? We wish to address this curious question.

In this paper, we consider a standard optomechanical de-
vice involving only one cavity mode and one mechanical
mode which are coupled through radiation-pressure interac-
tion. A specific kind of periodic amplitude modulation is
introduced into the single-tone driving field. This operation
leads to the desired form of effective optomechanical cou-
pling in the long-time limit, which permits cooling down the
Bogoliubov mode of the mechanical mode via the interaction
with the cavity mode. Under this mechanism, strong mechan-
ical squeezing, far surpassing 3 dB, can be engineered. We
discuss in detail the effects of the nonresonant terms induced
by the periodic structure of the effective optomechanical
coupling on the mechanical squeezing, which results in the
direction of quadrature squeezing rotating continuously in
phase space. To maximize the squeezing, we numerically and
analytically optimize the ratio for the effective optomechani-
cal coupling sideband strengths, respectively, which balances
the competing effect between the two opposing tendencies
to the greatest degree. We also note that the engineered me-
chanical squeezing is robust against mechanical thermal noise
and can survive at a high bath temperature. Besides involving
fewer external control laser sources compared with previous
schemes, our scheme can also be generalized to simplify some
existing schemes, such as dissipative generation of a squeezed
output field [54] and mechanical squeezing in an unresolved-
sideband regime [55] based on the two pump tones.

The rest of this paper is organized as follows. In Sec. II,
we introduce the standard optomechanical system driven by
a periodically amplitude-modulated single-tone pump field.
In Sec. III, we illustrate the periodic dynamics of the ma-
nipulated optomechanical system and derive the linear quan-
tum Langevin equation. In Sec. IV, we obtain the required
effective optomechanical coupling for the generation of me-
chanical squeezing and discuss it in detail from the perspec-
tives of nonresonant term influence without the rotating-wave
approximation (RWA), balancing of the competing effects,

FIG. 1. Schematic of the optomechanical setup for achieving
strong mechanical squeezing, where the cavity field driven by a
periodically amplitude-modulated external laser field couples to the
mechanical mode via the controllable radiation-pressure interaction.

and optimization of the ratio for the effective optomechanical
coupling sideband strengths, respectively. In Sec. V, via elim-
ination of the cavity mode adiabatically, explicitly analytical
expressions for the stationary mechanical squeezing and the
optimized ratio for the sideband strengths are obtained and
the experimental feasibility is also briefly analyzed. Finally,
we summarize our work in Sec. VI.

II. MODEL AND HAMILTONIAN

A sketch of the modulated optomechanical system is
shown in Fig. 1, in which a periodically amplitude-modulated
external driving field [with amplitude εL(t ) and frequency ωL]
is imposed on the standard optomechanical system. Under
the strong-driving regime, the optical field (with frequency
ωa and decay rate κ) interacts with the mechanical oscillator
(with frequency ωm and damping γm) via the manipulable
radiation-pressure effect. In the rotating frame with respect to
the laser frequency ωL, the system Hamiltonian can be written
as (h̄ = 1)

H = δaa†a + ωmb†b − g0a†a(b + b†)

+ i[εL(t )eiϕa† − ε∗
L(t )e−iϕa], (1)

where δa = ωa − ωL is the frequency detuning of the cavity
with respect to the input laser, a† (b†) and a (b) are the creation
and annihilation operators of the cavity (mechanical) mode,
respectively, and g0 is the single-photon optomechanical cou-
pling strength. εL(t ) is the periodically modulated amplitude
of the external driving field and is carried out for a modulation
period τ , i.e., εL(t ) = εL(t + τ ) = ∑∞

n=−∞ εne−in	t , in which
	 = 2π/τ is the modulation frequency and εn is the sideband-
modulation strength associated with the corresponding side-
band power Pn by εn = √

2κPn/(h̄ωL ). ϕ is the phase of the
laser field coupling to cavity mode a [56]. For simplicity, we
usually set ϕ = 0 in generic optomechanical systems [57,58].
Later we show the extremely vital role that the modulation
sidebands (∼e±i	t ) play in engineering strong mechanical
squeezing.

Due to the coupling between the optomechanical system
and the environment, the system dynamics will inevitably
be influenced by the cavity decay and mechanical damping.
Taking these dissipative elements into account, the quantum
Langevin equations (QLEs) that dominate the system dynam-
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ical evolution are
da

dt
= −iδaa + ig0a(b + b†) + εL(t ) − κ

2
a + √

κain(t ),

db

dt
= −iωmb + ig0a†a − γm

2
b + √

γmbin(t ), (2)

where ain(t ) and bin(t ) are, respectively, the zero-mean cavity
vacuum input noise operator and mechanical thermal noise
operator. Under the Markovian reservoir assumption, the
nonzero correlation functions of the noise operators ain and
bin are [59]

〈a†
in(t )ain(t ′)〉 = naδ(t − t ′),

〈ain(t )a†
in(t ′)〉 = (na + 1)δ(t − t ′),

〈b†
in(t )bin(t ′)〉 = nmδ(t − t ′),

〈bin(t )b†
in(t ′)〉 = (nm + 1)δ(t − t ′), (3)

where na and nm are the mean thermal occupancies of the
cavity bath and mechanical bath, respectively.

