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General formulations for computing the optical gradient and scattering forces on a spherical chiral
particle immersed in generic monochromatic optical fields
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We present the Cartesian multipole expansion theory for computing the optical force acting on a spherical
chiral particle immersed in generic monochromatic optical fields. The theory enables us to develop the
general formulations for individually calculating the optical gradient and scattering forces (also known as the
conservative and nonconservative forces) on a spherical chiral particle of arbitrary size. A set of analytical
expressions are then derived for the gradient and scattering forces acting on a chiral particle in arbitrary optical
field modeled by a series of homogenous plane waves. As examples of applications, we reveal that, in optical
lattice composed of three interferential plane waves, the profiles of the in-plane optical gradient and scattering
force acting on a spherical chiral particle show higher degree of symmetry and exhibit invariance with respect
to the particle size, material composition, and chirality. The remarkable characteristics are totally masked in the
undecomposed optical total force. The rigorous analytical decomposition of optical force sheds some more light
on the physical understanding of light-matter interaction, it may also contribute significantly to the design of
optical beams for achieving more diversified optical micromanipulation on chiral particles.
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I. INTRODUCTION

Chirality, widespread in nature at a variety of size scales,
describes the geometrical property of structures which are
nonsuperimposable with their mirror images no matter how
you rotate and translate them [1]. The human hand is a
typical example. The detection and separation of substance
by its chirality has developed into a vibrant research field,
especially in the pharmaceutical industry, since the function
of biomedicine is strongly related to a molecule’s chirality.
A cure can become poison if its chirality is reversed [2]. For
instance, a chiral biomolecule with inverted chirality will turn
inactive or toxic to cells, which may result in many diseases
such as Alzheimer’s, Parkinson’s, and type II diabetes [3]. In
recent years, chiral separation with the help of optomechanics
has attracted broad interest [4–10] because it is, as a contact-
less tool, less invasive and more efficient compared with other
chemical methods [11].

The principle of optomechanics lies in the mechanical
effect of light [12–14]. Light carries linear momentum, which
can be transferred to particle on its propagating way, pushing
the latter along the light propagation direction, known as
radiation force in an intuitive sense. Kepler was the first to

*phlin@fudan.edu.cn
†huajinchen13@fudan.edu.cn

be aware of this mechanical effect of light, for example, by
considering that the tail of a comet pointing away from the sun
was caused by the sun’s radiation pressure [15]. The first sci-
entific evolution in the application of optical force, attributed
to the advent of the laser, was put forward over 350 years later
by Ashkin, who successfully implemented the optical acceler-
ation and trapping of a micron-sized particle, taking advantage
of the radiation scattering force in 1970 [16]. Later, he and
his collaborators experimentally trapped a dielectric particle
using a single highly focused Gaussian laser beam, which
develops into the concept of optical tweezers [17]. The optical
tweezers technology, marking a milestone in the history of the
practical applications of optical force, is also a breakthrough
of paramount importance in the understanding of light-matter
interaction, since scientists begin to recognize the existence of
gradient force originating from the inhomogeneity of optical
field, which does not necessarily point along the direction of
light propagation in general, dramatically distinct from the
early known radiation pressure, or, say, scattering force.

Optical gradient force and scattering force, or, in a more
physical sense, conservative force and nonconservative force,
are two essentially different parts constituting the optical
force. They play rather different roles in the optical manip-
ulation. In general, the conservative gradient force is usually
responsible for optical trapping and a scalar optical potential
energy can be defined [12,17–19], while the nonconservative
scattering force [20] can propel [16,19–23] or pull [24–28]
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objects, achieving particle transportation, even along curved
trajectories [22,23]. Separately calculating the gradient and
scattering parts of the optical force is therefore desirable for
the design of various optical manipulations based on their
obvious different properties as well as for the understanding of
light-matter interaction. However, the decomposition has not
been successful for a long time, except in two limiting cases
where particle is either much smaller (dipole approxima-
tion) [29] or much larger (ray-optics approximation) [30] than
operating optical wavelength, due to complex mathematics.
The partition of the optical force acting on the most exper-
imentally accessible Mie particle remains open for over 30
years since the concepts were demonstrated by Ashkin [17].
It is until recently that Du and coauthors proposed a purely nu-
merical approach on the basis of the Helmholtz decomposition
and fast Fourier transform (FFT) [31] and successfully de-
picted the individual profiles of the gradient force and scatter-
ing force acting on the Mie particle. The FFT-based algorithm
generally requires numerical computation of optical forces
over entire space before performing the separation, imposing a
demand for computing facilities and severely limiting the cal-
culation speed, besides obscuring the physical understanding.
Very recently, we proposed a semianalytical formulation [32]
within the frame of the generalized Lorenz-Mie theory [33],
which removes the speed limitation and reduces the facility
demand brought by the nonlocal FFT-based decomposition

method. Later on, the analytical expressions were derived for
the decomposition of optical force on conventional particles
through modeling the general optical fields by a set of homo-
geneous plane waves [34–36], based on the general separation
formulations presented before [37,38]. The optical force on a
spherical particle in Bessel beams is analytically decomposed
into the conservative and nonconservative parts [39].

Unlike the development of the optical force decomposition
approaches for conventional isotropic particles, the partition
of the optical force exerted on chiral particles has always
been elusive, even for the two extreme cases with particle size
much larger or smaller than the optical wavelength, due to
the forbiddingly complex algebra compared with the case of
conventional particles. In this paper, we derive the general for-
mulations for the calculation of optical force as well as its de-
composed conservative and nonconservative constituents on
the basis of the Cartesian multipole expansion theory [37,38].
With the help of the general formulations, we also develop a
set of analytical expressions for both constituent forces due
to generic illuminating optical fields modeled by a series of
plane waves. As examples of applications, we compute the
gradient and scattering forces on a chiral particle immersed in
three-wave interference fields (TWIF) [34,36,40]. The hidden
symmetry and invariance of the decomposed optical forces, as
previously reported for a conventional particle [34], manifest
even when particle chirality comes into play.

II. ALGORITHMS DESCRIPTION

In this section, we present the Cartesian multipole expansion theory for the time-averaged optical force 〈F 〉 acting on a
chiral spherical particle of arbitrary size and composition immersed in general monochromatic optical fields, followed by the
decomposition of the optical force 〈F 〉 into the gradient part Fg = −∇ϕ and scattering part Fs = ∇ × ψ, with 〈F 〉 = Fg + Fs.
Taking advantage of the Cartesian multipole expansion theory, we next derive the rigorous analytical expressions for Fg and
Fs acting on a chiral sphere residing in optical field composed of arbitrary number of plane waves with any polarizations and
amplitudes. The formulations can thus apply to generic monochromatic illuminating optical fields, since the latter are simply a
superposition of plane waves.

A. Optical force by Cartesian multipole expansion theory

To begin with, let us recapitulate the expressions of optical force acting on a generic particle within the Cartesian multipole
expansion theory, which have been derived before by Jiang et al. [37,38]. Physically, it is convenient to consider light scattering
as two processes when evaluating optical force. First, light is intercepted by the particle in the way of its propagation, exerting
interception (extinction) force on the particle owing to the optical momentum transfer. Second, light is re-emitted due to the
excitation of multipoles on the scatterer, resulting in recoil force that does not have an analog in static case. As a result, the
time-averaged optical force acting on arbitrary particle immersed in any monochromatic optical field can be written as a sum
of interception (extinction) force 〈F int〉 and recoil force 〈F rec〉 [24,37,38,41], with 〈·〉 denoting the time average. Based on
the T -matrix method [42,43], the multipole field theory [44,45], and the irreducible tensor theory [46], both forces, 〈F int〉 and
〈F rec〉, can be expressed in terms of the electric and magnetic multipoles of various orders induced on the particle as well as the
multiple gradient of electric and magnetic fields impinging on the scatterer. To be specific, they read [37,38]

〈F int〉 =
∞∑

l=1

〈
F (l )

int

〉
, (1a)

〈
F (l )

int

〉 = 〈
F e(l )

int

〉 + 〈
F m(l )

int

〉
, (1b)〈

F e(l )
int

〉 = 1

2 l!
Re

[
(∇(l )E∗)

(l )·· ↔
O

(l )

elec

]
, (1c)

〈
F m(l )

int

〉 = 1

2 l!
Re

[
(∇(l )B∗)

(l )·· ↔
O

(l )

mag

]
, (1d)
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and

〈F rec〉 =
∞∑

l=1

〈
F (l )

rec

〉
, (2a)

〈
F (l )

rec

〉 = 〈
F e(l )

rec

〉 + 〈
F m(l )

rec

〉 + 〈
F x(l )

rec

〉
, (2b)

〈
F e(l )

rec

〉 = − 1

4πε0

(l + 2) 2l+1 k2l+3

(2l + 3)!
Im

[ ↔
O

(l ) ∗
elec

(l )·· ↔
O

(l+1)

elec

]
, (2c)

〈
F m(l )

rec

〉 = − μ0

4π

(l + 2) 2l+1 k2l+3

(2l + 3)!
Im

[ ↔
O

(l ) ∗
mag

(l )·· ↔
O

(l+1)

mag

]
, (2d)

〈
F x(l )

rec

〉 = Z0

4π

2l k2l+2

l (2l + 1)!
Re

[ ↔
O

(l )

elec

(l−1)·· ↔
O

(l ) ∗
mag

] (2)·· ↔
ε , (2e)

where the superscript * designates the complex conjugate; k, ε0, μ0, and Z0 = √
μ0/ε0 are, respectively, the wave number,

permittivity, permeability, and wave impedance in the transparent (lossless) fluid medium in which the particle resides; E and

B denote the incident electric and magnetic fields impinging on the particle, respectively;
↔
ε is the Levi-Civita tensor, whose

components εi jk are antisymmetric with respect to the permutation of any pair of indices; and, finally, the superscripts “e,”
“m,” and “x” denote, respectively, the contributions due to the electric multipoles, magnetic multipoles, and hybrid terms. The

multiple contraction between two tensors of ranks l and l ′, denoted by
(m)·· , is given by

↔
A

(l )
(m)·· ↔

B
(l ′ )

= A(l )
i1 i2 ··· il−m k1 k2 ··· km

B(l ′ )
km ··· k2 k1 jm+1 jm+2 ··· jl′

, 0 � m � min [ l, l ′ ], (3)

where the summation over repeated indices is assumed. The totally symmetric and traceless [47] rank-l tensors
↔
O

(l )

elec and
↔
O

(l )

mag,
usually referred to as 2l -pole, are derived based on the multipole fields theory [44] and by comparing electromagnetic fields

radiated from multipoles
↔
O

(l )

elec and
↔
O

(l )

mag with those written in terms of vector spherical wave functions (see Appendix A). The
final results read

↔
O

(l )

elec (mag) = γ
(l )

e (m)

� l−1
2 	∑

m=0

dl,m k2m
↔
N

(l, m)

elec (mag) ± γ (l )
x

� l−1
2 	∑

m=0

dl,m k2m
↔
N

(l, m)

mag (elec),

dl,m = 1

4m

l!

m!

