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Riemann problem for the light pulses in optical fibers for the generalized Chen-Lee-Liu equation
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We provide the classification of possible wave structures evolving from initially discontinuous profiles
for the photon fluid propagating in a normal dispersion fiber. The dynamics of light fields is described by
the generalized Chen-Lee-Liu equation, which belongs to the family of the nonlinear Schrödinger equations
with a self-steepening-type term appearing due to retardation of the fiber material response to variations of
the electromagnetic signal. This equation is also used in investigations of the dynamics of modulated waves
propagating through a single nonlinear transmission network. We describe its periodic solutions and the
corresponding Whitham modulation equations. The wave patterns generated by the initial parameter profiles
are composed of different building blocks which are presented in detail. It is shown that evolution dynamics in
this case is much richer than that for the nonlinear Schrödinger equation. Complete classification of possible
wave structures is given for all possible jump conditions at the discontinuity. Our analytic results are confirmed
by numerical simulations.
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I. INTRODUCTION

The evolution of light pulses in waveguides is a subject
of active modern experimental and theoretical research. One
of the trends in this field is the study of so-called dispersive
shock waves. Such structures are observed in various physical
media, such as water waves (where such waves are often
called undular bores), Bose-Einstein condensates, waves in
magnetics and in nonlinear optics, and other areas of physics
(see, e.g., [1,2]). It is well known that if one neglects the
effects of dissipation and dispersion, then the theory of non-
linear propagation of light envelopes suffers from a wave-
breaking singularity developed at some finite fiber length after
which a formal solution of nonlinear wave equations becomes
multivalued and loses its physical meaning. The account of
dispersion eliminates such a nonphysical behavior. But the
evolution equations for the envelopes acquire higher-order
derivatives, and after the wave-breaking moment, instead of
the multivalued region, an expanding region of fast nonlinear
oscillations is formed. Envelope parameters in such a structure
change slowly compared with the characteristic oscillation
frequency and their wavelength. This region of fast oscilla-
tions is called the “dispersive shock wave” (DSW).

One of the most substantial problems in which DSWs
can occur is the Riemann problem, which includes classifi-
cation of wave structures resulting from the evolution of the
initial discontinuity. This problem has played an important
role since the classical paper of Riemann [3], subsequently
supplemented by the jump conditions of Rankin [4] and
Hugoniot [5,6]; it served as a prototype of the example of
shock formation in dispersionless media with small viscosity.
The full classification of possible wave patterns evolving from
initial discontinuities was obtained by Kotchine [7]. However,
in the case of optical systems, we have dispersion instead of
viscosity. The problem where DSWs are formed instead of

viscous shocks was studied for the first time in the context
of the physics of shallow water waves whose evolution is
described by the celebrated Korteweg–de Vries (KdV) equa-
tion [8]. The equations governing the slow evolution of the
envelope of the nonlinear oscillations had been derived by
Whitham [9] and they were applied to the description of
the DSW structure by Gurevich and Pitaevskii [10]. Because
of the universality of the KdV equation, this approach can
naturally be applied to many other physical situations. Later
it became clear [11] that the diagonalization of the Whitham
modulation equations is possible due to the special property
discovered in [12] of the complete integrability of the KdV
equation. Development of the finite-gap integration method
[13,14], as well as the methods of deriving [11,15] and solving
the Whitham equations [16,17], made it possible to extend the
Gurevich-Pitaevskii approach to a number of other completely
integrable equations of physical interest (see, for instance,
[2]) and it admits investigation of non-genuinely-nonlinear
hyperbolic systems.

In nonlinear optics, DSWs were observed long ago (see,
e.g., [18,19]), but they remain the subject of active current
experimental (see, e.g., [20–22]) and theoretical (see, e.g.,
[23,24]) research. In the fiber optics applications, the dynam-
ics of pulses is usually described by the nonlinear Schrödinger
(NLS) equation that accounts for two main effects: quadratic
normal dispersion and Kerr nonlinearity. For this case, the
theory of DSWs is already well developed and the main
parameters of the arising wave structures can be calculated for
typical idealized situations in simple analytical form. Exten-
sion of the Gurevich-Pitaevskii approach to the NLS equation
became possible only after derivation of the Whitham modu-
lation equations [25,26] by the methods based on the inverse
scattering transform for the NLS equation [27], which means
its complete integrability. In particular, consideration of many
realistic problems can be reduced to analysis of the so-called
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Riemann problem of evolution of discontinuity in the initial
data. Such a discontinuity can appear, for example, as a jump
in the time dependence of the light intensity, which is mostly
typical in physics of light pulses in fibers, or evolve from a
“collision” of two pulses in which case not only intensity has
a discontinuity but also the time and space derivatives of the
phase. Classification of possible wave structures in the NLS
equation theory was given in Refs. [28,29], and it provides the
theoretical basis for calculation of characteristic parameters
of such experiments as that of Ref. [30]. It was shown that
the NLS theory evolution of any initial discontinuity leads to
a wave pattern consisting of a sequence of building blocks,
two of which are represented by either the rarefaction wave
or the DSW. However, in nonlinear optics, besides quadratic
dispersion and Kerr nonlinearity, many other effects can play
important role in the propagation of pulses. For instance, in
experiment [31] with photorefractive material the saturation
of nonlinearity is quite essential and the corresponding theory
of DSWs was developed in Ref. [32]. Naturally, in order
to get a better understanding of the higher-order nonlinear
effects, it is necessary to introduce several other higher-order
terms, such as third-order dispersion, quintic nonlinear terms,
etc., into the Hirota equation [33], Kundu-Eckhaus equation
[34,35], Lakshmanan-Porsezian-Daniel equation [36], and a
generalized NLS equation [37]. Due to recent technological
developments in laser and ultrahigh-bit-rate optical fiber com-
munication, these higher-order nonlinear effects are unavoid-
able in many optical systems when modeling the transmis-
sion of ultrashort and high-intensity light pulses in nonlinear
optical media. In fiber optics, one needs to take into account
such effects as dissipation, higher-order dispersion, intrapulse
Raman scattering, and self-steepening (see, e.g., [38]). These
effects can drastically change evolution of DSWs, leading
sometimes to violation of the supposition that such an evo-
lution is adiabatically slow. Theoretically, the self-steepening
term that arises in optical settings is commonly associated
with the class of the derivative nonlinear Schrödinger (DNLS)
equation. It is relevant to mention that the self-steepening of
an optical fiber pulse, otherwise called Kerr dispersion, arises
when the group velocity of a pulse depends on the intensity
[39]. Several versions of the DNLS equations have been stud-
ied from different points of view. Well known NLS equations
with derivative terms include the Kaup-Newell equation [40],
the Chen-Lee-Liu equation [41], and the Gerjikov-Ivanov
equation [42], which arise in theories of nonlinear optics,
fluid dynamics, and plasma physics. These nonlinear wave
equations are usually called DNLS-I, DNLS-II, and DNLS-III
equations, respectively. The pulse propagation in a single-
mode optical fiber can be described by the Chen-Lee-Liu
(CLL) equation