III. SYSTEM PERIODIC DYNAMICS

Strong external driving induces high amplitudes of the
cavity mode and mechanical mode so that the standard lin-
earization technology can be applied to the nonlinear QLEs
in Eq. (2). For this purpose, we write cavity mode a and
mechanical mode b as the sum of the classical mean value and
the quantum fluctuation operator, i.e., O → 〈O (t )〉 + O (O =
a, b). In this case, we obtain the set of equations of motion for
〈a(t )〉 and 〈b(t )〉:

d〈a(t )〉
dt

= −iδa〈a(t )〉 + ig0〈a(t )〉[〈b(t )〉 + 〈b(t )〉∗]

+ εL(t ) − κ

2
〈a(t )〉,

d〈b(t )〉
dt

= −iωm〈b(t )〉 + ig0|〈a(t )〉|2 − γm

2
〈b(t )〉. (4)

The linearized QLEs for the quantum fluctuation operators
can be correspondingly acquired,

da

dt
= −i�aa + ig0〈a(t )〉(b + b†) − κ

2
a + √

κain(t ),

db

dt
= −iωmb + ig0〈a(t )〉∗a + ig0〈a(t )〉a†

− γm

2
b + √

γmbin(t ), (5)

where �a = δa − g0[〈b(t )〉 + 〈b(t )〉∗] is the effective cavity
detuning sightly modulated by the mechanical motion.

Owing to the periodic modulation of the external driv-
ing acting on the optomechanical cavity [εL(t ) = εL(t + τ )],
according to the Floquet theorem [60], for the present lin-
earized dynamical system, the cavity mode amplitude 〈a(t )〉
and mechanical mode amplitude 〈b(t )〉 will acquire the same
modulation period with the performed external driving in
the asymptotic regime, i.e., limt→∞〈a(t )〉 = 〈a(t + τ )〉 and
limt→∞〈b(t )〉 = 〈b(t + τ )〉.

For simplicity and to produce the desired system dynamics
for generating mechanical squeezing, we need only to trun-
cate the driving-modulation sidebands to the order of e±i	t ,

i.e., εL(t ) = ∑1

n=−1 εne−in	t . As a result, the cavity mode
amplitude 〈a(t )〉 and mechanical mode amplitude 〈b(t )〉 will
have the same form as the chosen external driving-modulation
structure in the long-time limit,

〈O (t )〉 = O−1ei	t + O0 + O1e−i	t (O = a, b), (6)

where On are the sideband amplitudes for the cavity and
mechanical modes with n = −1, 0, 1. For more details see
Appendix A.

IV. ENGINEERING OF MECHANICAL SQUEEZING

In order to reveal the significantly important effect of the
modulation sidebands (∼e±i	t ) on the engineering mechani-
cal squeezing, we define g0〈a(t )〉 in Eq. (4) as the effective
optomechanical coupling G(t ) and specify it as

G(t ) = g0〈a(t )〉 = G−1ei	t + G0 + G1e−i	t , (7)

where Gn (n = −1, 0, 1) are time-independent positive reals
and associated with the driving sideband components εn. By
further indicating the slow-varying fluctuation operators with
tildes, a = ãe−i�at , b = b̃e−iωmt , ain = ãine−i�at , and bin =
b̃ine−iωmt , setting the effective cavity detuning as the anti-
Stokes sideband �a = ωm and the external driving modu-
lation frequency 	 = 2ωm, and assuming that the effective
optomechanical coupling sideband amplitudes are weak, i.e.,
Gn � ωm, the linearized QLEs for the operators ã and b̃ can
be simplified as

˙̃a = iG0b̃ + iG1b̃† − κ

2
ã + √

κ ãin(t ),

˙̃b = iG0ã + iG1ã† − γm

2
b̃ + √

γmb̃in(t ), (8)

where the fast-oscillating terms e±2iωmt and e±4iωmt have been
omitted safely under the RWA and whose nonresonant effects
are discussed later.

For convenience, we indicate the quadrature fluctuation
operators with tildes,

δX̃O=a,b = (Õ + Õ†)/
√

2,

δỸO=a,b = (Õ − Õ†)/
√

2i, (9)

and the quadrature noise operators with tildes,

X̃ in
O=a,b = (Õin + Õ†

in )/
√

2,

Ỹ in
O=a,b = (Õin − Õ†

in )/
√

2i. (10)

Then Eq. (8) can be expressed in a more concise form,

˙̃R(t ) = M̃R̃(t ) + Ñ(t ), (11)

where the vector R̃ for the fluctuation operators is R̃ =
[δX̃a, δỸa, δX̃b, δỸb]T , the 4×4 time-independent coefficient
matrix M̃ is

M̃ =

⎡
⎢⎢⎢⎣

− κ
2 0 0 −G−

0 − κ
2 G+ 0

0 −G− − γm

2 0

G+ 0 0 − γm

2

⎤
⎥⎥⎥⎦, (12)
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and the noise operator victor Ñ is defined as Ñ =
[
√

κX̃ in
a ,

√
κỸ in

a ,
√

γmX̃ in
b ,

√
γmỸ in

b ]T . Here G± = G0 ± G1.
Obviously, Eq. (11), which is completely equivalent to the

linearized QLEs in Eq. (8), is a first-order inhomogeneous
differential equation with a constant coefficient, whose formal
solution can be written as

R̃(t ) = G̃(t )R̃(0) + G̃(t )
∫ t

0
G̃−1(τ )Ñ(τ )dτ, (13)

in which G̃(t ) satisfies ˙̃G(t ) = M̃G̃(t ) and its initial condition
is G̃(0) = I (here I is the identity matrix).

For a more general regime of the optomechanical system,
introducing the covariance matrix (CM) is more convenient
for study of the dynamical evolution of the system. To
this end, we define a CM Ṽ(t ) with components Ṽi j (t ) =
〈R̃i(t )R̃ j (t )〉 for i, j = 1, 2, 3, 4. Upon further combining
Eq. (13), the explicit expression of the CM Ṽ(t ) is

Ṽ(t ) = G̃(t )Ṽ(0)G̃T (t ) + G̃(t )̃S(t )G̃T (t ), (14)

where

S̃(t ) =
∫ t

0

∫ t

0
G̃−1(τ )K̃(τ, τ ′)[G̃−1(τ ′)]T dτdτ ′, (15)

in which K̃(τ, τ ′) is the so-called two-time noise correla-
tion function, whose elements are defined as K̃i j (τ, τ ′) =
〈Ñi(τ )Ñ j (τ ′)〉. Obviously, the last two diagonal elements,
Ṽ33(t ) and Ṽ44(t ), of Ṽ(t ) are just the variances for the
mechanical position and momentum, respectively. Certainly,
the degree of mechanical squeezing can also be expressed in
decibel units by −10 log10[Ṽ j j (t )/0.5] ( j = 3, 4). Here, we
specify that the cavity mode a is prepared in the vacuum state
while the mechanical mode b is in the thermal state with the
occupancy nm initially.