�
(
l − m + 1

2

)
�

(
l + 1

2

)
�(l − 2m)

1

l
, with dl,0 = 1, (4)

where the upper and lower signs before γ (l )
x correspond, respectively, to electric and magnetic multipoles,

↔
O

(l )

elec and
↔
O

(l )

mag, whereas
�x	 gives the greatest integer less than or equal to x and �(x) denotes the � function. The lowest order cases with, e.g., l = 1, 2,
3, and 4, are known as the dipole moment, quadrupole moment, octupole moment, and hexadecapole moment, respectively. For

instance,
↔
O

(1)

elec and
↔
O

(1)

mag reduce to the electric and magnatic dipole moments induced on the chiral spherical particle,
↔
O

(1)

elec = p =
γ (1)

e E + γ (1)
x B and

↔
O

(1)

mag = m = γ (1)
m B − γ (1)

x E. The electric and magnetic polarizabilities, γ (l )
e , γ (l )

m , and γ (l )
x , depend on the Mie

coefficients [42,48] al , bl , and cl of a spherical chiral particle through

γ (l )
e = i ζl al

k2l+1
, γ (l )

m = i c2ζl bl

k2l+1
, γ (l )

x = −c ζl cl

k2l+1
, with ζl = 4πε0l (2l + 1)!!

(l + 1)
, (5)

with i denoting an imaginary unit and c being the speed of light in the ambient medium. The multipole moments, as described
in Eq. (4), degenerate into the nonchiral conventional spherical particle presented by Jiang et al. [38] if one sets γ (l )

x = 0. The

totally traceless and symmetric rank-l tensors
↔
N

(l, m)

elec (mag) are given by

↔
N

(l, m)

elec (mag) = Ŝ
[ m︷ ︸︸ ︷

↔
I ⊗

↔
I ⊗ · · ·

↔
I⊗

↔
M

(l−2m)

elec (mag)

]
with

↔
N

(l, 0)

elec (mag) ≡
↔
M

(l )

elec (mag), (6)

where
↔
I denotes the unit dyad of dimension 3 and Ŝ denotes the symmetrizing operator, whereas the symbol ⊗ represents the

tensor product so that the term in the square brackets means taking tensor product by m consecutive times, resulting in a tensor

with rank l − m. The tensors
↔
M

(n)

elec (mag) are two sets of totally symmetric tensors of rank n describe the symmetrized multiple
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gradient of incident fields

↔
M

(n)

elec = Ŝ[ ∇(n−1)E ] = Ŝ[

n−1︷ ︸︸ ︷
∇ ∇ · · ·∇ E ] = 1

n

n∑
j=1

∂i1 · · · ∂i j−1∂in∂i j+1 · · · ∂in−1 Eij ,

↔
M

(n)

mag = Ŝ[ ∇(n−1)B ] = Ŝ[

n−1︷ ︸︸ ︷
∇ ∇ · · · ∇ B ] = 1

n

n∑
j=1

∂i1 · · · ∂i j−1∂in∂i j+1 · · · ∂in−1 Bij , (7)

where ∇(n) means taking n consecutive gradients on a scalar or vector field, Ej (Bj) is the jth Cartesian component of the electric

(magnetic) field, and ∂i represents the partial derivative ∂
∂xi

with respect to the ith Cartesian coordinate. The tensors
↔
M

(n)

elec (mag) so
defined are obviously invariant under the permutation of any pair of indices so they are totally symmetric, but they are not totally
traceless (vanishing under the contraction of any pair of indices) [47].

B. Optical force and its decomposition for generic incident fields

To separate the optical force exerting on a spherical particle into the conservative and nonconservative parts, viz. an irrotational
term of zero curl and a solenoidal term of zero divergence, it is convenient to write the optical force in terms of the multiple

gradients
↔
M

(n)

elec and
↔
M

(n)

mag of the electric and magnetic fields defined in Eq. (7), instead of multipole moments
↔
O

(l )

elec and
↔
O

(l )

mag, so that
we can separate the Mie coefficients characterizing the particle property from the impinging fields, facilitating the decomposition.
After lengthy algebra, the results read

〈
F e(l )

int

〉 = 1

2 l!
Re

� l−1
2 	∑

m=0

cl,mk4m
[
γ (l )

e t (l−2m)
ee + γ (l )

x t (l−2m)
me

]
, (8a)

〈
F m(l )

int

〉 = 1

2 l!
Re

� l−1
2 	∑

m=0

cl,mk4m
[
γ (l )

m t (l−2m)
mm − γ (l )

x t (l−2m)
em

]
, (8b)

〈
F e(l )

rec

〉 = − k2l+5

l! ζl+1
Im

� l−1
2 	∑

m=0

{
fl,mk4m−2

[
η(l )

ee τ (l−2m)∗
ee + η(l )

ex τ (l−2m)∗
em + η(l )

xe τ (l−2m)∗
me + η(l )

xx τ (l−2m)∗
mm

]
+gl,mk4m

[
η(l )

ee τ (l−2m−1)
ee + η(l )

ex τ (l−2m−1)
me + η(l )

xe τ (l−2m−1)
em + η(l )

xx τ (l−2m−1)
mm

]}
, (8c)

〈
F m(l )

rec

〉 = − k2l+5

c2l! ζl+1
Im

� l−1
2 	∑

m=0

{
fl,mk4m−2[η(l )

mmτ (l−2m)∗
mm − η(l )

mxτ
(l−2m)∗
me − η(l )

xmτ (l−2m)∗
em + η(l )

xx τ (l−2m)∗
ee

]
+ gl,mk4m

[
η(l )

mmτ (l−2m−1)
mm − η(l )

mxτ
(l−2m−1)
em − η(l )

xmτ (l−2m−1)
me + η(l )

xx τ (l−2m−1)
ee

]}
, (8d)

〈
F x(l )

rec

〉 = k2l+2

c(l + 1)! ζl
Re

� l−1
2 	∑

m=0

hl,m k4m
[
η̄(l )

em ς (l−2m)
exm + η̄(l )

xx ς (l−2m)
exm + η̄(l )

xe ς (l−2m)
exe + η̄(l )

xm ς (l−2m)
mxm

]
, (8e)

where the products of polarizabilities, η(l )
ee , η(l )

ex , η(l )
xx etc., are given by

η(l )
ee = γ (l ) ∗

e γ (l+1)
e , η(l )

ex = γ (l ) ∗
e γ (l+1)

x , η(l )
xe = γ (l ) ∗

x γ (l+1)
e , η(l )

xx = γ (l ) ∗
x γ (l+1)

x ,

η(l )
mm = γ (l ) ∗

m γ (l+1)
m , η(l )

mx = γ (l ) ∗
m γ (l+1)

x , η(l )
xm = γ (l ) ∗

x γ (l+1)
m ,

η̄(l )
em = γ (l ) ∗

e γ (l )
m , η̄(l )

xe = γ (l ) ∗
x γ (l )

e , η̄(l )
xm = γ (l ) ∗

x γ (l )
m , η̄(l )

xx = γ (l ) ∗
x γ (l )

x , (9)

and they can be written as

η
(l )
αβ = γ (l ) ∗

α γ
(l+1)
β , η̄

(l )
αβ = γ (l ) ∗

α γ
(l )
β , (10)

with α, β denoting “e” or “m.” The t , τ, and ς vectors are defined by

t (n)
ee = [∇(n)E∗]

(n)·· ↔
M

(n)

elec t (n)
me = [∇(n)E∗]

(n)·· ↔
M

(n)

mag, t (n)
em = [∇(n)B∗]

(n)·· ↔
M

(n)

elec , t (n)
mm = [∇(n)B∗]

(n)·· ↔
M

(n)

mag, (11a)

τ (n)
ee =

↔
M

(n)

elec

(n)·· ↔
M

(n+1)∗
elec , τ (n)

me =
↔
M

(n)

mag

(n)·· ↔
M

(n+1)∗
elec , τ (n)

em =
↔
M

(n)

elec

(n)·· ↔
M

(n+1)∗
mag , τ (n)

mm =
↔
M

(n)

mag

(n)·· ↔
M

(n+1)∗
mag , (11b)
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and

ς (n)
exm = [ ↔

M
(n)∗
elec

(n−1)·· ↔
M

(n)

mag

] (2)·· ↔
ε ,

ς (n)
exe = [ ↔

M
(n)∗
elec

(n−1)·· ↔
M

(n)

elec

] (2)·· ↔
ε , (11c)

ς (n)
mxm = [ ↔

M
(n)∗
mag

(n−1)·· ↔
M

(n)

mag

] (2)·· ↔
ε .

In deriving Eqs. (8), we have used some mathematical identities, which, together with the coefficients cl,m, fl,m, gl,m, and hl,m,
are given in Appendix B.