iqt + 1
2 qxx + iδ|q|2qx = 0, (1)

where the coordinates t and x denote propagation distance and
retarded time, but represent slow time and spatial coordinate
traveling with group velocity in hydrodynamics, respectively.
In optical fiber setting, the term involving parameter δ > 0 is
usually associated with the self-steepening phenomena [43].
In Ref. [44] Moses et al. performed optical pulse propaga-
tion involving self-steepening without self-phase-modulation.
This experiment provides the first experimental evidence of

the CLL equation. The CLL equation (1) corresponds to
a situation where the dispersionless Riemann invariants de-
pend nonmonotonically on the physical variables; that is, the
problem is not genuinely nonlinear (see, e.g., [45]). In this
case, new types of wave structures arise, which are similar to
contact discontinuities in the theory of viscous shock waves.
So the CLL equation can be considered as an example of
nonconvex dispersive hydrodynamics.

We consider the propagation of an optical pulse inside
a monomode fiber modeled by a generalized Chen-Lee-Liu
(generalized CLL) equation,

iqt + 1
2 qxx − |q|2q + iδ|q|2qx = 0, (2)

that also includes the Kerr nonlinearity, which is inevitable
at sufficiently high intensities. The generalized CLL equation
is simply related to the CLL equation (see, e.g., [46]). This
equation is also used in the investigation of modulated wave
dynamics of waves propagating through a single nonlinear
transmission network, which also presents practical interest
(see [47] and references therein).

Motivated by applications of the generalized CLL equation
(2), we consider the method which permits one to predict a
wave pattern arising from any given data for an initial discon-
tinuity. The method is quite general and it was applied to the
generalized NLS equations with self-steepening nonlinearity
[48,49] and to the Landau-Lifshitz equation for magnetics
with easy-plane anisotropy (or polarization waves in a two-
component Bose-Einstein condensate) [50]. Here we extend
the theory to the non-genuine-case of the generalized CLL
equation (2). The exact integrability of this equation makes
it possible to develop a Whitham modulational theory for
describing configurations where nonlinear waves are slowly
modulated, as observed in dispersive shocks.

The paper is organized as follows: The influence of the last
term of the generalized CLL equation (2) on the dynamics
of linear waves that propagate along a uniform background
and small-amplitude limit is discussed in Sec. II. The exact
integrability of this equation is used in Sec. III for derivation
of the Whitham modulational equations. In Sec. IV we de-
scribe the elementary wave structures that appear as building
blocks in the general wave patterns. The full classification of
the solutions of the Riemann problem is presented in Sec. V.
The Sec. VI is devoted to conclusions.

II. LINEAR WAVES AND SMALL-DISPERSION AND
WEAK-NONLINEARITY LIMITS

Let us turn to the study of linear waves and the small-
amplitude and weak-dispersion limits when these two effects
are taken into account in the main approximation. That is, we
are interested in propagation of disturbances along a uniform
background intensity ρ0. To this end, it is convenient to use
the physical variables of intensity ρ(x, t ) and chirp u(x, t ). To
go to the equations for these variables, we apply the Madelung
transform

q(x, t ) =
√

ρ(x, t ) exp

[
i
∫ x

u(x′, t )dx′
]
. (3)

After its substitution into Eq. (2), separation of the real and
imaginary parts, and differentiation of one of the equations
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with respect to x, we get the system

ρt +
(

ρu + 1

2
δρ2

)
x

= 0,

ut + uux + ρx + δ(ρu)x +
(

ρ2
x

8ρ2
− ρxx

4ρ

)
x

= 0. (4)

The last term on the left-hand side of the second equation
describes the dispersion.

The linear dispersion relation of the system (4) for linear
waves propagating along a constant background ρ0 has the
form

ω1,2(k) =
(

δρ0 ±
√

k2

4
+ ρ0

)
k. (5)

Here ω is the frequency of the linear waves and k is the wave
number. Suppose that at the initial moment the phase of the
wave is constant and there is only the intensity perturbation.
After standard calculations we get the solution of the linear
problem expressed in terms of the Fourier transform ρ̂0

′(k) of
the initial (input) intensity linear disturbance,

ρ ′(x, t ) = 1

4π

∫ +∞

−∞
ρ̂0

′(k)[ei(kx−ω1t ) + ei(kx−ω2t )]dk. (6)

One can see that an initial pulse splits into two smaller pulses;
however, in contrast to the NLS case, two pulses propagate
with different group velocities. This is a manifestation of lack
of the x-inversion invariance, which is caused by the last term
in the generalized CLL equation (2).

We are interested in the leading dispersion and nonlinear
corrections to the dispersionless linear propagation of dis-
turbances. Using the system (4) and applying the standard
perturbation theory for the amplitude of the perturbation and
for the weak dispersion (see, for example, [1]), one can obtain
a small-amplitude analog of Eq. (2). Let the wave propagate
in the positive direction of the x axis. Then an approximate
equation for ρ ′ = ρ − ρ0 takes the form

∂ρ ′

∂t
+ (δρ0 + √

ρ0)
∂ρ ′

∂x
+ 3

2

1 + δ
√

ρ0

δ
√

ρ0
δρ ′ ∂ρ ′

∂x

− 1

8
√

ρ0

∂3ρ ′

∂x3
= 0. (7)

This is the Korteweg–de Vries (KdV) equation. Formation of
DSWs from initial discontinuities in the KdV equation theory
has been well known since the pioneering paper Ref. [10]: the
initial discontinuity evolves into either a rarefaction wave or
a cnoidal DSW. In the limit δ

√
ρ → 1 the nonlinear term of

Eq. (7) has finite value and we need not include higher-order
corrections for taking into account higher-order nonlinear
effects. The situation is the opposite for another simple wave
propagating in the negative direction of the x axis. In this case
we have the Gardner equation

∂ρ ′

∂t
+ (δρ0 − √

ρ0)
∂ρ ′

∂x
− 3

2

1 − δ
√

ρ0

δ
√

ρ0
δρ ′ ∂ρ ′

∂x

+ 3

8

1 + δ
√

ρ0

ρ
3/2
0

ρ ′2 ∂ρ ′

∂x
+ 1

8
√

ρ0

∂3ρ ′

∂x3
= 0. (8)

In the limit δ
√

ρ → 1 the last equation reduces to the modified
Korteweg–de Vries (mKdV) equation

∂ρ ′

∂t
+ 3

4ρ
3/2
0

ρ ′2 ∂ρ ′

∂x
+ 1

8
√

ρ0

∂3ρ ′

∂x3
= 0. (9)

The situation for the mKdV and Gardner equations is much
more complicated than for the KdV case [51] and in this
case we can get eight different structures including, besides
the rarefaction waves and cnoidal DSWs, also trigonometric
DSWs, combined shocks and their combinations separated
by plateaus. Therefore one should expect that in the case of
the Riemann problem for Eq. (2) we also have to get much
richer structure than in the NLS case. To solve this problem,
at first we have to find periodic solutions of Eq. (2) in a form
that is convenient for us, that is, in a form parametrized by
the parameters related to the Riemann invariants of the corre-
sponding Whitham modulation equations by simple formulas.
In the next section we shall obtain the periodic solutions by
this method and derive the Whitham equations.