According to the Routh-Hurwitz stability criterion [61],
only if all eigenvalues of the time-independent coefficient
matrix M̃ in Eq. (11) possess negative real parts will the
system dynamics characterized by Eq. (11) finally be stable.
For the current parameter regime, the stability constraint can
be reduced as a simple form: G0 > G1.

A. Nonresonant effects without the RWA

In the above discussion, we have ignored the nonresonant
effects of the fast-oscillating terms by using the RWA. In
this case, their functions in engineering mechanical squeezing
are erased. To determine the contributions of the discarded
high-frequency oscillating terms, we redefine the quadrature
fluctuation operators, the quadrature noise operators, and their
corresponding operator vectors without tildes. Their forms
are exactly the same as the above definitions except for the
time-dependent coefficient matrix M(t ),

M(t ) =

⎡
⎢⎢⎢⎣

− κ
2 �a −Im[2G(t )] 0

−�a − κ
2 Re[2G(t )] 0

0 0 − γm

2 ωm

Re[2G(t )] Im[2G(t )] −ωm − γm

2

⎤
⎥⎥⎥⎦,

(16)

FIG. 2. Time evolution of variances for the mechanical position
and momentum fluctuations with and without the RWA, respectively.
System parameters are set at �a = ωm, κ = 0.1ωm, γm = 10−6ωm,
G−1 = 0.01ωm, G0 = 0.1ωm, G1 = 0.05ωm, nm = 10, and na = 0.
The blue-shaded region at the bottom corresponds to mechanical
squeezing.

where Re[. . . ] and Im[. . . ] indicate, respectively, the real
and imaginary parts of a complex number. As a result, the
fluctuation operator vector R is

R(t ) = G(t )R(0) + G(t )
∫ t

0
G−1(τ )N(τ )dτ, (17)

where G(t ) fulfills Ġ(t ) = M(t )G(t ) and the initial condition
is still G(0) = I.

To check the dynamics of quadrature squeezing explicitly,
in Fig. 2, we display the time evolution of variances for the
mechanical position and momentum fluctuations in cases with
and without the RWA in the modulation periods of [0, 100τ ]
when a typical parameter set of the effective optomechanical
coupling sideband strengths (G−1, G0, G1) is given. Clearly,
it is shown that, when the RWA is not used, the mechanical
position and momentum will be periodically squeezed in the
long-time limit and the squeezing period is just the performed
external modulation period τ . For example, in the modu-
lation periods of [95τ, 100τ ], the mechanical position and
momentum are all squeezed five times, respectively. However,
as shown in Fig. 2, due to the bound of the Heisenberg
uncertainty relation [62], the mechanical position and mo-
mentum cannot be squeezed simultaneously. Once the RWA
is exploited to erase the contributions of the high-frequency
oscillating terms e±2iωmt and e±4iωmt , the τ -periodicity position
and momentum squeezing will collapse in the direction of
the position and the momentum squeezing will disappear
accordingly. But in the cases both with and without the RWA,
the amount of mechanical squeezing is almost the same during
the entire evolution process.

On the other hand, the nonresonant effects of the fast-
oscillating terms can be revealed more intuitively in phase
space. To this end, it is necessary to introduce the Wigner
function. Due to the above linearized system dynamics
[Eq. (5)] and the zero-mean Gaussian nature of the quantum
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FIG. 3. Wigner functions of the mechanical mode at some different specific times in cases with and without the RWA. System parameters
are the same as in Fig. 2.

noises, it ensures that the quantum steady state of the system is
a Gaussian state [57,63]. Hence, as long as the CM is obtained,
the Wigner function of the mechanical mode can be expressed
as [64,65]

W (D) = 1

2π
√

Det[Vb]
exp

{
−1

2
DT V−1

b D
}
, (18)

where D refers to the two-dimensional vector D = [Xb,Yb]T

and Vb is the CM for the mechanical mode.
In Fig. 3, we further show the Wigner functions of the

mechanical mode in the long-time modulation period of
[99τ, 100τ ] for one quarter-period time interval with and
without the RWA, respectively. One can observe in Fig. 3
that, under the actions of the nonresonant effects of fast-
oscillating terms, the direction of quadrature squeezing rotates
continuously in phase space and the rotation period just
corresponds to the modulation period τ . This is because the
performed external driving is τ periodic [εL(t ) = εL(t + τ )],
and according to the Floquet theory, the CM of the system
will acquire the same periodicity of the external modulation in
the long-time limit, i.e., Ṽ(t ) = Ṽ(t + τ ) [20,66]. Therefore,
from Eq. (18), we can conclude that the Wigner function of
the mechanical mode W will also satisfy W (δXb, δYb, t ) =
W (δXb, δYb, t + τ ), and thus the period of rotation of the
Wigner function in phase space is 2τ . However, when the
high-frequency oscillating terms are omitted by the RWA, the
rotation of the Wigner functions at different specific times
disappears and they all stretch along the vertical axis and
contract along the horizontal axis, which clearly characterizes
the mechanical squeezing in the direction of the position. It is
also found that, throughout all the Wigner functions in Fig. 3,
with or without the RWA, their shape is fixed, which again
indicates that the degree of mechanical squeezing is almost
equivalent in the two cases. This is since G0 is maximum
in the parameter set (G−1, G0, G1), and the Stokes-scattering
process G0e−2iωmt ab + G0e2iωmt a†b† is the nearest resonant
term among the neglected high-frequency oscillating terms.