The decomposition of the optical force into the gradient and scattering terms is performed by splitting all the t , τ, and ς

vectors in Eqs. (8) into the irrotational and the solenoidal parts. A vital ingredient is to write a generic monochromatic field
impinging on a particle in a form similar to the angular spectrum representation [37,49],

E = ∮
4π

eu ei k u·r du and H = 1

Z0

∮
4π

hu ei k u·r du, (12)

where u is the real unit vector denoting the direction of wave vector k, and the integration
∮

4π
. . . du is over the unit sphere of

directions of wave vector k = k u. The electric and magnetic “angular spectra” eu and hu depend only on u (independent of r)
and satisfy

u · eu = u · hu = 0, hu = u × eu, eu = −u × hu. (13)

With Eq. (12), the multiple gradients in Eq. (7) can be written as

↔
M

(n)

elec = (i k)n−1

n

n−1∑
j=0

∮
4π

u(n−1− j) eu u( j) ei k u·rdu, (14a)

↔
M

(n)

mag = (i k)n−1

n c

n−1∑
j=0

∮
4π

u(n−1− j) hu u( j) ei k u·rdu, (14b)

where u(n) denotes the tensor product of n vectors u, e.g., u(3) = u ⊗ u ⊗ u = u u u.
Before proceeding on, we define some field moments in reciprocal space, for integer n,

D(n)
ee = [∇(n−1)E]

(n)
: [∇(n−1)E∗] = k2n−2

∮
4π

du

∮
4π

dv (u · v)(n−1) ( eu · e∗
v ) ei k (u−v)·r,

D(n)
mm = [∇(n−1)B]

(n)
: [∇(n−1)B∗] = k2n−2

c2

∮
4π

du

∮
4π

dv (u · v)n−1 ( hu · h∗
v ) ei k(u−v)·r,

D(n)
em = [∇(n−1)E]

(n)
: [∇(n−1)B∗] = k2n−2

c

∮
4π

du

∮
4π

dv (u · v)n−1 ( eu · h∗
v ) ei k(u−v)·r,

D(n)
me = [∇(n−1)B]

(n)
: [∇(n−1)E∗] = D(n)∗

em ,

S(n)
ee = [(∇(n−1)E )

(n−1)
: (∇(n−1)E∗)]

(2)
:

↔
ε = k2n−2

∮
4π

du

∮
4π

dv (u · v)n−1 ( eu × e ∗
v ) ei k(u−v)·r,

S(n)
mm = [( ∇(n−1)B)

(n−1)
: (∇(n−1)B∗)]

(2)
:

↔
ε = k2n−2

c2

∮
4π

du

∮
4π

dv (u · v)n−1 ( hu × h∗
v ) ei k(u−v)·r,

S(n)
em = [(∇(n−1)E )

(n−1)
: (∇(n−1)B∗)]

(2)
:

↔
ε = k2n−2

c

∮
4π

du

∮
4π

dv (u · v)n−1 ( eu × h∗
v ) ei k(u−v)·r,

S(n)
me = [(∇(n−1)B)

(n−1)
: (∇(n−1)E∗)]

(2)
:

↔
ε = −S(n)∗

em ,

G(n)
ee = [∇(n−1)E]

(n)
: [∇(n)E∗] = −ik2n−1

∮
4π

du

∮
4π

dv (u · v)n−1 ( eu · v) e ∗
v ei k(u−v)·r,

G(n)
mm = [∇(n−1)B]

(n)
: [∇(n)B∗] = − ik2n−1

c2

∮
4π

du

∮
4π

dv (u · v)n−1 ( hu · v) h∗
v ei k(u−v)·r,
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G(n)
em = [∇(n−1)E]

(n)
: [∇(n)B∗] = − ik2n−1

c

∮
4π

du

∮
4π

dv (u · v)n−1 ( eu · v) h∗
v ei k(u−v)·r,

G(n)
me = [∇(n−1)B]

(n)
: [∇(n)E∗] = − ik2n−1

c

∮
4π

du

∮
4π

dv (u · v)n−1 ( hu · v) e ∗
v ei k(u−v)·r, (15)

where n � 1 and the tensor contraction
(n)
: is defined as follows,

↔
A

(l ) (m)
:

↔
B

(l ′ )
= A(l )

k1 k2 ... km im+1 im+2 ... il
B(l ′ )

k1 k2 ... km jm+1 jm+2 ... jl′
, 0 � m � min[ l, l ′]; (16)

that is, the tensor contraction is successively made over the corresponding left-most indices in the two index sequences, which

differs from
(n)·· defined in Eq. (3) with the tensor contraction being consecutively made over two nearest indices. Some simple

examples are, for any vectors v and w,

(vw)
(2)·· ↔

ε = v jwiεi jk = w × v versus (vw)
(2)
:

↔
ε = viw jεi jk = v × w,

(∇∇v)
(2)·· (∇w) = (∂i∂ jvk )(∂kw j ) versus (∇∇v)

(2)
: (∇w) = (∂i∂ jvk )(∂iw j ),

(∇w)
(2)·· (∇∇v) = (∂iw j )(∂ j∂ivk ) versus (∇w)

(2)
: (∇∇v) = (∂iw j )(∂i∂ jvk ),

(17)

with v j (w j) denoting the jth Cartesian component of the vector v (w). It can be demonstrated that the field moments defined in
Eq. (15) satisfy

∇ · S(n)
ee = 2i ω Re

[
D(n)

em

]
, ∇ · S(n)

mm = −2i ω

c2
Re

[
D(n)

em

]
, ∇ · Re S(n)

em = 0, (18)

and many other relations given in Appendix C.
After lengthy algebra, one can re-express the t , τ, and ς vectors in Eqs. (11) by field moments D, S, and G defined in Eq. (15).

The t vectors in Eq. (11a) for the partial extinction forces 〈F e(l )
int 〉 and 〈F m(l )

int 〉 on order-l electric and magnetic multipoles
(2l -poles) are rewritten as

t (n)
ee = Z(n)

ee − (n − 1)k2c2

n
Z(n−1)

mm , t (n)
mm = Z(n)

mm − (n − 1)k2

n c2
Z(n−1)

ee ,

t (n)
me = Z(n)

me + (n − 1)k2

n
Z(n−1)

em , t (n)
em = Z(n)

em + (n − 1)k2

n
Z(n−1)

me , (19)

where

Z(n)
ee = 1

2

[∇D(n)
ee − ∇ × S(n)

ee − 2i kc Re S(n)
em

]
,

Z(n)
mm = 1

2

[
∇D(n)

mm − ∇ × S(n)
mm − 2i k

c
Re S(n)

em

]
,

Z(n)
me = 1

2

[
∇D(n)

me − ∇ × S(n)
me − i k

c

(
S(n)

ee + c2S(n)
mm

)]
,

Z(n)
em = 1

2

[
∇D(n)

em − ∇ × S(n)
em + i k

c

(
S(n)

ee + c2S(n)
mm

)]
, (20)

and use has been made of D(n)
me = D(n)∗

em , S(n)
me = −S(n)∗

em , and ∇ × Im [G(n−1)
ee + c2G(n−1)

mm ] = −i [S(n)
ee + c2S(n)

mm] + i k2[S(n−1)
ee +

c2S(n−1)
mm ] given in Eqs. (18). Equations (19) and (20) are readily in a decomposed form, since ∇ · Re S(n)

em = 0 and ∇ · [S(n)
ee +

c2S(n)
mm] = 0, which follows Eqs. (18). The τ vectors defined in Eq. (11b) and appearing in the electric and magnetic parts of the

recoil force, as described by Eqs. (8c) and (8d), can be derived in a similar way, leading to

τ (n)
ee = Z(n)

ee − (n − 1)k2c2

(n + 1)
Z(n−1)

mm + i kc

(n + 1)
S(n)

em, (21a)

τ (n)
mm = Z(n)

mm − (n − 1)k2

(n + 1)c2
Z(n−1)

ee + i k

(n + 1)c
S(n)∗

em , (21b)

τ (n)
em = Z(n)

em + (n − 1)k2

(n + 1)
Z(n−1)

me − i k

(n + 1)c
S(n)

ee , (21c)

τ (n)
me = Z(n)

me + (n − 1)k2

(n + 1)
Z(n−1)

em + i kc

(n + 1)
S(n)

mm. (21d)
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The ς vectors in the hybrid recoil term 〈F x(l )
rec 〉 given by Eq. (8e) turn out to be most complicated. They can be eventually

cast, based on the definition Eq. (11c), into

ς (n)
exm = i (n − 1)k

n c

[
Z(n−1)

ee − c2Z(n−1)∗
mm

] + i (n − 1)(n − 2)k3

n2c

[
Z(n−2)∗

ee − c2Z(n−2)
mm

]
−S(n) ∗

em − (n − 1)k2

n2
S (n−1)

em + (n − 1)(n − 2)k4

n2
S (n−2)∗

em , (22a)

ς (n)
exe = − i (n − 1)kc

n

[
Z(n−1)

me + Z(n−1)∗
me

] − i (n − 1)(n − 2)k3c

n2

[
Z(n−2)∗

em + Z(n−2)
em

]
+S(n)

ee + (n − 1)k2c2

n2
S (n−1)

mm − (n − 1)(n − 2)k4

n2
S (n−2)

ee , (22b)

ς (n)
mxm = i (n − 1)k

nc

[
Z(n−1)

em + Z(n−1)∗
em

] + i (n − 1)(n − 2)k3

n2c

[
Z(n−2)∗

me + Z(n−2)
me

]
+S(n)

mm + (n − 1)k2

n2c2
S (n−1)

ee − (n − 1)(n − 2)k4

n2
S (n−2)

mm . (22c)

The recoil force 〈F (l )
rec 〉, given by Eqs. (8c)–(8e) and dependent on the vectors τ and ς, still entangles with the conservative

and nonconservative forces because the S vectors are neither irrotational and solenoidal. Since all the Z vectors [see Eq. (20)]
have been partitioned, the last step for dividing optical force into the conservative and nonconservative parts relies on partitioning
S(n)

ee , S(n)
mm, and S(n)

em. It can be derived (see Appendix D for the details) that

S(n)
ee = − i c

k
∇

∞∑
m=0

1

k2m
Re D(n+m)

em − i

k2
∇×

∞∑
m=0

1

k2m
Im G(n+m)

ee + S(n)
ee

∣∣
u=v

, (23a)