III. PERIODIC SOLUTIONS AND WHITHAM
MODULATION EQUATIONS

The finite-gap integration method (see, e.g., [1]) is based
on the possibility of representing the generalized CLL equa-
tion (2) as a compatibility condition of two systems of linear
equations with a spectral parameter λ,

∂

∂x

(
ψ1

ψ2

)
=

(
F G
H −F

)(
ψ1

ψ2

)
, (10)

∂

∂t

(
ψ1

ψ2

)
=

(
A B
C −A

)(
ψ1

ψ2

)
, (11)

where

F = − i

2δ
(λ2 − δ2|q|2 + 1), G = −qλ, H = q∗λ,

A = − i

4δ2
(λ2 − δ2|q|2 + 1)2 − δ

4
(qxq∗ − qq∗

x ) − i

2
|q|2,

B = − 1

2δ
(λ2 − δ2|q|2 + 1)qλ − i

2
qxλ,

C = 1

2δ
(λ2 − δ2|q|2 + 1)q∗λ − i

2
q∗

xλ. (12)

This Lax pair can be obtained by simple transformation from
the known Lax pair for the CLL equation (1) (see Ref. [52]).
The 2 × 2 linear problems (10) and (11) have two linearly
independent basis solutions which we denote as (ψ1, ψ2)T and
(ϕ1, ϕ2)T . We define the “squared basis functions”

f = − i

2
(ψ1ϕ2 + ψ2ϕ1), g = ψ1ϕ1, h = −ψ2ϕ2, (13)

which obey the linear equations

fx = iGh − iHg, (14a)

gx = 2Fg + 2iG f , (14b)

hx = −2Fh − 2iH f , (14c)
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and

ft = iBh − iCg, (15a)

gt = 2Ag + 2iB f , (15b)

ht = −2Ah − 2iC f . (15c)

We look for the solutions of these equations in the form

f = (λ2 − δ2|q|2 + 1)2 − f1(λ2 − δ2|q|2 + 1) + f2,

g = −2δ(λ2 − δ2|q|2 + 1 − μ)qλ,

h = 2δ(λ2 − δ2|q|2 + 1 − μ∗)q∗λ. (16)

Here the functions f1(x, t ), f2(x, t ), μ(x, t ), and μ∗(x, t ) are
unknown; μ(x, t ) and μ∗(x, t ) are not interrelated a priori, but
we shall find soon that they are complex conjugate, whence
the notation.

Substitution of Eqs. (16) into Eqs. (14) gives after equating
the coefficients of like powers of λ expressions for the x
derivatives of f1 and f2,

f1,x = 0, f2,x = δ2(2 − 2δ2|q|2 − f1)(|q|2)x, (17)

and of |q|2 and μ,

(|q|2)x = i

δ
(μ − μ∗)|q|2,

(μq)x = −iδ(μ − μ∗)|q|2 − i

δ
f2q. (18)

In a similar way, substitution of (16) into (15) with account of
(17) gives equations for the t derivatives of f1 and f2,

f1,t = 0, f2,t = f1

2δ
f2,x, (19)

and

(|q|2)t = f1

2δ
(|q|2)x. (20)

It is easy to check that the expression f 2 − gh = P(λ) does
not depend on x and t ; however it can depend on the spectral
parameter λ. We are interested in the one-phase periodic
solution. It is distinguished by the condition that P(λ) is an
eighth-degree polynomial of the form

f 2 − gh = P(λ) =
4∏

i=1

(
λ2 − λ2

i

)
= λ8 − s1λ

6 + s2λ
4 − s3λ

2 + s4. (21)

Equating the coefficients of like powers of λ at two sides of
this identity, we get

s1 = 2 f1 − 4, (22a)

s2 = f 2
1 + 2 f2 − 4δ2|q|2(μ + μ∗)

+ 2[3 f1 − 3 − δ2|q|2][δ2|q|2 − 1], (22b)

s3 = (
s2 + f 2

1 + 2 f2 + 2[δ4|q|4 − 1]
)
[δ2|q|2 − 1]

+ 2 f1 f2 − 4δ2|q|2μμ∗, (22c)

s4 = ([ f1 + δ2|q|2 − 1][δ2|q|2 − 1] + f2)2. (22d)

Here si are standard symmetric functions of the four zeros
λ2

i of the polynomial P(λ):

s1 =
∑

i

λ2
i , s2 =

∑
i< j

λ2
i λ

2
j , s3 =

∑
i< j<k

λ2
i λ

2
jλ

2
k,

s4 = λ2
1λ

2
2λ

2
3λ

2
4.

(23)

Equations (22) allow us to express μ,μ∗ as functions of
|q|2. The first and the last Eqs. (22) give

f1 = s1

2
+ 2,

f2 = 1 − δ4|q|4 − s1

2
(δ2|q|2 − 1) ± √

s4. (24)

We substitute that into (22b) and (22c) and obtain the system
for μ and μ∗, which can be easily solved to give

μ = 1

2δ2|q|2
[( s1

4

)2
+ 1

2
δ2|q|2(s1 + 4 − 2δ2|q|2)

− s2

4
± 1

2

√
s4 − i

√
−R(δ2|q|2)

]
, (25)

where

R(ν) = ν4 + s1ν
3 +

(
3

8
s2

1 − s2

2
∓ 3

√
s4

)
ν2

+
(

1

16
s3

1 + s3 − 1

4
s1s2 ∓ 1

2
s1

√
s4

)
ν

+
[( s1

4

)2
− s2

4
± 1

2

√
s4

]2

. (26)

The function R introduced here is a fourth-degree polynomial
in ν and it is called an algebraic resolvent of the polynomial
P(λ), because zeros of R(ν) are related to zeros of P(λ) by
the following simple symmetric expressions: the upper sign
in (26) corresponds to the zeros