In the low excitation of the mechanical bath (nm = 10), the
quantum backaction effect induced by the nearest resonant
Stokes-scattering process on the mechanical mode is very
weak. Therefore, the contribution of these high-frequency
oscillating terms neglected by the RWA to the shape of the
Wigner function is not remarkable.

In addition, to achieve the desired form of the effective
optomechanical coupling G(t ) as shown in Eq. (7) for a given
set (G−1, G0, G1), what is of our concern is how to choose an
appropriate set of sideband-modulation strengths (ε−1, ε0, ε1)
for the external driving εL(t ). See Appendix B for more
details.

In the present mechanical squeezing scheme, if we keep
G0 fixed but add a π phase to G1, i.e., G1 = |G1|eiπ , the
quadrature squeezing of the mechanical position and momen-
tum fluctuations in the long-time modulation limit in Fig. 2
will be reversed. As a result, the use of the RWA leads also to
squeezing in the direction of momentum and squeezing of the
position fluctuation vanishes accordingly.

B. Competing effects between two opposing tendencies

In this subsection, we present further interpretation of en-
gineering mechanical squeezing via dissipation of the cavity
mode. For this reason, we introduce the Bogoliubov mode
β = cosh rb̃ + sinh rb̃† with tanh r = G1/G0. In terms of the
Bogoliubov mode, the QLEs in Eq. (8) become

˙̃a = −κ

2
ã + iGβ + √

κ ãin(t ),

β̇ = iGã − γm

2
β + √

γmβin(t ), (19)

where G =
√

G2
0 − G2

1 is the effective coupling between
the Bogoliubov mode and the cavity mode and βin(t ) =
cosh rb̃in(t ) + sinh rb̃†

in(t ) is the effective noise corresponding
to the Bogoliubov mode.

In Fig. 4, we plot the position variance 〈δX̃ 2
b 〉 of the

mechanical mode and the occupancy 〈β†β〉 of the Bogoliubov
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FIG. 4. (a) Position variance 〈δX̃ 2
b 〉 of the mechanical mode b

and (b) occupancy 〈β†β〉 of the Bogoliubov mode β versus the ratio
G1/G0 of the sideband strengths for the effective optomechanical
coupling G in the long-time limit. In both panels, the solid blue and
dashed red curves correspond to the results obtained with nm = 10
and nm = 100, respectively. The green- and pink-shaded regions at
the bottom in (a) and (b) correspond, respectively, to mechanical
squeezing below the 3-dB limit and Bogoliubov mode cooling for
〈β†β〉 < 1. The vertical dashed magenta line corresponds to the po-
sition of the maximal 〈δX̃ 2

b 〉 (dB) in the range G1 ∈ [0, G0]. System
parameters are the same as in Fig. 2.

mode as functions of the effective optomechanical coupling
sideband strength ratio G1/G0 for a fixed G0 in the case of
different mean bath phonon numbers. It can be found that,
in the two cases nm = 10 and nm = 100, with an increase in
G1 up to a critical value, 〈δX̃ 2

b 〉 is a monotonic function of
G1/G0 and the mechanical squeezing becomes stronger and
stronger. In this corresponding range of G1/G0, the occupancy
〈β†β〉 for the Bogoliubov mode increases, but very gently,
and the Bogoliubov mode remains in the ground-state cooling
zone. However, with a continuous increase in G1, once beyond
this critical value, 〈δX̃ 2

b 〉 declines rapidly, but on the contrary,
〈β†β〉 increases sharply. One can also clearly see that, for
this specific G1/G0, 〈δX̃ 2

b 〉 takes the maximum and 〈β†β〉
simultaneously begins to increase sharply. This interesting
competing effect can be thoroughly understood as follows.

According to Eq. (19), in terms of the Bogoliubov mode β,
the system Hamiltonian becomes

H = −G(ãβ† + H.c.). (20)

This shows that, obviously, the cavity mode ã and the Bogoli-
ubov mode β are coupled via the well-known beam-splitter
Hamiltonian, which is usually applied to the optomechanical
sideband cooling schemes of the mechanical mode [67–69].
Therefore, the Bogoliubov mode β can be cooled into the
ground state via the interaction with the cavity mode ã. With
an increase in G1 for a fixed G0, the squeezing parameter
r = arctanh[G1/G0] will be increased accordingly. Hence, as
shown in Fig. 4(a), the mechanical mode is squeezed more
strongly. On the other hand, with a continuous increase in
G1, the effective coupling between the cavity mode and the
Bogoliubov mode G =

√
G2

0 − G2
1 will be decreased for a

FIG. 5. (a) Maximized position variance 〈δX̃ 2
b 〉 of the mechanical

mode and (b) optimal ratio G1/G0 as functions of the effective
optomechanical coupling center sideband strength G0 for different
mean thermal occupancies of the mechanical bath. Here the maxi-
mized 〈δX̃ 2

b 〉 in (a) is acquired utilizing the corresponding optimal
radio G1/G0 in (b) for different G0 values. System parameters are
the same as in Fig. 2.

fixed G0 and finally vanish, which inhibits the ground-state
cooling of the Bogoliubov mode more and more remarkably.
So, as shown in Fig. 4(b), the occupancy 〈β†β〉 rises gently
at first and then increases sharply later. Once the Bogoli-
ubov mode β cannot be cooled close to its ground state, the
deleterious effect of the thermal noise plays a dominant role
and the amount of mechanical squeezing decreases quickly
and ultimately disappears. Thus, the strongest mechanical
squeezing for a fixed G0 is just the balanced result from the
competing effect of these two different kinds of opposing
tendencies. The above novel phenomena verify again the fact
that the cooling is a prerequisite to reveal the macroscopic
quantum effects of the mechanical mode.