S(n)
mm = i

kc
∇

∞∑
m=0

1

k2m
Re D(n+m)

em − i

k2
∇×

∞∑
m=0

1

k2m
Im G(n+m)

mm + S(n)
mm

∣∣
u=v

, (23b)

S(n)
em = − i

2kc
∇

∞∑
m=0

1

k2m

[
c2D(n+m)

mm − D(n+m)
ee

]

− 1

2k2
∇×

∞∑
m=0

1

k2m

[
G(n+m)

em − G(n+m)∗
me

] + S(n)
em

∣∣
u=v

, (23c)

where, following Eq. (15), the last terms on the right-hand sides are constant vectors reading

S(n)
ee

∣∣
u=v

= k2n−2
∮

4π

( eu × e ∗
u )du, S(n)

mm

∣∣
u=v

= k2n−2

c2

∮
4π

( hu × h∗
u)du,

S(n)
em

∣∣
u=v

= k2n−2

c

∮
4π

( eu × h∗
u)du = k2n−2

c

∮
4π

| eu|2udu. (24)

The constant vectors in Eq. (24) make position-independent constant contributions to optical force. To be consistent with the
concept of radiation (scattering) force on a particle under the illumination of a single plane wave, we choose to attribute these
contributions entirely to the solenoidal part of the optical force in our treatment. Furthermore, the position-independent constant
force should belong to scattering force, because it takes an infinitely large potential energy to produce it if it is a gradient force.
As a consequence, Eqs. (23) complete the decomposition of S(n)

ee , S(n)
mm, and S(n)

em into the solenoidal and irrotational parts.
We have therefore concluded the formulations of optical force and its two decomposed parts, conservative force and

nonconservative force, or, say, gradient force and scattering force, within the framework of Cartesian multipole expansion theory
for optical force.

C. Optical force and its decomposition for multiple interferential plane-wave fields

Any monochromatic optical field can be expressed as an integral over homogeneous plane-wave spectrum [49–53]. As the
integral can be evaluated by summation, generic monochromatic optical fields may then be written, up to arbitrary accuracy,
as a discrete spectrum of homogeneous plane waves. In this subsection, based on the formulations for optical force within the
Cartesian multipole expansion theory proposed in the last subsection, we will derive a set of explicit analytical expressions to
calculate the optical force and, in particular, its two partitioned parts, acting on a spherical chiral particle immersed in multiple
interferential plane waves fields. As generic optical fields can be depicted by a superposition of discrete homogeneous plane
waves, our approach works indeed for any monochromatic optical field.
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Written in terms of multiple interferential plane waves, the electric and magnetic fields of a generic optical field can be
cast into

E =
np∑

i=1

E i =
np∑

i=1

E ie
i k k̂i·r, B =

np∑
i=1

Bi =
np∑

i=1

Bie
i k k̂i·r, (25)

where k = ω/c, k̂i is the unit vector denoting the direction of the (real) wave vector ki = k k̂i of the ith plane wave in the lossless
background, np is the number of the plane waves making up the optical fields, and E i and Bi = ki × E i are complex amplitude
vectors of the ith plane wave. Substituting the field expressions Eqs. (25) into Eq. (15), all the field moments defined for total
field share the following form,

X (n) =
np∑

i=1

np∑
j=1

X (n)
i j , (26)

which are written as a sum over field moments X (n)
i j for each pair of plane waves, termed pair representation below. To be specific,

the field moments for any pair (i, j) of the plane waves are given by

D(n)
ee, i j = (ki · k j )

n−1 (E i · E∗
j ) ei (ki−k j )·r, D(n)

mm, i j = (ki · k j )
n−1 (Bi · B∗

j ) ei (ki−k j )·r,

D(n)
em, i j = (ki · k j )

n−1 (E i · B∗
j ) ei (ki−k j )·r, D(n)

me, i j = (ki · k j )
n−1 (Bi · E∗

j ) ei (ki−k j )·r,

S(n)
ee,i j = (ki · k j )

n−1 (E i × E∗
j ) ei (ki−k j )·r, S(n)

mm, i j = (ki · k j )
n−1 (Bi × B∗

j ) ei (ki−k j )·r,

S(n)
em, i j = (ki · k j )

n−1 (E i × B∗
j ) ei (ki−k j )·r, S(n)

me, i j = (ki · k j )
n−1 (Bi × E∗

j ) ei (ki−k j )·r,

G(n)
ee, i j = −i (ki · k j )

n−1(k j · E i )E∗
j ei (ki−k j )·r, G(n)

mm, i j = −i (ki · k j )
n−1(k j · Bi )B∗

j ei (ki−k j )·r,

G(n)
em, i j = −i (ki · k j )

n−1(k j · E i )B∗
j ei (ki−k j )·r, G(n)

me, i j = −i (ki · k j )
n−1(k j · Bi )E∗

j ei (ki−k j )·r. (27)

It is noted that all terms are constants when i = j. In pair representation, any quantity in Eqs. (27) have the form

X (n)
i j = k2n−2xn−1

i j X (1)
i j , (28)

which simplifies X (n)
i j to X (1)

i j , with xi j = k̂i · k̂ j . Substituting Eqs. (26)–(28) into Eq. (20), we have the Z vectors reduced to

Z(n) =
∑
i, j

Z(n)
i j =

∑
i, j

k2n−2xn−1
i j Z(1)

i j , (29)

with, explicitly,

Z(1)
ee,i j = 1

2

[∇D(1)
ee,i j − ∇ × S(1)

ee,i j − 2i k Re S(1)
em,i j

]
, Z(1)

mm,i j = 1
2

[∇D(1)
mm,i j − ∇ × S(1)

mm,i j − 2i k Re S(1)
em,i j

]
,

Z(1)
me,i j = 1

2

[∇D(1)
me,i j − ∇ × S(1)

me,i j − i k
(
S(1)

ee,i j + S(1)
mm,i j

)]
, Z(1)

em,i j = 1
2

[∇D(1)
em,i j − ∇ × S(1)

em,i j + i k
(
S(1)

ee,i j + S(1)
mm,i j

)]
. (30)

Similar expressions can be obtained for the S vectors. In this subsection, we use electrodynamic units with ε0 = μ0 = c = 1
for simplicity. Inserting the expressions of the Z vectors Eq. (29) together with the similar expressions for the S vectors into
Eqs. (19), (21), and (22), one can rewrite the t , τ and ς vectors in terms of the Z and S vectors in pair representation, which,
when plugged into the forces equations Eq. (8), eventually give rise to〈

F e(l )
int

〉 = −π (2l + 1)

l (l + 1)

∑
i, j

{
Im

[
al Y (1)

l,i j

] + Re
[
cl Y (2)

l,i j

]}
,

〈
F m(l )

int

〉 = −π (2l + 1)

l (l + 1)

∑
i, j

{
Im

[
bl Y (3)

l,i j

] − Re
[
cl Y (4)

l,i j

]}
,

〈
F e(l )

rec

〉 = − π

2 (l + 1)2

∑
i, j

Im
[
a∗

l al+1 Y (5)
l,i j + i a∗

l cl+1 Y (6)
l,i j − i c∗

l al+1 Y (7)
l,i j + c∗

l cl+1 Y (8)
l,i j

]
,

〈
F m(l )

rec

〉 = − π

2 (l + 1)2

∑
i, j

Im
[
b∗

l bl+1 Y (8)
l,i j − i b∗

l cl+1 Y (7)
l,i j + i c∗

l bl+1 Y (6)
l,i j + c∗

l cl+1 Y (5)
l,i j

]
,

〈
F x(l )

rec

〉 = π (2l + 1)

2 l2 (l + 1)2

∑
i, j

Re
[
a∗

l bl Y (9)
l,i j + c∗

l cl Y (9)
l,i j − c∗

l al Y (10)
l,i j + c∗

l bl Y (11)
l,i j

]
, (31)

where

Y (1)
l,i j = Q (1)

l,i jZ
(1)
ee,i j − Q (2)

l,i jZ
(1)
mm,i j, Y (2)

l,i j = Q (1)
l,i jZ

(1)
me,i j + Q (2)

l,i jZ
(1)
em,i j,

Y (3)
l,i j = Q (1)

l,i jZ
(1)
mm,i j − Q (2)

l,i jZ
(1)
ee,i j, Y (4)

l,i j = Q (1)
l,i jZ

(1)
em,i j + Q (2)

l,i jZ
(1)
me,i j,
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Y (5)
l,i j = R (1)

l,i jZ
(1) ∗
ee,i j − R (2)

l,i jZ
(1) ∗
mm,i j − 4i k R (3)

l,i jS
(1) ∗
em,i j + R (4)

l,i jZ
(1)
ee,i j − R (5)

l,i jZ
(1)
mm,i j + 4i k R (6)

l,i jS
(1)
em,i j,

Y (6)
l,i j = R (1)

l,i jZ
(1) ∗
em,i j + R (2)

l,i jZ
(1) ∗
me,i j + 4i k R (3)

l,i jS
(1) ∗
ee,i j + R (4)

l,i jZ
(1)
me,i j + R (5)

l,i jZ
(1)
em,i j + 4i k R (6)

l,i jS
(1)
mm,i j,

Y (7)
l,i j = R (1)

l,i jZ
(1) ∗
me,i j + R (2)

l,i jZ
(1) ∗
em,i j − 4i k R (3)

l,i jS
(1) ∗
mm,i j + R (4)

l,i jZ
(1)
em,i j + R (5)

l,i jZ
(1)
me,i j − 4i k R (6)

l,i jS
(1)
ee,i j,

Y (8)
l,i j = R (1)

l,i jZ
(1) ∗
mm,i j − R (2)

l,i jZ
(1) ∗
ee,i j − 4i k R (3)

l,i jS
(1)
em,i j + R (4)

l,i jZ
(1)
mm,i j − R (5)

l,i jZ
(1)
ee,i j + 4i k R (6)

l,i jS
(1) ∗
em,i j,

Y (9)
l,i j = i R (4)

l,i j

[
Z(1)

ee,i j − Z(1) ∗
mm,i j

] + i R (5)
l,i j

[
Z(1) ∗

ee,i j − Z(1)
mm,i j

] − 4k R (7)
l,i jS

(1) ∗
em,i j − 4k R (6)

l,i jS
(1)
em,i j,

Y (10)
l,i j = R (4)

l,i j

[
Z(1)

me,i j + Z(1) ∗
me,i j

] + R (5)
l,i j

[
Z(1) ∗

em,i j + Z(1)
em,i j

] + 4i k R (7)
l,i jS

(1)
ee,i j + 4i k R (6)

l,i jS
(1)
mm,i j,

Y (11)
l,i j = R (4)

l,i j

[
Z(1)

em,i j + Z(1) ∗
em,i j

] + R (5)
l,i j

[
Z(1) ∗

me,i j + Z(1)
me,i j

] − 4i k R (7)
l,i jS

(1)
mm,i j − 4i k R (6)

l,i jS
(1)
ee,i j . (32)