ν1 = 1
4 (−λ1 + λ2 + λ3 − λ4)2,

ν2 = 1
4 (λ1 − λ2 + λ3 − λ4)2,

ν3 = 1
4 (λ1 + λ2 − λ3 − λ4)2,

ν4 = 1
4 (λ1 + λ2 + λ3 + λ4)2,

(27)

and the lower sign in Eq. (26) corresponds to the zeros

ν1 = 1
4 (−λ1 + λ2 + λ3 + λ4)2,

ν2 = 1
4 (λ1 − λ2 + λ3 + λ4)2,

ν3 = 1
4 (λ1 + λ2 − λ3 + λ4)2,

ν4 = 1
4 (λ1 + λ2 + λ3 − λ4)2. (28)

This can be proved by a simple check of the Vieta formulas.
As follows from the second Eq. (19), the first Eq. (24) gives

the expression for the constant phase velocity,

V = − f1

2δ
= −1

δ
− s1

4δ

= −1

δ
− 1

4δ

4∑
i=1

λ2
i = −1

δ
− 1

4δ

4∑
i=1

νi, (29)
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and we find that f2 depends on ξ = x − V t only. Then from
Eq. (20) we see that the intensity ρ = |q|2 also depends only
on ξ . The equations for dynamics of ρ can be easily found by
substitution of (25) into the first Eq. (18), so we get

d (δ2ρ)

dξ
= 1

δ

√
−R(δ2ρ), (30)

where R is, as we know, a fourth-degree polynomial with the
zeros given in terms of λi by the formulas (27) or (28). This
equation can be solved in a standard way in terms of elliptic
functions. Without going to much detail we shall present here
the main results.

We shall assume that λi are ordered according to 0 � λ1 �
λ2 � λ3 � λ4 and then both our definitions (27) and (28) give
the same ordering of νi: ν1 � ν2 � ν3 � ν4. The real solutions
correspond to oscillations of δ2ρ within the intervals where
−R(δ2ρ) � 0.

(A) At first we shall consider the periodic solution corre-
sponding to oscillations of δ2ρ in the interval

ν1 � δ2ρ � ν2. (31)

Standard calculation yields, after some algebra, the solution
in terms of Jacobi elliptic functions:

δ2ρ = ν2 − (ν2 − ν1)cn2(θ, m)

1 + ν2−ν1
ν4−ν2

sn2(θ, m)
, (32)

where it is assumed that δ2ρ(0) = ν1,

θ =
√

(ν3 − ν1)(ν4 − ν2) ξ/(2δ), (33)

m = (ν4 − ν3)(ν2 − ν1)

(ν4 − ν2)(ν3 − ν1)
, (34)

the functions cn and sn being Jacobi elliptic functions [53].
The period of oscillations along the x axis is equal to function
(32) and is

L = 4K (m)√
(ν3 − ν1)(ν4 − ν2)

= 4K (m)√(
λ2

3 − λ2
1

)(
λ2

4 − λ2
2

) , (35)

where K (m) is the complete elliptic integral of the first kind
[53].

In the limit ν3 → ν2 (m → 1) the period tends to infinity
and the solution (32) acquires the soliton form

δ2ρ = ν2 − ν2 − ν1

cosh2 θ + ν2−ν1
ν4−ν2

sinh2 θ
. (36)

This is a “dark soliton” for the variable ρ.
The limit m → 0 can be reached in two ways.
(i) If ν2 → ν1, then the solution transforms into a linear

harmonic wave,

δ2ρ ∼= ν2 − 1
2 (ν2 − ν1) cos(ωξ/δ),

ω =
√

(ν3 − ν1)(ν4 − ν1). (37)

(ii) If ν4 = ν3 but ν1 	= ν2, then we arrive at the nonlinear
trigonometric solution:

δ2ρ = ν2 − (ν2 − ν1) cos2 θ

1 + ν2−ν1
ν3−ν2

sin2 θ
,

θ =
√

(ν3 − ν1)(ν3 − ν2) ξ/(2δ).

(38)

If we take the limit ν2 − ν1 
 ν3 − ν1 in this solution, then
we return to the small-amplitude limit (37) with ν4 = ν3. On
the other hand, if we take here the limit ν2 → ν3 = ν4, then
the argument of the trigonometric functions becomes small
and we can approximate them by the first terms of their series
expansions. This corresponds to an algebraic soliton of the
form

δ2ρ = ν2 − ν2 − ν1

1 + (ν2 − ν1)2ξ 2/(4δ2)
. (39)

(B) In the second case, the variable δ2ρ oscillates in the
interval

ν3 � δ2ρ � ν4. (40)

Here again, a standard calculation yields

δ2ρ = ν3 + (ν4 − ν3)cn2(θ, m)

1 + ν4−ν3
ν3−ν1

sn2(θ, m)
(41)

with the same definitions (33), (34), and (35) for θ , m, and
T , correspondingly. In this case we have δ2ρ(0) = ν4. In the
soliton limit ν3 → ν2 (m → 1) we get

δ2ρ = ν2 + ν4 − ν2

cosh2 θ + ν4−ν2
ν2−ν1

sinh2 θ
. (42)

This is a “bright soliton” for the variable ρ.
Again, the limit m → 0 can be reached in two ways.
(i) If ν4 → ν3, then we obtain a small-amplitude harmonic

wave

δ2ρ ∼= ν3 + 1
2 (ν4 − ν3) cos(ωξ/δ),

ω =
√

(ν3 − ν1)(ν3 − ν2).
(43)

(ii) If ν2 = ν1, then we obtain another nonlinear trigono-
metric solution,

δ2ρ = ν3 + (ν4 − ν3) cos2 θ

1 + ν4−ν3
ν3−ν1

sin2 θ
,

θ =
√

(ν3 − ν1)(ν4 − ν1) ξ/(2δ).