C. Optimal ratio for the effective optomechanical
coupling sideband strengths

As illustrated in Fig. 4, for a fixed G0, there is a specific
G1 that ensures maximization of the mechanical squeezing. If
G1 is small, the mechanical squeezing is weak (r is small).
However, when G1 is too large, the cooling capacity of the
cavity mode is restrained significantly. Therefore, to engineer
strong mechanical squeezing, it is absolutely necessary to
optimize the ratio G1/G0 over an appropriate range of G0.

To this end, we numerically optimize the mechanical po-
sition variance 〈δX̃ 2

b 〉 and the maximized 〈δX̃ 2
b 〉 as functions

of G0 with different mechanical bath mean occupancies as
shown in Fig. 5(a). Meanwhile, the corresponding optimal
ratio G1/G0 which balances the competing effect between
squeezing and cooling best for every G0 is also presented
in Fig. 5(b). As expected, in Fig. 5(a) one can note that,
due to the adverse effect of the mechanical thermal noise,
this is a reverse dependence of the maximized 〈δX̃ 2

b 〉 on the
mean thermal occupancy of the mechanical bath. On the other
hand, with an increase in G0, the coupling G =

√
G2

0 − G2
1 =
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FIG. 6. Position variance 〈δX̃ 2
b 〉 of the mechanical mode versus

the system cooperativity C with different cavity mode dissipation
rates κ , in which 〈δX̃ 2

b 〉 is obtained with the numerically optimized
ratio G1/G0. Here the system parameters are chosen as γm = 10−5ωm

and nm = 0. Other parameters are the same as in Fig. 2.

G0

√
1 − (G1/G0)2 will be enhanced accordingly for a specific

G1/G0. As a result, the cooling behavior performed by the
cavity mode is more powerful, which means that, as demon-
strated in Fig. 5(b), the tendency of the optimal ratio G1/G0 is
to approach closer and closer to unity but not equal unity. This
implies in turn the stronger mechanical squeezing displayed in
Fig. 5(a).

In addition, it is well known that the ground-state cooling
of the Bogoliubov mode β not only is dependent on the cou-
pling strength G between the cavity mode and the Bogoliubov
mode, but also is related closely to the decay rate of the
cavity mode itself. To shed light on the effect of the cavity
mode decay rate on engineering mechanical squeezing clearly,
in Fig. 6 we plot the position variance 〈δX̃ 2

b 〉 as functions
of the system cooperativity C = 4G2

0/(κγm) with a different
decay rate κ , where 〈δX̃ 2

b 〉 has been maximized by numerically
optimizing the ratio over the entire G1/G0. One finds that
stronger mechanical squeezing can be engineered in the limit
of large system cooperativity C. On the other hand, it is also
clearly shown that the increasing decay rate of the cavity mode
leads to stronger mechanical squeezing.

V. ANALYTICAL SOLUTION FOR THE STEADY-STATE
MECHANICAL SQUEEZING

In the present scheme, although we make use of the time-
modulated input field to drive the optomechanical system
[essentially, it is time modulated for the effective optomechan-
ical coupling G(t )], as shown in Sec. IV, the time-dependent
system dynamics [Eq. (5)] can be successfully transformed
into time-independent effective system dynamics [Eq. (19)]
via use of the RWA. Then based on the time-independent
effective system dynamics after use of the RWA, as long
as the condition of adiabatic approximation is satisfied, i.e.,
the cavity decay rate κ is much larger than the effective
coupling G between the cavity mode ã and the Bogoliubov
mode β (κ 
 G), the cavity mode ã still can be adiabatically
eliminated from the dynamics [23].

In this section, to better understand the mechanical squeez-
ing effect and obtain the explicit optimal ratio of G1/G0,

we analytically solve the position variance of the mechanical
mode in the steady regime. From Eq. (19) we obtain

ã � 2iG
κ

β + 2√
κ

ãin(t ), (21)

and substituting this into Eq. (19), we have

β̇ � −hβ + 2iG√
κ

ãin(t ) + √
γmβin(t ), (22)

where h = 2G2/κ + γm/2. From Eq. (22), the dynamical
equation for the position fluctuation operator δQβ of the
Bogoliubov mode can be obtained,

δQ̇β = −hδQβ + F1(t ) + F2(t ), (23)

where

F1(t ) = − 2G√
κ

Ỹ in
a (t ),

F2(t ) =
√

γm

2
[βin(t ) + β

†
in(t )] (24)

are the effective quantum Langevin forces acting on the
Bogoliubov mode and their correlation functions are

〈F1(t )F1(t ′)〉 = 4G2

κ

(
na + 1

2

)
δ(t − t ′),

〈F2(t )F2(t ′)〉 = γme2r

(
nm + 1

2

)
δ(t − t ′). (25)

According to Eqs. (23) and (25), the dynamical equation for
〈δQ2

β〉 is

d

dt

〈
δQ2

β

〉 = −2h
〈
δQ2

β

〉 + 4G2

κ

(
na + 1

2

)
+ γme2r

(
nm + 1

2

)
,

(26)

and therefore the analytical solution of 〈δQ2
β〉 in the steady-

state regime is

〈
δQ2

β

〉
s = 2G2

hκ

(
na + 1

2

)
+ γm

2h
e2r

(
nm + 1

2

)
. (27)

As a result, the analytical solution for the steady-state position
variance 〈δX̃ 2

b 〉s of the mechanical mode can be obtained
accordingly:〈

δX̃ 2
b

〉
s = e−2r

〈
δQ2

β

〉
s

= 2G2

hκ
e−2r

(
na + 1

2

)
+ γm

2h

(
nm + 1

2

)
. (28)

Here, we consider two limit cases. When G1 → 0, we
obtain G → G0, r = arctanhG1/G0 → 0, and h → 2G2