The coefficients Q and R above, dependent on xi j , are all defined in Appendix E in terms of Legendre polynomials. Writing
the Q and R coefficients in terms of Legendre polynomials, instead of coefficients cl,m, fl,m, gl,m, and hl,m in Eqs. (8), serves to
keep stability in numerical calculation even in large orders l [35]. Equations (31) represent formulations of optical total force
on the spherical chiral particle in a discrete spectrum of plane waves. One can further get the expressions for gradient force and
scattering force by separating the field-related quantities Z and S included in Y given in Eq. (32). Inserting the pair representation
Eqs. (27) into Eqs. (23), one arrives, after some algebra, at a decomposed formulation for the S vectors,

S (1) g
ee,i j = − i/k

1 − xi j
Re∇D(1)

em,i j, S (1) g
mm,i j = i/k

1 − xi j
Re∇D(1)

em,i j,

S (1) g
em,i j = i/k

2(1 − xi j )
Re

[∇D(1)
ee,i j − ∇D(1)

mm,i j

]
, (33)

and

S (1) s
ee,i j = − i/k2

1 − xi j
Im∇×G(1)

ee,i j + S (1)
ee,i jδi, j, S (1) s

mm,i j = − i/k2

1 − xi j
Im∇×G(1)

mm,i j + S (1)
mm,i jδi, j,

Im S (1) s
em,i j = 1/k2

2(1 − xi j )
Im

[∇×G(1)∗
me,i j − ∇×G(1)

em,i j

] + S (1)
em,i jδi, j, (34)

where δi, j represents the Kronecker δ. Similarly, the Z vectors are also separated as follows:

Z(1) g
ee,i j = 1

2 ∇D(1)
ee,i j, Z(1) g

mm,i j = 1
2 ∇D(1)

mm,i j, Z(1) g
me,i j = 1

2 ∇D(1)
me,i j, Z(1) g

em,i j = 1
2 ∇D(1)

em,i j, (35)

and

Z(1) s
ee,i j = − 1

2

[∇ × S (1)
ee,i j + 2i k Re S (1)

em,i j

]
, Z(1) s

mm,i j = − 1
2

[∇ × S (1)
mm,i j + 2i k Re S (1)

em,i j

]
,

Z(1) s
me,i j = − 1

2

[∇ × S (1)
me,i j + i k

(
S (1)

ee,i j + S (1)
mm,i j

)]
, Z(1) s

em,i j = − 1
2

[∇ × S (1)
em,i j − i k

(
S (1)

ee,i j + S (1)
mm,i j

)]
. (36)

In Eqs. (33)–(36), terms with the superscript “g” and “s” make contributions to the gradient and scattering forces, respectively. It
is noted that in Eqs. (36), each term Re S (1)

em,i j in pair representation may no longer be purely solenoidal, but they still contribute
solely to the scattering force; see Ref. [35] for a proof.

Equations (31)–(36) constitute the formulations for optical force and its two decomposed parts, gradient and scattering forces,
on a chiral sphere immersed in optical field composed of arbitrary number of interferential plane waves. They can actually be
applied to calculate optical forces, in particular, two partitioned forces, for arbitrary optical beam, since a discrete spectrum of
plane waves can approximately make up arbitrary optical fields.

III. APPLICATION AND EXAMPLE: HIDDEN SYMMETRY
AND INVARIANCE IN OPTICAL FORCE

In this section, as an example of application, we calculate
the optical forces, both un-decomposed total force and the
decomposed gradient and scattering forces, on a spherical
chiral particle immersed in TWIF [36,40] composed of three
plane waves with the same amplitude and wavelength and
their wave vectors forming a regular triangle.

The electric field of the TWIF is described by Eq. (25),
with np = 3 and the complex amplitude vector E i of the ith

plane wave is given by

E i = piθ̂ki + qiφ̂ki
, i = 1, 2, 3, (37)

where θ̂ki and φ̂ki
represent, respectively, the directions of

increasing polar angle and azimuthal angle in spherical co-
ordinate system for the ith wave vector ki. Two complex
numbers pi and qi form a complex vector (pi, qi ) known as
polarization vector of the ith plane wave. The directions of
the wave vectors ki are characterized by the polar angle θki

and azimuthal angle φki in the spherical coordinate system,
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FIG. 1. The spatial profiles of optical forces on a nonchiral polystyrene sphere (εp = 2.53, μp = 1.0) immersed in the three-wave
interference fields on x-o-y plane. The particle radius is rp = 0.3 μm and the polarization vector given in Eq. (39) is (p, q) = (1, i)/

√
2.

[(a)–(c)] The magnitude of the undecomposed total optical force |F|, its radial component Fρ , and azimuthal component Fφ , respectively.
[(d)–(f)] The same as panels (a)–(c), except that the conservative part Fcon of the optical force F are shown. [(g)–(i)] The same as panels
(a)–(c), except that the nonconservative part Fnon of the optical force F are plotted. The conservative force shows the sixfold even symmetry
while the nonconservative force exhibits the sixfold odd symmetry. The symmetry are completely masked in the undecomposed total force that
only displays threefold symmetry.

given by

(
θk1 , φk1

) =
(π

2
, 0

)
,

(
θk2 , φk2

) =
(

π

2
,

2π

3

)
,

(
θk3 , φk3

) =
(

π

2
,

4π

3

)
. (38)

The three plane waves possess the same polarization so that

(p1, q1) = (p2, q2) = (p3, q3) = (p, q), (39)

which are all normalized to 1, viz. |p|2 + |q|2 = 1, before
the calculation of various optical forces. In the numerical
calculation, the light wavelength is set to be λ = 1.064 μm.
The uniform background medium, which does not affect the
symmetry and invariance properties, is assumed as water with
refractive index nb = 1.33.

Figure 1 shows the spatial profiles of in-plane optical
forces for a conventional polystyrene spherical particle with
permittivity εp = 2.53 and radius rp = 0.3 μm. The particle
is immersed in the TWIF composed by three left circularly
polarized plane waves, viz. (p, q) = (1, i)/

√
2 in Eq. (39).

As demonstrated in Fig. 2 of Ref. [34], the undecomposed
total optical force on the particle displays threefold rotational
symmetry, a signature of optical fields in the TWIF. This is
shown in Figs. 1(a)–1(c) for, respectively, the spatial profiles
of the amplitudes of the undecomposed total force |F|, its
radial part Fρ , and azimuthal part Fφ in the x-o-y plane.
When the optical force is decomposed into the gradient force
Fcon and scattering force Fnon, higher symmetries masked in
total force are revealed. This is presented in Figs. 1(d)–1(f),
which demonstrate, respectively, the spatial profiles of the
magnitude and the radial and azimuthal components of the
in-plane gradient force. The sixfold even symmetry manifests
itself as R̂(π/3) Fcon(φ) = Fcon(φ + π/3). Here R̂(φ) de-
notes the rotation about z with rotation angle φ. The profiles
of in-plane scattering force as presented in Figs. 1(g)–1(i),
on the other hand, exhibit sixfold odd symmetry, namely,
R̂(π/3) Fnon(φ) = −Fnon(φ + π/3). These additional even
and odd rotational symmetries are completely obscured in the
undecomposed total force; see Figs. 1(a)–1(c). Only when the
optical force is decomposed into the gradient and scattering
forces can the symmetry make its appearance. The results,

053830-10



GENERAL FORMULATIONS FOR COMPUTING THE … PHYSICAL REVIEW A 101, 053830 (2020)

FIG. 2. The same as Fig. 1 except for a chiral particle characterized by a chirality parameter κ = 0.3 and having the same permittivity and
permeability as in Fig. 1.

calculated based on the formulations given in Eqs. (31)–(36),
reproduce exactly those in Ref. [34].

Such hidden symmetry survives even when particle is
chiral, as shown in Fig. 2, where all the settings are the same
as Fig. 1 except κ = 0.3. In fact, the profiles for decomposed
forces Fcon in Figs. 2(d)–2(f) and Fnon in Figs. 2(g)–2(i) are
exactly reproductions of the corresponding profiles in Fig. 1,
except for the difference in amplitude. As a result, the spatial
profiles for the decomposed gradient and scattering forces are
invariant even when the particle carries material chirality. So
the hidden symmetry is kept for the chiral case. However,
the profiles for the undecomposed total force change radically
when particle chirality changes, as can be seen by comparing
Figs. 1(a)–1(c) and Figs. 2(a)–2(c). To further corroborate the
invariance of the decomposed forces, we show in Fig. 3 the
normalized amplitudes of the in-plane total force, the gradient
force, and the scattering force along the x axis. The normal-
ization is made by dividing the optical forces on a chiral
particle by the corresponding forces acting on a conventional
polystyrene sphere with rp = 0.3 μm and located at the same
position on the x axis. Figure 3(a) shows the normalized force
for a large sphere rp = 48.5 μm with κ = 0.3, εp = 2.53,
μp = 1.0, and the polarization being (p, q) = (1, 0.5 + i) (be-
fore normalization), while Fig. 3(b) displays the results for
another case with a higher index sphere, specifically, with κ =

2.0, εp = 9.0, μp = 3.0, rp = 57.5 μm, and (p, q) = (1 −
0.3 i,−0.5 + i) (before normalization). The lines for both the
gradient force (dotted blue) and the scattering force (dashed
red) stay exactly horizontal along the x axes, indicating the
invariance of the spatial profiles of the decomposed forces
with respect to particle size, composition, chirality, as well
as the polarization of plane waves making up the TWIF. The
normalized undecomposed total optical force, however, shows
drastic change as the the particle position changes, implying
that the invariance is completely ruined for the total force.