(44)

If we assume that ν4 − ν3 
 ν4 − ν1, then this reproduces the
small-amplitude limit (43) with ν2 = ν1. On the other hand,
in the limit ν3 → ν2 = ν1 we obtain the algebraic soliton
solution:

δ2ρ = ν1 + ν4 − ν1

1 + (ν4 − ν1)2ξ 2/(4δ2)
. (45)

The convenience of this form of periodic solutions of our
equation is related to the fact that the parameters λi, connected
with νi by the formulas (27), (28), play the role of Riemann
invariants in the Whitham theory of modulations. For both
cases (27), (28) we have the identities

m = (ν4 − ν3)(ν2 − ν1)

(ν4 − ν2)(ν3 − ν1)
=

(
λ2

4 − λ2
3

)(
λ2

2 − λ2
1

)(
λ2

4 − λ2
2

)(
λ2

3 − λ2
1

) . (46)

Now we shall consider slowly modulated waves. In this
case, the parameters λi (i = 1, 2, 3, 4) become slowly varying
functions of x and t changing little in one period and they can
serve as Riemann invariants. Evolution of λi is governed by
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the Whitham modulation equations

∂λi

∂t
+ vi

∂λi

∂x
= 0, i = 1, 2, 3, 4. (47)

The Whitham velocities appearing in these equations can be
computed by means of the formula

vi =
(

1 − L

∂iL
∂i

)
V, where ∂i ≡ ∂

∂λ2
i

, (48)

with the use of Eqs. (29) and (35). Hence, a simple calculation
yields the explicit expressions

v1 = −1

δ
+ 1

4δ

4∑
i=1

λ2
i − 1

2δ

(
λ2

4 − λ2
1

)(
λ2

2 − λ2
1

)
K (m)(

λ2
4−λ2

1

)
K (m) − (

λ2
4−λ2

2

)
E (m)

,

v2 = −1

δ
+ 1

4δ

4∑
i=1

λ2
i +

1

2δ

(
λ2

3 − λ2
2

)(
λ2

2 − λ2
1

)
K (m)(

λ2
3−λ2

2

)
K (m) − (λ2

3−λ2
1)E (m)

,

(49)

v3 = −1

δ
+ 1

4δ

4∑
i=1

λ2
i − 1

2δ

(
λ2

4 − λ2
3

)(
λ2

3 − λ2
2

)
K (m)(

λ2
3−λ2

2

)
K (m) − (

λ2
4−λ2

2

)
E (m)

,

v4 = −1

δ
+ 1

4δ

4∑
i=1

λ2
i + 1

2δ

(
λ2

4 − λ2
3

)(
λ2

4 − λ2
1

)
K (m)(

λ2
4−λ2

1

)
K (m) − (

λ2
3−λ2

1)E (m
) ,

where E (m) is the complete elliptic integral of the second kind
[53].

In a modulated wave representing a dispersive shock wave,
the Riemann invariants change with x and t . The dispersive
shock wave occupies a space interval at which edges two
of the Riemann invariants coincide. The soliton edge corre-
sponds to λ3 = λ2 (m = 1) and at this edge the Whitham
velocities are given by

v1 = −1

δ
+ 1

4δ

(
3λ2

1 + λ2
4

)
,

v2 = v3 = −1

δ
+ 1

4δ

(
λ2

1 + 2λ2
2 + λ2

4

)
,

v4 = −1

δ
+ 1

4δ

(
λ2

1 + 3λ2
4

)
. (50)

The small-amplitude limit m = 0 can be obtained in two ways.
If λ3 = λ4, then we get

v1 = −1

δ
+ 1

4δ

(
3λ2

1 + λ2
2

)
, v2 = −1

δ
+ 1

4δ

(
λ2

1 + 3λ2
2

)
,

v3 = v4 = −1

δ
+ 1

δ
λ2

4 + 1

4δ

(
λ2

2 − λ2
1

)2

λ2
1 + λ2

2 − 2λ2
4

, (51)

and if λ2 = λ1, then

v1 = v2 = −1

δ
+ 1

δ
λ2

1 − 1

4δ

(
λ2

4 − λ2
3

)2

λ2
3 + λ2

4 − 2λ2
1

,

v3 = −1

δ
+ 1

4δ

(
3λ2

3 + λ2
4

)
, v4 = −1

δ
+ 1

4δ

(
λ2

3 + 3λ2
4

)
.

(52)

We can now proceed to the description of key elements
(“building blocks”) from which the wave patterns are con-
structed.

IV. KEY ELEMENTS

We consider in the present paper the so-called Riemann
problem. This corresponds to the study of the evolution of
initial discontinuous profiles of the form

ρ(t = 0) =
{
ρL, x < 0,

ρR, x > 0,

u(t = 0) =
{

uL, x < 0,

uR, x > 0.

(53)

Evolution of such a pulse leads to formation of quite complex
structures consisting of simpler elements. We shall describe
these elements in the present section.

A. Rarefaction waves

For smooth enough wave patterns we can neglect the last
dispersion term in the second equation of the system (4) and
arrive at the so-called dispersionless equations

ρt + (
ρu + 1

2δρ2
)

x = 0,

ut + uux + ρx + δ(ρu)x = 0. (54)

First of all, this system admits a trivial solution for which
ρ = constant and u = constant. We shall call such a solution
a “plateau.” It is convenient to transform the system (54) to a
diagonal Riemann form,

∂r±
∂t

+ v±
∂r±
∂x

= 0, (55)

by defining the Riemann invariants and Riemann velocities

r± = u

2
+ δρ

2
±

√
(1 + δu)ρ,

v± = u + δρ ±
√

(1 + δu)ρ,

(56)

where the Riemann velocities are expressed via the Riemann
invariants by the relations

v+ = 3
2 r+ + 1

2 r−, v− = 1
2 r+ + 3

2 r−. (57)

It is clear that the system is modulationally unstable if

u < −1

δ
. (58)

A rarefaction wave belongs to the class of simple wave
solutions. For such a solution, one of the Riemann invariants
is constant, and this condition either r+ = constant or r− =
constant gives, when applied to Eqs. (56), the relationship
between the variables ρ and u. Consequently, on the (u, ρ)
plane these simple wave solutions are depicted as curves (see
Fig. 1)

ρ = 2 + 2δr± + δu ± 2
√

(1 + 2δr±)(1 + δu)

δ2
. (59)

To have the intensity positive, it is necessary to fulfill the
condition −1/(2δ) � r− � r+. Both curves touch the bound-
ary line u = −1/δ of the instability region. In Fig. 1, the
modulationally unstable region (58) is gray. Along the line
ρ = (1 + δu)/δ2 both derivatives ∂r+/∂u = 0, ∂r+/∂ρ = 0
vanish. We say that this line separates two monotonicity re-
gions in the half plane ρ � 0 (see Fig. 1). The two intersection
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2r+2r−

r+ = const

r− = const

−1/δ

ρ = (1 + δu)/δ
2

ρ

u

FIG. 1. Relation between ρ and u for the simple wave solutions
in the dispersionless regime. One line corresponds to r− = constant
(blue), and another one to r+ = constant (red). Gray area shows the
modulationally unstable region u < −1/δ.

points of curves correspond to uniform flows with constant
parameters ρ = constant and u = constant, that is, to the
plateau solutions. It is easy to express the physical variables ρ

and u in terms of r− and r+,

ρ(ζ ) = 1

2δ2
[1 + δ(r+ + r−) ±

√
(1 + 2δr+)(1 + 2δr−)],

u = 1

2δ
[δ(r+ + r−) − 1 ∓

√
(1 + 2δr+)(1 + 2δr−)]. (60)

The initial profiles (53), being infinitely sharp, do not
involve any characteristic length. Therefore the large-scale
features of the solution of this problem can depend on the
self-similar variable ζ = x/t only, that is, r± = r±(ζ ), and
then the system (55) reduces to

(v− − ζ )
dr−
dζ

= 0, (v+ − ζ )
dr+
dζ

= 0. (61)

We note again that these equations have a simple solution
r− = constant, r+ = constant with constant u and ρ, which
corresponds to the above-mentioned plateau region.