0/κ +
γm/2 � 2G2

0/κ . Therefore,

lim
G1→0

〈
δX̃ 2

b

〉
s =

(
na + 1

2

)
+ κγm

4G2
0

(
nm + 1

2

)
. (29)

Under the conditions of a high-frequency optical bath (na = 0)
and a large system cooperativity C, limG1→0〈δX̃ 2

b 〉 � 1
2 (0 dB),

which indicates that the mechanical mode is in the vacuum
state approximately and it closely coincides with the case of

053836-7



BAI, WANG, ZHANG, LIU, AND WANG PHYSICAL REVIEW A 101, 053836 (2020)

G1 → 0 in Fig. 4(a). Obviously, for G1 → G0, we obtain G →
0, r = arctanhG1/G0 → ∞, and h → γm/2. Hence,

lim
G1→G0

〈
δX̃ 2

b

〉
s = nm + 1

2
, (30)

which means that the cooling effect disappears completely
and the mechanical mode is in a thermal state. This also
matches very well the situation of G1 → G0 in Fig. 4.

To check the accuracy of the analytical solution in Eq. (28)
obtained under the adiabatic approximation, we now solve the
exact numerical solution for the steady-state position variance
〈δX̃ 2

b 〉s of the mechanical mode. Taking the Fourier transform
on both sides of Eq. (11) by f (t ) = 1

2π

∫ ∞
−∞ f (ω)e−iωt dω and

solving it in the frequency domain, we get the expression for
the position fluctuation of the mechanical mode,

δX̃b(ω) = A(ω)X̃ in
a (ω) + B(ω)Ỹ in

a (ω)

+ E (ω)X̃ in
b (ω) + F (ω)Ỹ in

b (ω), (31)

where

A(ω) = 0, B(ω) = − 4G−
√

κ

4G−G+ + (γm − 2iω)(κ − 2iω)
,

E (ω) = 2(κ − 2iω)
√

γm

4G−G+ + (γm − 2iω)(κ − 2iω)
, F (ω) = 0.

(32)

Apparently, the contribution of the first two terms in Eq. (31)
originates from the optical bath vacuum input noise, while
the last two terms correspond to the contribution of the me-
chanical bath thermal noise. When the effective optomechan-
ical coupling sideband strengths satisfy G1 = G0, δX̃b(ω) =√

γm
γm
2 −iω X̃ in

b (ω). Not surprisingly, this shows that the mechanical
oscillator will make quantum Brownian motion because of the
coupling with the bath environment.

The correlation functions of the noise operators in Eq. (31)
are〈

X̃ in
a (ω)X̃ in

a (	)
〉 = 〈

Ỹ in
a (ω)Ỹ in

a (	)
〉

= (
na + 1

2

)
2πδ(ω + 	),〈

X̃ in
a (ω)Ỹ in

a (	)
〉 = −〈

Ỹ in
a (ω)X̃ in

a (	)
〉 = iπδ(ω + 	),〈

X̃ in
b (ω)X̃ in

b (	)
〉 = 〈

Ỹ in
b (ω)Ỹ in

b (	)
〉

= (
nm + 1

2

)
2πδ(ω + 	),〈

X̃ in
b (ω)Ỹ in

b (	)
〉 = −〈

Ỹ in
b (ω)X̃ in

b (	)
〉 = iπδ(ω + 	), (33)

and the position fluctuation spectrum of the mechanical mode
is defined as

2πSX̃b
(ω)δ(ω + 	) = 1

2 [〈δX̃b(ω)δX̃b(	)〉 + 〈δX̃b(	)δX̃b(ω)〉].
(34)

Resorting to Eq. (33), the position fluctuation spectrum SX̃b

can be obtained:

SX̃b
(ω) = [A(ω)A(−ω) + B(ω)B(−ω)]

(
na + 1

2

)
+ [E (ω)E (−ω) + F (ω)F (−ω)]

(
nm + 1

2

)
. (35)

In the case of G1 = G0, the position fluctuation spectrum is

simplified as SX̃b
(ω) = γm(nm + 1

2 )/( γ 2
m
4 + ω2), which obvi-

FIG. 7. Comparison between the exact numerical solution and
the approximate analytical solution for the steady-state position vari-
ance 〈δX̃ 2

b 〉s of the mechanical mode with different mechanical bath
mean phonon numbers. The solid green and dashed pink curves refer
to the results obtained with, respectively, Eqs. (36) and (28). Here the
system parameter is chosen as G0 = 0.2ωm and other parameters are
the same as in Fig. 2.

ously represents a Lorentzian spectrum with a single peak
located at frequency 0 and full width γm at half-maximum.
The steady-state position variance 〈δX̃ 2

b 〉s can be calculated
by 〈

δX̃ 2
b

〉
s = 1

2π

∫ ∞

−∞
SX̃b

(ω)dω. (36)

Under the condition G1 = G0, we find 〈δX̃ 2
b 〉s = nm + 1

2 ,
which is just the case of the analytical solution in Eq. (30).

In Fig. 7, we compare the steady-state position variance
〈δX̃ 2

b 〉s of the mechanical mode obtained from, respectively,
the exact numerical solution of Eq. (36) and the approximate
analytical solution of Eq. (28) with different mechanical bath
mean phonon numbers. As confirmed in Fig. 7, the analytical
solution under the adiabatic approximation agrees very well
with the exact numerical result.