IV. SUMMARY

To summarize, after presenting the Cartesian multipole
expansion theory up to arbitrary orders of multipoles for
computing optical force on a spherical chiral particle located
in generic monochromatic optical fields, we develop the rigor-
ous analytical formulations for decomposing the optical force
into the gradient and scattering forces, for a spherical chiral
particle of arbitrary size and material. A set of analytical
expressions are derived that give the optical force and, in par-
ticular, its two decomposed constituents, in explicit terms of
the impinging electric and magnetic fields for the cases where
the incident light is composed of arbitrary numbers of interfer-
ential plane waves. Because generic monochromatic optical
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FIG. 3. The magnitudes of the total force F (total, solid black lines), conservative force Fcon (con, dotted blue lines), and nonconservative
force Fnon (non, dashed red lines) exerting on a spherical chiral particle located on the x axis. The force magnitude is normalized by their
corresponding parts in Figs. 1(a), 1(d) and 1(g). (a) A sphere with κ = 0.3, εp = 2.53, μp = 1.0, and rp = 48.5 μm. The polarization given in
Eq. (39) is set to (p, q) = (1, 0.5 + i) before normalized to 1. (b) A high-index sphere with κ = 2.0, εp = 9.0, μp = 3.0, and rp = 57.5 μm.
The polarization is defined by (p, q) = (1 − 0.3 i,−0.5 + i) before normalization. The straight horizontal dotted blue and dashed red lines
indicate the invariance of the spatial profiles in both decomposed optical forces with respect to the particle size and material parameters even
for chiral cases.

fields can be written as a sum of interferential plane waves,
our expressions apply indeed to arbitrary optical beams. As
application examples of our formulations, we compute the
spatial profiles of the gradient and scattering forces acting on
a spherical chiral particle immersed in the TWIF. The profiles
reveal the higher degree of symmetry in the decomposed
conservative and nonconservative forces than in the unde-
composed total optical force, as well as the invariance of the
spatial profiles with respect to particle size and material that
is completely masked in the total force, as previously reported
for conventional particles, even when a particle possesses
chirality. We hope the formulations, together with the results
concerning the hidden symmetry and invariance of optical
force, would cast some light on the in-depth understanding
of light-matter interaction, besides opening an avenue for

the design of an optical beam to implement more diversified
optical micromanipulations.
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APPENDIX A: DERIVATION OF Eq. (4)

In free space, any monochromatic incident electric and magnetic fields can be expanded in terms of vector spherical wave
functions (VSWFs) M (1)

ml and N (1)
ml

E inc = −
∞∑

l=1

l∑
m=−l

il+1Cml E0
[

pm,l N
(1)
ml (k, r) + qm,l M

(1)
ml (k, r)

]
,

H inc = − 1

Z0

∞∑
l=1

l∑
m=−l

ilCml E0
[

qm,l N
(1)
ml (k, r) + pm,l M

(1)
ml (k, r)

]
,

(A1)

since both fields are divergence free [45]. Here Z0 = √
μ0/ε0 is the wave impedance in free space, E0 characterizes the incident

field amplitude, and

Cml =
[

(2l + 1)

l (l + 1)

(l − m)!

(l + m)!

]1/2

. (A2)

So arbitrary monochromatic incident fields are completely characterized by the coefficients pm,l and qm,l , which are known as
the partial wave expansion coefficients, or beam shape coefficients [33]. The VSWFs M (1)

ml and N (1)
ml in Eq. (A1) are regular ones,
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given by (see, e.g., Refs. [42,45,54,55])

M (1)
ml (k, r) = [i πml (cos θ ) eθ − τml (cos θ ) eφ]

ψl (kr)

kr
ei mφ,

N (1)
ml (k, r) = [τml (cos θ ) eθ + i πml (cos θ ) eφ]

ψ ′
l (kr)

kr
ei mφ + er l (l + 1)Pm

l (cos θ )
ψl (kr)

(kr)2
ei mφ,

(A3)

where ψl (x) denotes the Riccati Bessel function [42], and πml (cos θ ) and τml (cos θ ) are defined by

πml (cos θ ) = m

sin θ
Pm

l (cos θ ), τml (cos θ ) = d

dθ
Pm

l (cos θ ), (A4)

with Pm
l (x) denoting the associated Legendre function of the first kind [42]. The electromagnetic fields Es and Hs scattered off

the particle are also expanded in terms of VSWFs,

Es =
∞∑

l=1

l∑
m=−l

il+1Cml E0
[

am,l N
(3)
ml (k, r) + bm,l M

(3)
ml (k, r)

]
,

Hs = 1

Z0

∞∑
l=1

l∑
m=−l

ilCml E0
[

bm,l N
(3)
ml (k, r) + am,l M

(3)
ml (k, r)

]
,

(A5)

where the outgoing VSWFs M (3)
ml and N (3)

ml , describing the multipole fields [44,45], are given by Eq. (A3) after replacing the
Riccati Bessel functions ψ (x) with the Riccati Hankel functions ξ (x) [42]. Then the coefficients am,l and bm,l for the scattered
fields depend on the coefficients pm,l and qm,l for the incident fields through

am,l = al pm,l + cl qm,l , bm,l = cl pm,l + bl qm,l , (A6)

for a spherical chiral particle, where the Mie coefficients are given in Ref. [48].
By comparing the electromagnetic fields scattered off the particle written in terms of VSWFs (spherical multipoles) and in

terms of Cartesian multipoles [37,42], one derives [37]

↔
O

(l )

elec = γ (l )
e

� l−1
2 	∑

m=0

dl,m k2m
↔
N

(l, m)

elec ,
↔
O

(l )

mag = γ (l )
m

� l−1
2 	∑

m=0

dl,m k2m
↔
N

(l, m)

mag , (A7)

for conventional particle with chirality parameter κ = 0 and thus vanishing cl in Eq. (A6). Here dl,m is given in Eq. (4), and γ (l )
e

and γ (l )
m are given in Eq. (5), recapitulated here for convenience:

γ (l )
e = ζlε0 al

k2l+1
, γ (l )

m = ζl bl

μ0 k2l+1
, with ζl = 4π i l (2l + 1)!!

(l + 1)
. (A8)

It is thus observed from Eq. (A7) that the electric and magnetic Cartesian multipoles,
↔
O

(l )

elec and
↔
O

(l )

mag, come, respectively, from
the terms proportional to al and bl in the VSWF (spherical multipole) representation; see Eqs. (A5) and (A6). One can therefore

map am,l into
↔
O

(l )

elec and bm,l into
↔
O

(l )

mag. Taking into account of the electromagnetic duality, one has the mapping M̂
⎧⎨
⎩M̂ [am,l ] =

↔
O

(l )

elec,

M̂ [bm,l ] = i
c

↔
O

(l )

mag.

(A9)

It follows straightforwardly from Eqs. (A7), (A8), and (A9) that the partial wave expansion coefficients pm,l and qm,l of the
incident fields must be transformed as follows:

M̂ [pm,l ] = ζlε0

k2l+1

� l−1
2 	∑

m=0

dl,m k2m
↔
N

(l, m)

elec ,

M̂ [qm,l ] = i ζl

Z0k2l+1

� l−1
2 	∑

m=0

dl,m k2m
↔
N

(l, m)

mag ,

(A10)
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so that one has

M̂ [am,l ] = alM̂ [pm,l ] = ζlε0al

k2l+1

� l−1
2 	∑

m=0

dl,m k2m
↔
N

(l, m)

elec =
↔
O

(l )

elec,

M̂ [bm,l ] = blM̂ [qm,l ] = i ζl bl

Z0k2l+1

� l−1
2 	∑

m=0

dl,m k2m
↔
N

(l, m)

mag = i

c

↔
O

(l )

mag,

(A11)

as given by Eqs. (A7) and (A8).
For the case with cl �= 0, applying the same mappings M̂ given by Eqs. (A10) to Eqs. (A6), one arrives at

M̂ [am,l ] = alM̂ [pm,l ] + clM̂ [qm,l ] = ζlε0al

k2l+1

� l−1
2 	∑

m=0

dl,m k2m
↔
N

(l, m)

elec + i ζl cl

Z0k2l+1

� l−1
2 	∑

m=0

dl,m k2m
↔
N

(l, m)

mag ,

M̂ [bm,l ] = blM̂ [qm,l ] + clM̂ [pm,l ] = i ζl bl

Z0k2l+1

� l−1
2 	∑

m=0

dl,m k2m
↔
N

(l, m)

mag + ζlε0cl

k2l+1

� l−1
2 	∑

m=0

dl,m k2m
↔
N

(l, m)

elec ,

(A12)

which are simplified to yield Eqs. (4) and (5) in the main text.