Turning to self-similar simple wave solutions, let us con-
sider for definiteness the case when r− = constant. Then r+
changes in such a way that the term between parentheses in
the right equation (61) is zero (v+ = ζ ), so we have

ρ = 1

2δ2

{
1 + 2

3
δr− + 2

3
δζ

±
√

(1 + 2δr−)

(
1 − 2

3
δr− + 4

3
δζ

)}
,

u(ζ ) = 2

3
(r− + ζ ) − δρ(ζ ). (62)

We see that in the self-similar solutions the variable ζ must be
above its minimal value,

ζ � r−
2

− 3

4δ
. (63)

−0.4 −0.2 0 0.2 0.4

0.2

0.3

0.4

0.5
ρL = 0.5

uL = 0

ρR = 0.233

uR = 0.5

s− = −0.21 s+ = 0.14

x/t

ρ

Numerical Simulations
Analytical Solution

Initial State

FIG. 2. Dependence of simple wave solution ρ(ζ ) on ζ = x/t
composed by a rarefaction wave connecting two uniform flows.
Numerical solution is shown in red (thick) and analytical solution is
shown in blue (thin). Vertical dashed lines indicate the edges of the
rarefaction wave according to (66). Gray dash-dotted line represents
the initial state. Here ρL = 0.5, uL = 5, ρR = 0.233, uR = 0.5, with
δ = 1.

Similar formulas and plots can be obtained for the solution
r+ = constant, v−(r−, r+) = x/t ≡ ζ . This wave configura-
tion represents a rarefaction wave. In the general case this type
of wave can connect uniform flows with equal values of the
corresponding Riemann invariants rL

− = rR
− or rL

+ = rR
+. An

example of the corresponding distribution is shown in Fig. 2.
The analytical simple wave approximation (thin blue) agrees
with the numerical solution of the generalized CLL equation
(2) (thick red) very well.

It is clear that in these self-similar solutions one of the
Riemann invariants must be constant and another one must
increase with ζ according to

r− = r0
− = const, v+ = 3

2 r+ + 1
2 r0

− = ζ , (64)

or

r+ = r0
+ = const, v− = 3

2 r− + 1
2 r0

+ = ζ . (65)

The dependence of the Riemann invariants on the physical pa-
rameters must also be monotonic in order to keep the solution
single-valued. The dependence of the Riemann invariants on
ζ is sketched in Fig. 3 for two possible situations with r− or
r+ constant. The edge velocities of these rarefaction waves are
equal to

(a) s− = 1
2 rL

− + 3
2 rL

+, s+ = 1
2 rR

− + 3
2 rR

+;

(b) s− = 3
2 rL

− + 1
2 rL

+, s+ = 3
2 rR

− + 1
2 rR

+. (66)

Obviously, the corresponding wave structures must satisfy
the conditions (a) rL

+ < rR
+, rL

− = rR
− or (b) rL

+ = rR
+, rL

− < rR
−.

The other two situations with opposite inequalities result in
multivalued solutions and are therefore nonphysical: the dis-
persionless approximation is not applicable to these cases and
we have to turn to another type of key element for describing
such structures.
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ζ

rL
−

rL
+

r−

r+

rR
−

rR
+

s− s+

(a)

ζ

rL
−

rL
+

r−

r+

rR
−

rR
+

s− s+

(b)

FIG. 3. Diagrams representing the evolution of the Riemann
invariants as a function of ζ = x/t for two types of rarefaction waves.

B. Cnoidal dispersive shock waves

The other two possible solutions of Eqs. (55) are sketched
in Fig. 4, where for future convenience we have made the
change r �→ λ (r± will be functions of λ± defined below), and
they satisfy the boundary conditions (a) λL

+ = λR
+, λL

− > λR
−

or (b) λL
+ > λR

+, λL
− = λR

−. We consider λi as four Riemann
invariants of the Whitham system that describe evolution of
a modulated nonlinear periodic wave. We interpret this as a
formation of the cnoidal dispersive shock wave from the initial
discontinuity with such a type of the boundary conditions.

Since the pioneering work of Gurevich and Pitaevskii [10],
it has been known that wave breaking is regularized by the
replacement of the nonphysical multivalued dispersionless
solution by a dispersive shock wave. This wave pattern can
be represented approximately as a modulated nonlinear peri-
odic wave in which parameters λi change slowly along the
wave structure. In this case, the two dispersionless Riemann
invariants λ± (or r±) are replaced in the DSW region by four
Riemann invariants λi. In this region, the evolution of the
DSW is determined by the Whitham equations (47). If we
consider a self-similar solution, then all Riemann invariants
depend only on ζ = x/t , and the Whitham equations reduce to

(vi − ζ )
dλi

dζ
= 0, i = 1, 2, 3, 4. (67)

Hence we find again that only one Riemann invariant
varies along the DSW, while the other three are constant;

ζ

λL
−

λL
+

λ1

λ2

λ3

λ4

λR
−

λR
+

s− s+

(a)

ζ

λL
−

λL
+

λ1

λ2

λ3

λ4

λR
−

λR
+

s− s+

(b)

FIG. 4. Diagrams considered within the dispersionless approx-
imation correspond to a formal multivalued solution. In this case,
the dispersionless approximation breaks down and one observes
a dispersive shock wave, accurately described by four Riemann
invariants within the Whitham modulational approach.

that is, the corresponding diagram reproduces the picture
shown in Fig. 4. The limiting expressions (50) for the
Whitham velocities must coincide with expressions (57) for
dispersionless Riemann velocities and therefore we can relate
the corresponding dispersionless and dispersive Riemann
invariants by the formulas

(a) λL
− =

√
1 + 2δr−, λL

+ =
√

1 + 2δr+,

(b) λR
− =

√
1 + 2δr−, λR

+ =
√

1 + 2δr+,
(68)

at the soliton edges of the DSW. Here rL,R
± are the Riemann

invariants of the dispersionless theory that are defined by
Eqs. (56). They describe the plateau solution at the soliton
edge of the DSW. In a similar way, at the small-amplitude
edges we find similar relations