Once the analytical solution of the steady-state position
variance 〈δX̃ 2

b 〉s is obtained, the analytical optimal ratio
G1/G0 to maximize 〈δX̃ 2

b 〉s can be evaluated accordingly, in
principle, by

d
〈
δX̃ 2

b

〉
s

d (G1/G0)
= 0. (37)

After some simplifications, the optimal G1/G0 fulfills

(1 + 2nm)
G1

G0

∣∣∣∣
opt

− C
[

1 −
(

G1

G0

∣∣∣∣
opt

)2]
e
−2arctanh G1

G0

∣∣
opt = 0,

(38)

which is a transcendental equation for (G1/G0)|opt whose
analytical solution is hard to solve. However, if we further
make an approximation with a large enough cooperativity
(C 
 1)

e−2r � 1

2

√
1 + 2nm

C , (39)
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FIG. 8. Optimal ratio G1/G0 versus effective optomechanical
coupling center sideband strength G0, where (G1/G0 )|opt is evaluated
with, respectively, the numerical solution of Eq. (36), numerical
solution of Eq. (38), and analytical solution of Eq. (40). Here nm =
100 and other parameters are the same as in Fig. 2.

the optimal G1/G0 can be obtained analytically:

G1

G0

∣∣∣∣
opt

�
√

1 + 1 + 2nm

C −
√

1 + 2nm

C . (40)

In Fig. 8, we plot the optimal G1/G0 as functions of G0

using different methods, i.e., numerical solution of Eq. (36),
numerical solution of Eq. (38), and analytical solution of
Eq. (40). One can note that there is only a little discrepancy
among these results initially and they all finally converge.
Therefore, the analytical solution of Eq. (40) is approximately
valid.

To further show the robustness of the mechanical squeezing
engineered via the present method against mechanical ther-
mal noise, we plot the steady-state position variance 〈δX̃ 2

b 〉s

obtained by, respectively, the numerical solution of Eq. (36)
and analytical solution of Eq. (28), as a function of the
thermal phonon occupation number nm. As demonstrated in
Fig. 9, when the bath temperature is low (nm ∼ 10), strong

FIG. 9. Position variance 〈δX̃ 2
b 〉s versus thermal phonon occu-

pation number nm. The green-shaded region at the bottom corre-
sponds to mechanical squeezing below the 3-dB limit. Here γm =
0.5×10−6ωm, G0 = 0.1ωm, and G1 = 0.99G0. Other system param-
eters are the same as in Fig. 2.

mechanical squeezing (∼22 dB), far beyond the 3-dB limit,
is achievable. The result also shows that the engineered
squeezing is extremely robust. Even at a high bath temperature
with nm ∼ 3×103, the steady-state mechanical squeezing can
still break the 3-dB limit. Additionally, one can clearly note
that the analytical result is in excellent agreement with the
numerical calculation.

Before concluding, we briefly discuss the experimental
feasibility of our mechanical squeezing scheme. In the present
scheme, the optomechanical setup used is a standard optome-
chanical cavity, which is significantly common in current
cavity optomechanics [10]. The required system parameters
are also in an accessible range for existing optomechanical
experiments. The applied technique of periodically modulat-
ing the driving field has been highly mature until now and is
widely used to manipulate optomechanical (electromechani-
cal) systems [20,66,70,71]. Therefore, our squeezing scheme
is remarkably workable with the current optomechanics tech-
niques.

VI. CONCLUSIONS

In conclusion, we have proposed a simple but very ef-
fective method to engineer strong mechanical squeezing, far
surpassing 3 dB, in a standard optomechanical system which
only contains a cavity mode and a mechanical mode. The
introduction of suitable periodic modulation into the ampli-
tude of the single-tone driving field enables us to obtain the
desired form of effective optomechanical coupling, which
contributes to cooling the Bogoliubov mode of the mechanical
mode close to its ground state resorting to the interaction
with the cavity mode. We analyze the role that the nonreso-
nant terms produced by the periodically modulated effective
optomechanical coupling in engineering squeezing play and
find that they lead to continuous τ -periodicity rotation of
the direction of quadrature squeezing in phase space. We
demonstrate that the degree of squeezing relies not simply
on the magnitude of the effective optomechanical coupling
but greatly on the sideband strength ratio G1/G0. It is shown
that the engineered squeezing is a nonmonotonic function
of G1/G0. Maximized squeezing results when the optimized
G1/G0 arranges the competing effect between the squeezing
of the mechanical mode and the cooling of the Bogoliubov
mode to the best trade-off. In the steady-state regime, we both
maximize the squeezing and optimize the ratio G1/G0 numer-
ically and analytically, and the results agree very well with
each other. We also show that the engineered squeezing is ex-
tremely robust against thermal noise and the periodic effective
optomechanical coupling form required in our scheme can be
precisely prepared via the explicit external single-tone driving
field, which indicates that the present scheme is completely
feasible with the available experimental platforms in current
cavity optomechanics. Compared with previous schemes, our
scheme not only involves fewer control laser sources, but also
can be expected to simplify some existing schemes based on
the two-tone pump driving technique.
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APPENDIX A: ASYMPTOTIC EVOLUTION
OF THE AMPLITUDES OF THE CAVITY

AND MECHANICAL MODES

In the text, we illustrated that when the performed external
periodic driving is set at εL(t ) = ε−1ei	t + ε0 + ε1e−i	t , the
amplitudes of the cavity and mechanical modes will evolve
toward the same structure in the long-time limit. To gain more
insights into this kind of asymptotic process in dynamics, we
verify it here using the analytical expressions.