APPENDIX B: SOME MATHEMATICAL IDENTITIES FOR DERIVING Eq. (8)

In deriving Eq. (8) in the main text, we have used the following mathematical identities,

[∇(n)E∗ ]
(n)·· ↔

O
(n)

elec =
�(l−1)/2	∑

m=0

cl,m k4m
[
γ (l )

e t (l−2m)
ee + γ (l )

x t (l−2m)
me

]
,

[∇(n)B∗ ]
(n)·· ↔

O
(n)

mag =
�(l−1)/2	∑

m=0

cl,m k4m
[
γ (l )

m t (l−2m)
mm − γ (l )

x t (l−2m)
em

]
,

↔
O

(l ) ∗
elec

(l )·· ↔
O

(l+1)

elec =
� l−1

2 	∑
m=0

{
fl,mk4m−2[η(l )

ee τ (l−2m)∗
ee + η(l )

ex τ (l−2m)∗
em + η(l )

xe τ (l−2m)∗
me + η(l )

xx τ (l−2m)∗
mm

]
+ gl,mk4m

[
η(l )

ee τ (l−2m−1)
ee + η(l )

ex τ (l−2m−1)
me + η(l )

xe τ (l−2m−1)
em + η(l )

xx τ (l−2m−1)
mm

]}
,

↔
O

(l ) ∗
mag

(l )·· ↔
O

(l+1)

mag =
� l−1

2 	∑
m=0

{
fl,mk4m−2

[
η(l )

mmτ (l−2m)∗
mm − η(l )

mxτ
(l−2m)∗
me − η(l )

xmτ (l−2m)∗
em + η(l )

xx τ (l−2m)∗
ee

]
+ gl,mk4m

[
η(l )

mmτ (l−2m−1)
mm − η(l )

mxτ
(l−2m−1)
em − η(l )

xmτ (l−2m−1)
me + η(l )

xx τ (l−2m−1)
ee

]}
,

[ ↔
O

(l )

elec

(l−1)·· ↔
O

(l ) ∗
mag

] (2)·· ↔
ε =

� l−1
2 	∑

m=0

hl,m k4m
[
η̄(l )

em ς (l−2m)
exm + η̄(l )

xx ς (l−2m)
exm + η̄(l )

xe ς (l−2m)
exe + η̄(l )

xm ς (l−2m)
mxm

]
, (B1a)

where the vectors t , τ, and ς are given in Eqs. (11), and the coefficients cl,m, dl,m, fl,m, gl,m, and hl,m read

dl,m = 1

4m

l!

m!

�
(
l − m + 1

2

)
�

(
l + 1

2

)
�(l − 2m)

1

l
, with dl,0 = 1,

cl,m = (l − 2m)

l
(−1)mdl,m = l

(l − 2m)
hl,m, with cl,0 = 1,

fl,m = (l − 2m + 1)(2l − 2m + 1)

(l + 1)(2l + 1)
(−1)mdl,m, with fl,0 = 1,

gl,m = (l − 2m)(l − 2m − 1)

(l + 1)(2l + 1)
(−1)mdl,m, with gl,0 = l (l − 1)

(l + 1)(2l + 1)
,

hl,m = (l − 2m)2

l2
(−1)mdl,m = (l − 2m)

l
cl,m with hl,0 = 1, (B2)

with �(x) denoting the � function.
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APPENDIX C: PROPERTIES FOR FIELD MOMENTS D, S, and G

Here we show some other properties besides those given in Eqs. (18) for field moments D, S, and G, which may be useful for
the derivation of t , τ, and ς vectors in the D, S, and G representation:

∇D(n)
ee = 2ω Im S(n)

em + 2 Re G(n)
ee , ∇D(n)

mm = −2ω

c2
Im S(n)

em + 2 Re G(n)
mm,

∇ × S(n)
ee = −2i Im

[
G(n)

ee

]
, ∇ × S(n)

mm = −2i Im
[
G(n)

mm

]
,

∇ · S(n)
em = − ik

c

[
D(n)

ee − c2D(n)
mm

]
, ∇ × S(n)

em = G(n)∗
me − G(n)

em,

∇ × Im
[
G(n)

ee + c2G(n)
mm

] = −i
[
S(n+1)

ee + c2S(n+1)
mm

] + ik2
[
S(n)

ee + c2S(n)
mm

]
Re S(n)

ee = 0, Re S(n)
mm = 0. (C1)

Actually, the four G vectors can be expressed in terms of others,

G(n)
em = − k

2c

[
i S(n)

ee − i c2 S(n)
mm − c

k
∇D(n)

em + c

k
∇ × S(n)

em

]
,

G(n)
me = − k

2c

[
i S(n)

ee − i c2 S(n)
mm − c

k
∇D(n)∗

em − c

k
∇ × S(n)∗

em

]
,

G(n)
ee = 1

2
∇D(n)

ee − 1

2
∇ × S(n)

ee − ω ImS(n)
em,

G(n)
mm = 1

2
∇D(n)

mm − 1

2
∇ × S(n)

mm + ω

c2
ImS(n)

em.

(C2)

APPENDIX D: DERIVATION OF EQS. (23)

Here we demonstrate the decomposition of S(n)
em as an example; another two vectors S(n)

ee and S(n)
mm can be separated in the same

process. Let us start with the definition of S(n)
em,

S(n)
em ≡ [(∇(n−1)E )

(n−1)
: (∇(n−1)B∗)]

(2)
:

↔
ε = k2n−2

c

∮
4π

du

∮
4π

dv (u · v)n−1 ( eu × h∗
v ) eik(u−v)·r, (D1)

which, for n = 1, delineates the complex Poynting vector S(1)
em = E × B∗, the real part of which is associated with the optical

momentum density [56] (except for a factor 1/ε0). To write it into an irrotational plus a solenoidal part, a key trick is to multiply
the integrand in Eq. (D1) by

I = 1

2

[ ∞∑
m=0

(u · v)m

]
(u − v) · (u − v), (D2)

which is actually equal to unity and thus the multiplication does not change the integral of (D1). Given the mathematical identity

[(u − v) · (u − v)]w = (u − v)[w · (u − v)] + (u − v) × [w × (u − v)] (D3)

for any vector w, one gets

S(n)
em = k2n−2

2c

∮
4π

du

∮
4π

dv

[ ∞∑
m=0

(u · v)m+n−1

]
{(u − v)[( eu × h∗

v ) · (u − v)] + (u − v) × [( eu × h∗
v ) × (u − v)]} eik(u−v)·r

= k2n−2

2c

∮
4π

du

∮
4π

dv

[ ∞∑
m=0

(u · v)m+n−1

]
{(u − v)[( hu · h∗

v ) − ( eu · e ∗
v )] − (u − v) × [(u · h∗

v ) eu

+ (v · eu) h∗
v]} eik(u−v)·r,
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which gives rise to

S(n)
em = − i

2ω
∇

∞∑
m=0

1

k2m

[
c2D(n+m)

mm − D(n+m)
ee

] − 1

2k2
∇ ×

∞∑
m=0

1

k2m

[
G(n+m)

em − G(n+m)∗
me

]
, (D4)

where one has used the definitions Eq. (15) and

ik
∮

4π

du

∮
4π

dv [(u − v) S] eik(u−v)·r = ∇
∮

4π

du

∮
4π

dv S eik(u−v)·r,

ik
∮

4π

du

∮
4π

dv [(u − v) × V ] eik(u−v)·r = ∇ ×
∮

4π

du

∮
4π

dv V eik(u−v)·r,

for arbitrary scalar S and vector V independent of r.

APPENDIX E: MATHEMATICAL IDENTITIES FOR DERIVING EQS. (31)

To derive Eqs. (31) in the main text, we have used the following mathematical identities,

2 l (2l − 1)!!

(l − 1)!

� l−1
2 	∑

m=0

cl,m xl−2m−1
i, j = Q(1)

l, i j,

2 l (2l − 1)!!

(l − 1)!

� l−1
2 	∑

m=0

l − 2m − 1

l − 2m
cl,m xl−2m−2

i, j = Q(2)
l, i j,

8 (l + 1) (2l + 1)!!

(l − 1)!

� l−1
2 	∑

m=0

fl,m xl−2m−1
i, j = R(1)

l, i j,

8 (l + 1) (2l + 1)!!

(l − 1)!

� l−1
2 	∑

m=0

l − 2m − 1

l − 2m + 1
fl,m xl−2m−2

i, j = R(2)
l, i j,

2 (l + 1) (2l + 1)!!

(l − 1)!

� l−1
2 	∑

m=0

1

l − 2m + 1
fl,m xl−2m−1

i, j = R(3)
l, i j,

8 (l + 1) (2l + 1)!!

(l − 1)!

� l−2
2 	∑

m=0

gl,m xl−2m−2
i, j = R(4)

l, i j,

8 (l + 1) (2l + 1)!!

(l − 1)!

� l−2
2 	∑

m=0

l − 2m − 2

l − 2m
gl,m xl−2m−3

i, j = R(5)
l, i j,

2 (l + 1) (2l + 1)!!

(l − 1)!

� l−2
2 	∑

m=0

1

l − 2m
gl,m xl−2m−2

i, j = R(6)
l, i j,

2 (l + 1) (2l + 1)!!

(l − 1)!

� l−2
2 	∑

m=0

1

l − 2m
gl,m xl−2m−2

i, j = R(6)
l, i j,

8 l4 (2l − 1)!!

(l − 1)!

� l−1
2 	∑

m=0

l − 2m − 1

l − 2m
hl,m xl−2m−2

i, j = R(4)
l, i j,

8 l4 (2l − 1)!!

(l − 1)!

� l−1
2 	∑

m=0

(l − 2m − 1)(l − 2m − 2)

(l − 2m)2
hl,m xl−2m−3

i, j = R(5)
l, i j,
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8 l4 (2l − 1)!!

(l − 1)!

� l−1
2 	∑

m=0

hl,m xl−2m−1
i, j = 4 R(7)

l, i j + R(5)
l, i j,

2 l4 (2l − 1)!!

(l − 1)!