(a) λR
− =

√
1 + 2δr−, λR

+ =
√

1 + 2δr+, (69)

and

(b) λL
− =

√
1 + 2δr−, λL

+ =
√

1 + 2δr+. (70)

Again the limiting expressions (51) and (52) coincide with
the dispersionless expressions (57). Then the self-similar
solutions of the Whitham equations (67) are given by

(a) v3(λL
−, λR

+, λ3(ζ ), λL
+) = ζ ,

or

(b) v2(λR
−, λ2(ζ ), λL

−, λL
+) = ζ ,

(71)

which define the dependence of the Riemann invariants
(modulation parameters) λ3 or λ2 on ζ in implicit form. The
edges of the DSW propagate with velocities

(a) s− = −1

δ
+ 1

4δ
[(λL

−)2 + 2(λR
+)2 + (λL

+)2],

s+ = −1

δ
+ 1

δ
(λL

+)2 + 1

4δ

[(λR
+)2 − (λR

−)2]2

(λR+)2 + (λR−)2 − 2(λL+)2
,

(b) s− = −1

δ
+ 1

δ
(λR

+)2 + 1

4δ

[(λL
+)2 − (λL

−)2]2

(λL+)2 + (λL−)2 − 2(λR+)2
,

s+ = −1

δ
+ 1

4δ
[(λR

−)2 + 2(λL
+)2 + (λR

+)2]. (72)

As shown in the diagrams of Fig. 4, three of the four
Riemann invariants λi in the DSW are equal to the values
of Riemann invariants on the boundaries. Moreover, the third
invariant changes according to (71). The substitution of λi

determines the dependence of νi on ζ for each of the cases
in (27) and (28). This means that there are two mappings from
Riemann invariants to the physical parameters. This point will
be important in classification of the wave structures evolved
from the initial discontinuities. For example, let us consider
the case (a) (λL

− = λR
−, λL

+ > λR
+). We have two paths on the

(u, I ) plane that satisfy this choice. These two paths L1 → R1

and L2 → R2 are shown in Fig. 5 and correspond to two
mappings (27) and (28), where points L1 and L2 correspond
to the left boundary condition with the Riemann invariants
equal to λL

− and λL
+, and the points R1 and R2 correspond to the

right boundary condition with the Riemann invariants equal to
λR

− and λR
+. In Fig. 6 we compare the analytic solution in the
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r+ = const

r− = const

−1/δ

ρ = (1 + δu)/δ
2

R2

L2

R1

L1

ρ

u

FIG. 5. Example of two possible paths in the (u, ρ) plane be-
tween the left and right boundary for the case of dispersive shock
waves. Corresponding wave structures are shown in Fig. 6 and they
satisfy the same solution of the Whitham equations, but different
boundary conditions in physical variables.

Whitham approximation with the exact numerical solution of
the generalized CLL equation. One can see that the envelope
functions resulting from the Whitham approach (dashed black
lines) agree very well with the exact numerical solution (thick
red lines).

In a similar way, the diagram Fig. 4(b) produces two other
wave structures.

C. Contact dispersive shock waves

We now turn to the study of the situation where the left
and right boundary points belong to different monotonicity
regions. First, we consider the situation in which the Riemann
invariants have equal values at both edges of the shock, i.e.,
when rL

− = rR
−, rL

+ = rR
+ and, consequently, λL

− = λR
−, λL

+ =
λR

+. This situation resembles the one of the so called “contact
discontinuities” which play an important role in the theory of
viscous shocks (see, e.g., Ref. [54]); therefore we shall denote
the wave structures arising in this case as contact dispersive
shock waves (to avoid any confusion, we should mention
that in the dynamics of immiscible condensates, interfaces
between two components may appear which play the same
role as the one played by contact discontinuities in the theory
of viscous shocks; see, e.g., [55]). This type of DSW was first
reported in [56] where the evolution of a step problem was
studied for the focusing mKdV equation (see also a similar
solution for the complex modified mKdV equation in [57]).
In [58] these (trigonometric) DSWs were first attributed the
name of contact DSWs. The contact DSWs of the generalized
CLL equation are described by the modulated finite-amplitude
nonlinear periodic solutions (38) or (44). At one of the edges
of the trigonometric shock the amplitude vanishes and at the
opposite edge it assumes some finite value. Generically, as
will be explained later, contact DSWs are realized as parts
of composite solutions (either a combination of cnoidal and
trigonometric shocks or a combination of a trigonometric

0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6
ρL = 0.5

uL = 0.5

ρR = 0.296

uR = −0.3

s− = 0.70 s+ = 1.70

(a)

x/t

ρ

Numerical Simulations
Analytical Solution

Analytical Envelopes

1.5 2 2.5 3 3.5 4 4.5

0.5

1

1.5
ρL = 1.5

uL = 0

ρR = 0.868

uR = −0.5

s− = 1.59 s+ = 3.71

(b)

x/t

ρ

Numerical Simulations
Analytical Solution

Analytical Envelopes

FIG. 6. The comparison of analytical (thin blue) and numerical
(thick red) solutions of the generalized CLL equation (2) for two
different boundary conditions and the same solution of the Whitham
equations for the modulation parameters: (a) ρL = 0.5, uL = 0.5,
ρR = 0.296, uR = −0.3; (b) ρL = 1.5, uL = 0, ρR = 0.868, uR =
−0.5 with δ = 1. Dashed lines show analytical envelopes. Vertical
dashed lines indicate the edges of the cnoidal DSW wave according
to (72).

DSW and a rarefaction wave). Such contact waves can arise
only if the boundary points are located on the opposite sides
of the line ρ = (1 + δu)/δ2, i.e., in different regions of mono-
tonicity. The diagram shown in Fig. 7 corresponds to the
path in Fig. 8. In this case, the curve connecting the end
points crosses the line ρ = (1 + δu)/δ2 of the hyperbolicity
square along which λ− takes its minimal value: λ− = 0. This
means that in the formal dispersionless solution, the invariant
λ− would first decrease and reach its minimal value, then
increase to the initial value along the same “path.” We see
in Fig. 7 that two Riemann invariants λ3 and λ4 are constant
within the shock region and they match the boundary con-
dition λ3 = λL

− = λR
−, λ4 = λL

+ = λR
+, whereas the two other

Riemann invariants are equal to each other (λ1 = λ2) and
satisfy the same Whitham equation with v1(λ1, λ1, λ

L
−, λL

+) =
v2(λ1, λ1, λ

L
−, λL

+) = ζ . Here ζ varies within the interval s− �
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ζ

λL
−

λL
+

λ3

λ4

λ1 = λ2

λR
−

λR
+

0

s− s+

FIG. 7. Diagram represents evolution of the Riemann invariants
as functions of ζ = x/t in the contact DSW solution of the Whitham
equations: rL

− = rR
− (λL

− = λR
−), rL

+ = rR
+ (λL

+ = λR
+).