In the parameter regime g0 � ωm, the optomechanical
coupling coefficient g0 in Eq. (4) can be treated as a pertur-
bation. Meanwhile, due to the periodicity of the implemented
driving [εL(t ) = εL(t + τ )], the asymptotic amplitudes 〈a(t )〉
and 〈b(t )〉 will also be τ periodic. Therefore, the asymptotic
solutions of Eq. (4) can be made by double expansions (per-
turbation expansion and Fourier expansion),

〈O (t )〉 =
∞∑
j=0

∞∑
n=−∞

On, je
in	t gj

0 (O = a, b), (A1)

where the expansion coefficient On, j is time independent.
Substituting the above equation into Eq. (4), the zeroth-order
perturbation coefficients can be obtained,

an,0 = E−n

i(δa + n	) + κ
2

, bn,0 = 0, (A2)

and the jth-order perturbation coefficients ( j � 1) can also be
determined in the following way using recursive relations:

an, j = i
j−1∑
k=0

∞∑
m=−∞

an+m, j−k−1b∗
m,k + an−m, j−k−1bm,k

i(δa + n	) + κ
2

,

bn, j = i
j−1∑
k=0

∞∑
m=−∞

an+m, j−k−1a∗
m,k

i(ωm + n	) + γm

2

. (A3)

Therefore, the sideband amplitudes On in Eq. (6) can be
expressed as

On =
∞∑
j=0

O−n, jg
j
0 (n = −1, 0, 1). (A4)

To verify the validity of the structure as shown in Eq. (6)
in the long-time limit, in Fig. 10 we explicitly present the
time evolution of the system amplitudes 〈a(t )〉 and 〈b(t )〉 in
the modulation periods of [0, 200τ ] with the exact numerical
solution of Eq. (4) and the analytical expression of Eq. (6),
respectively. The left-hand side of each panel in Fig. 10 clearly
exhibits the slowly approaching process in dynamics between
these two different kinds of results. However, from the right-
hand sides, it is surprisingly found that these two kinds of
results converge perfectly in long-time modulation periods
([190τ, 200τ ]). Therefore, the cavity mode amplitude 〈a(t )〉
and the mechanical mode amplitude 〈b(t )〉 do indeed have the
same structure with externally performed driving modulation

FIG. 10. Asymptotic time evolution of the system amplitudes in
the modulation periods of [0, 200τ ]. Real and imaginary parts of the
cavity mode amplitude 〈a(t )〉 [mechanical mode amplitude 〈b(t )〉]
versus modulation time t , respectively, in (a) and (b) [(c) and (d)].
In all panels, the solid red and dashed blue cross lines are the results
obtained from, respectively, the numerical solution in Eq. (4) and
the analytical expression in Eq. (6). System parameters are chosen
as (in units of ωm) γm = 10−6, δa = 1, κ = 0.1, g0 = 4×10−6, ε0 =
1.4×104, and ε±1 = 0.7×104.

and are τ periodic in the long-time limit. Moreover, in Fig. 10
one can also clearly see that the τ -periodic asymptotic process
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of the cavity mode amplitude is much faster than that of
the mechanical mode amplitude. This is because the external
periodic driving is directly performed on the cavity mode,
while the asymptotic τ periodicity of the mechanical mode
is obtained via an intermediate mode (cavity mode) based on
the optomechanical interaction.

Here we should point out that, to gain a high enough level
of approximation, the perturbation series in Eq. (A4) has been
truncated up to j � 10 during calculation of the analytical
solution.

APPENDIX B: CHOICE OF THE SIDEBAND-
MODULATION STRENGTHS FOR EXTERNAL

DRIVING εL(t ) TO FULFILL THE DESIRED G(t )

To fulfill the desired form of the effective optomechan-
ical coupling G(t ) in Eq. (7) when the set (G−1, G0, G1)
is given, the corresponding sideband-modulation strengths
(ε−1, ε0, ε1) for the external driving εL(t ) can be derived
analytically via Laplace transform,

ε−1 = G−1

g0

[
i(	 + δa) + κ

2

]
− i[2k0G−1 + (k3 + k4)G0 + (k1 + k2)G1],

ε0 = G0

g0

(
iδa + κ

2

)
− i[(k3 + k4)G−1 + 2k0G0 + (k3 + k4)G1],

ε1 = G1

g0

[
i(δa − 	) + κ

2

]
− i[(k1 + k2)G−1 + (k3 + k4)G0 + 2k0G1], (B1)

where

k0 = − i
(
G2

−1 + G2
0 + G2

1

)
2g0S1

,

k1 = − iG−1G1S2

g0(S1 − S2)(S2 − S3)
,

k2 = iG−1G1S3

g0(S1 − S3)(S2 − S3)
,

k3 = − iG0(G−1 + G1)S4

g0(S1 − S4)(S4 − S5)
,

k4 = iG0(G−1 + G1)S5

g0(S1 − S5)(S4 − S5)
,

FIG. 11. Asymptotic time evolution of the real and imaginary
parts (in units of ωm) for the effective optomechanical coupling
G(t ) in (a) and (b), respectively. The solid red curve shows the nu-
merical result when the external periodic driving εL (t ) = ε−1ei	t +
ε0 + ε1e−i	t is acting on the present optomechanical system, with
the corresponding set of sideband-modulation strengths (ε−1, ε0, ε1)
given in Eq. (B1). The dashed blue curve represents the analytical
result obtained by the assumed G(t ) in Eq. (7). System parame-
ters are as follows (in units of ωm): γm = 10−6, δa = 1, κ = 0.1,
g0 = 4×10−6, G−1 = 0.01, G0 = 0.1, and G1 = 0.05.

S1 = −iωm − γm

2
,

S2 = 2i	, S3 = −2i	,

S4 = i	, S5 = −i	. (B2)

To check the validity of the above-derived external periodic
driving εL(t ), in Fig. 11 we compare the effective optome-
chanical coupling G(t ) obtained by, respectively, the numeri-
cal solution when εL(t ) = ε−1ei	t + ε0 + ε1e−i	t is applied to
the present optomechanical system and the analytical solution
assumed in Eq. (7). In Fig. 11, one can note that these two
different kinds of solutions agree very well in modulation
periods of [95τ, 100τ ]. This means that the assumed effective
optomechanical coupling form in Eq. (7) which is desired and
necessary for the generation of mechanical squeezing can be
precisely engineered in the long-time modulation limit via
the choice of the suitable external driving-sideband strengths
given in Eq. (B1).
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