� l−1
2 	∑

m=0

(l − 2m − 1)

(l − 2m)2
hl,m xl−2m−2

i, j = R(6)
l, i j, (E1)

where the coefficients cl,m, dl,m, fl,m, gl,m, and hl,m are defined in Eq. (B2) before and

Q(1)
l, i j =

l∑
m=1

(2)m(2l + 1 − m)(2l + 1 − 2m)Pl−m(xi j ),

Q(2)
l, i j =

l∑
m=2

(2)m(2l + 1 − m)(2l + 1 − 2m)Pl−m(xi j ),

R(1)
l, i j =

l∑
m=1

(2)(m + 1)(2l + 2 − m)(2l + 1 − 2m)[2(m + 1)l − (m2 − m − 4)]Pl−m(xi j ),

R(2)
l, i j =

l∑
m=2

(2)m(m + 2)(2l + 1 − m)(2l + 1 − 2m)(2l + 3 − m)Pl−m(xi j ),

R(3)
l, i j =

l∑
m=1

(2)(m + 1)(2l + 2 − m)(2l + 1 − 2m)Pl−m(xi j ),

R(4)
l, i j =

l∑
m=2

(2)(2l + 1 − m)(2l + 1 − 2m)[2m2l − m(m + 1)(m − 2)]Pl−m(xi j ),

R(5)
l, i j =

l∑
m=1

(2)(m + 1)(m − 1)(2l − m)(2l + 2 − m)(2l + 1 − 2m)Pl−m(xi j ),

R(6)
l, i j =

l∑
m=2

(2)m(2l + 1 − m)(2l + 1 − 2m)Pl−m(xi j ),

R(7)
l, i j =

l∑
m=1

(2)(2l + 1 − 2m)(2l2 − 2(m − 1)l + m2 − m)Pl−m(xi j ). (E2)

The summation
∑l

m=1
(2) and

∑l
m=2

(2) above represent the index m odd and even positive integers satisfying 0 < m � l , and
Pn(x) is the Legendre polynomial.
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P. Zemánek, Nat. Photon. 7, 123 (2013).
[29] A. Ashkin and J. P. Gordon, Opt. Lett. 8, 511 (1983).
[30] A. Ashkin, Biophys. J. 61, 569 (1992).
[31] J. J. Du, C. H. Yuen, X. Li, K. Ding, G. Q. Du, Z. F. Lin, C. T.

Chan, and J. Ng, Sci. Rep. 7, 18042 (2017).
[32] H. X. Zheng, X. N. Yu, W. L. Lu, J. Ng, and Z. F. Lin, Comput.

Phys. Commun. 237, 188 (2019).
[33] G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories,

2nd ed. (Springer, Berlin, 2017).
[34] Y. K. Jiang, H. Z. Lin, X. Li, J. Chen, J. J. Du, and J. Ng, ACS

Photon. 6, 2749 (2019).
[35] X. N. Yu, Y. K. Jiang, H. J. Chen, S. Y. Liu, and Z. F. Lin, Phys.

Rev. A 100, 033821 (2019).
[36] G. J. Ha, H. X. Zheng, X. N. Yu, and Z. F. Lin, Phys. Rev. A

100, 033817 (2019).
[37] Y. K. Jiang, H. J. Chen, J. Chen, J. Ng, and Z. F. Lin,

arXiv:1511.08546.
[38] Y. K. Jiang, J. Chen, J. Ng, and Z. F. Lin, arXiv:1604.05138.
[39] G. J. Ha, H. X. Zheng, X. N. Yu, and Z. F. Lin, J. Opt. Soc. Am.

B 37, 67 (2020).

[40] T. V. Raziman and O. J. F. Martin, Phys. Rev. A 98, 023420
(2018).

[41] H. J. Chen, S. Y. Liu, J. Zi, and Z. F. Lin, ACS Nano 9, 1926
(2015).

[42] C. F. Bohren and D. R. Huffman, Absorption and Scattering of
Light by Small Particles (John Wiley, New York, 1998).

[43] M. I. Mishchenko, N. T. Zakharov, N. G. Khlebtsov, T. Wriedt,
and G. Videen, J. Quant. Spectrosc. Radiat. Transfer 146, 349
(2014).

[44] M. E. Rose, Multipole Fields (John Wiley, New York, 1955).
[45] J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New

York, 1941).
[46] B. L. Silver, Irreducible Tensor Methods (Academic Press, New

York, 1976).
[47] J. Applequist, J. Phys. A 22, 4303 (1989).
[48] H. J. Chen, N. Wang, W. L. Lu, S. Y. Liu, and Z. F. Lin, Phys.

Rev. A 90, 043850 (2014).
[49] G. Gouesbet and J. A. Lock, J. Quant. Spectrosc. Radiat.

Transfer 162, 18 (2015).
[50] P. C. Clemmow, The Plane Wave Spectrum Representation

of Electromagnetic Fields (Pergamon Press, Oxford, UK,
1966).

[51] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, UK, 1995).

[52] J. W. Goodman, Introduction to Fourier Optics (Roberts and
Co., Englewood, Colorado, 2005).

[53] S. Colak, C. Yeh, and L. W. Casperson, Appl. Opt. 18, 294
(1979).

[54] Y. L. Xu, Appl. Opt. 34, 4573 (1995).
[55] J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, Phys. Rev. B 72,

085130 (2005).
[56] J. D. Jackson, Classical Electrodynamics (John Wiley and Sons,

New York, 1999).

053830-18

https://doi.org/10.1038/nphoton.2012.87
https://doi.org/10.1038/nphoton.2012.87
https://doi.org/10.1038/nphoton.2012.87
https://doi.org/10.1038/nphoton.2012.87
https://doi.org/10.1038/nphoton.2008.201
https://doi.org/10.1038/nphoton.2008.201
https://doi.org/10.1038/nphoton.2008.201
https://doi.org/10.1038/nphoton.2008.201
https://doi.org/10.1364/OL.43.002086
https://doi.org/10.1364/OL.43.002086
https://doi.org/10.1364/OL.43.002086
https://doi.org/10.1364/OL.43.002086
https://doi.org/10.1038/nphoton.2011.153
https://doi.org/10.1038/nphoton.2011.153
https://doi.org/10.1038/nphoton.2011.153
https://doi.org/10.1038/nphoton.2011.153
https://doi.org/10.1103/PhysRevLett.107.203602
https://doi.org/10.1103/PhysRevLett.107.203602
https://doi.org/10.1103/PhysRevLett.107.203602
https://doi.org/10.1103/PhysRevLett.107.203602
https://doi.org/10.1103/PhysRevLett.107.203601
https://doi.org/10.1103/PhysRevLett.107.203601
https://doi.org/10.1103/PhysRevLett.107.203601
https://doi.org/10.1103/PhysRevLett.107.203601
https://doi.org/10.1038/nphoton.2012.315
https://doi.org/10.1038/nphoton.2012.315
https://doi.org/10.1038/nphoton.2012.315
https://doi.org/10.1038/nphoton.2012.315
https://doi.org/10.1038/nphoton.2012.332
https://doi.org/10.1038/nphoton.2012.332
https://doi.org/10.1038/nphoton.2012.332
https://doi.org/10.1038/nphoton.2012.332
https://doi.org/10.1364/OL.8.000511
https://doi.org/10.1364/OL.8.000511
https://doi.org/10.1364/OL.8.000511
https://doi.org/10.1364/OL.8.000511
https://doi.org/10.1016/S0006-3495(92)81860-X
https://doi.org/10.1016/S0006-3495(92)81860-X
https://doi.org/10.1016/S0006-3495(92)81860-X
https://doi.org/10.1016/S0006-3495(92)81860-X
https://doi.org/10.1038/s41598-017-17874-1
https://doi.org/10.1038/s41598-017-17874-1
https://doi.org/10.1038/s41598-017-17874-1
https://doi.org/10.1038/s41598-017-17874-1
https://doi.org/10.1016/j.cpc.2018.11.002
https://doi.org/10.1016/j.cpc.2018.11.002
https://doi.org/10.1016/j.cpc.2018.11.002
https://doi.org/10.1016/j.cpc.2018.11.002
https://doi.org/10.1021/acsphotonics.9b00746
https://doi.org/10.1021/acsphotonics.9b00746
https://doi.org/10.1021/acsphotonics.9b00746
https://doi.org/10.1021/acsphotonics.9b00746
https://doi.org/10.1103/PhysRevA.100.033821
https://doi.org/10.1103/PhysRevA.100.033821
https://doi.org/10.1103/PhysRevA.100.033821
https://doi.org/10.1103/PhysRevA.100.033821
https://doi.org/10.1103/PhysRevA.100.033817
https://doi.org/10.1103/PhysRevA.100.033817
https://doi.org/10.1103/PhysRevA.100.033817
https://doi.org/10.1103/PhysRevA.100.033817
http://arxiv.org/abs/arXiv:1511.08546
http://arxiv.org/abs/arXiv:1604.05138
https://doi.org/10.1364/JOSAB.37.000067
https://doi.org/10.1364/JOSAB.37.000067
https://doi.org/10.1364/JOSAB.37.000067
https://doi.org/10.1364/JOSAB.37.000067
https://doi.org/10.1103/PhysRevA.98.023420
https://doi.org/10.1103/PhysRevA.98.023420
https://doi.org/10.1103/PhysRevA.98.023420
https://doi.org/10.1103/PhysRevA.98.023420
https://doi.org/10.1021/nn506835j
https://doi.org/10.1021/nn506835j
https://doi.org/10.1021/nn506835j
https://doi.org/10.1021/nn506835j
https://doi.org/10.1016/j.jqsrt.2014.03.022
https://doi.org/10.1016/j.jqsrt.2014.03.022
https://doi.org/10.1016/j.jqsrt.2014.03.022
https://doi.org/10.1016/j.jqsrt.2014.03.022
https://doi.org/10.1088/0305-4470/22/20/011
https://doi.org/10.1088/0305-4470/22/20/011
https://doi.org/10.1088/0305-4470/22/20/011
https://doi.org/10.1088/0305-4470/22/20/011
https://doi.org/10.1103/PhysRevA.90.043850
https://doi.org/10.1103/PhysRevA.90.043850
https://doi.org/10.1103/PhysRevA.90.043850
https://doi.org/10.1103/PhysRevA.90.043850
https://doi.org/10.1016/j.jqsrt.2014.12.007
https://doi.org/10.1016/j.jqsrt.2014.12.007
https://doi.org/10.1016/j.jqsrt.2014.12.007
https://doi.org/10.1016/j.jqsrt.2014.12.007
https://doi.org/10.1364/AO.18.000294
https://doi.org/10.1364/AO.18.000294
https://doi.org/10.1364/AO.18.000294
https://doi.org/10.1364/AO.18.000294
https://doi.org/10.1364/AO.34.004573
https://doi.org/10.1364/AO.34.004573
https://doi.org/10.1364/AO.34.004573
https://doi.org/10.1364/AO.34.004573
https://doi.org/10.1103/PhysRevB.72.085130
https://doi.org/10.1103/PhysRevB.72.085130
https://doi.org/10.1103/PhysRevB.72.085130
https://doi.org/10.1103/PhysRevB.72.085130