ζ � s+ with

s− = −1

δ
− 1

4δ

[(λL
+)2 − (λL

−)2]2

(λL−)2 + (λL+)2
,

s+ = −1

δ
+ 1

4δ
[3(λR

−)2 + (λR
+)2]. (73)

As in the case of cnoidal DSWs, due to different mappings
(27) or (28) the single contact diagram corresponds to two
DSW structures. An example of two paths P1 → P2 and the
opposite P2 ← P1 is shown in Fig. 8. The corresponding wave
structures are shown in Fig. 9. For the contact DSW the wave
amplitude varies in a quadratic manner through the shock.
This is particularly noticeable near the small-amplitude edge
of the DSW. This is in contrast to the cnoidal DSW for which
the wave amplitude varies linearly.

D. Combined shocks

It is natural to ask what happens if one of the Riemann
invariants still remains constant (rL

+ = rR
+ or λL

+ = λR
+); how-

ever the boundary values of the other Riemann invariant are

r+ = const

r− = const

−1/δ

ρ = (1 + δu)/δ
2

P2

P1

ρ

u

FIG. 8. Example of path for a contact DSW (rL
+ = rR

+ and rL
− =

rR
−) with crossing of ρ = (1 + δu)/δ2 line separating the regions of

monotonicity. Two directions P1 ↔ P2 are described by the mappings
(27) and (28).

−0.4 −0.2 0 0.2 0.4
0

1

2

3

ρL = 1.5

uL = −0.5

ρR = 0.5

uR = 0.5s− = −0.25 s+ = 0.13

(a)

(b)

x/t

ρ

Numerical Simulations
Analytical Solution

Analytical Envelopes

−0.4 −0.2 0 0.2 0.4
0

0.5

1

1.5

ρL = 0.5

uL = 0.5

ρR = 1.5

uR = −0.5

s− = −0.25 s+ = 0.13

x/t

ρ

Numerical Simulations
Analytical Solution

Analytical Envelopes

FIG. 9. The comparison of analytical (thin blue) and numerical
(thick red) solutions of the generalized CLL equation (2) for contact
DSW for two possible choices of directions P1 ←→ P2 and corre-
sponding mappings (27) and (28). Here (a) ρL = 1.5, uL = −0.5,
ρR = 0.5, uR = 0.5; (b) ρL = 0.5, uL = 0.5, ρR = 1.5, uR = −0.5
with δ = 1. Dashed black lines show analytical envelopes; gray dash-
dotted line represents the initial state. Vertical dashed lines indicate
the edges of the contact DSW wave according to (73).

different: rL
− < rR

− (λL
− > λR

−) or rL
− > rR

− (λL
− < λR

−). To be
definite, we shall consider two generalizations of the situation.
The transition of the type L1 → R1 or L2 → R2 of Fig. 8 can
be generalized in two ways represented in Fig. 10, where the
points Li and Ri symbolize plateaus at the left and right bound-
aries, respectively. In this case the boundary points are also
located in different monotonicity regions. Diagrams for Rie-
mann invariants for both of these cases are shown in Fig. 11.

In the case corresponding to Fig. 10(a) the contact trigono-
metric DSW is attached at its right edge to the cnoidal DSW.
At the right soliton edge the cnoidal wave matches the right
boundary plateau. The velocities of the characteristic points
identified in Fig. 11(a) are given by

s− = −1

δ
− 1

4δ

[(λL
+)2 − (λL

−)2]2

(λL−)2 + (λL+)2
,

s(1)
+ = −1

δ
+ 1

4δ
[3(λL

+)2 + (λL
−)2],

s(2)
+ = −1

δ
+ 1

4δ
[(λR

−)2 + 2(λL
−)2 + (λR

+)2]. (74)
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δ
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ρ
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−11

(a)

(b)

FIG. 10. Paths in the (u, I ) plane associated with two types of
combined shocks. The left and right boundary conditions correspond
to points L and R, respectively; they lie on the curves along which the
dispersionless Riemann invariant r+ = rL

+ = rR
+ (λ+ = λL

+ = λR
+) is

constant. One has rL
− < rR

− (λL
− > λR

−) in case (a) and rL
− > rR

− (λL
− <

λR
−) in case (b).

The resulting composite wave structure is shown in Fig. 12(a)
(thin blue line) where it is compared with the numerical
solution of the generalized CLL equation (2) (thick red line).

ζs− s
(1)
+ s

(2)
+

λL
+

λL
−

λ4

λ3

λ1 = λ2

λ4
λ3
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+

λR
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0

(a)
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+ s

(2)
+
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−

λ4

λ3

λ1 = λ2

λ+

λ−

λR
+

λR
−

0

(b)

FIG. 11. Diagrams representing the evolution of the Riemann in-
variants as functions of ζ = x/t for combined shocks corresponding
to the paths in the (u, ρ ) plane shown in Fig. 10.
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FIG. 12. The comparison of analytical (thin blue) and numeri-
cal (thick red) solutions of the generalized CLL equation (2) for
combined shocks corresponding to the paths in the (u, ρ ) plane
(Fig. 10) and to the diagrams of Riemann invariants (Fig. 11). Here
δ = 1 and (a) ρL = 1, uL = 1, ρR = 1.739, uR = 0.2; (b) ρL = 1,
uL = 1, ρR = 2.489, uR = −0.3. Dashed black lines show analytical
envelopes. Vertical dashed lines indicate the edges of the combined
DSW wave according to (74) and (75).

As an example, we take the boundary parameters ρL = 1,
uL = 1, ρR = 1.739, uR = 0.2. For this parameter choice the
solution consists of a combination of the cnoidal DSW (41)
and part of the trigonometric DSW (44). The leading portion
of the DSW consists of a modulated cnoidal wave. At the
leading (soliton) edge, at s(2)

+ = 0.55, the modulus squared
is m = 1, so solitons occur there. At the trailing edge of the
cnoidal DSW, at s(1)

+ = 0.40, the modulus squared is m =
0, and trigonometric waves occur. The rear portion of the
numerically realized shock consists of part of the contact
DSW. It extends from its small-amplitude edge, at s− = 0.33,
where linear waves occur, to s(1)

+ = 0.40, where it matches the
trailing edge of the cnoidal DSW. There is a discontinuity in
the slope of the theoretical envelope at the junction of these
two different DSW types for combined solutions. The vertical
dashed lines in the figure separate the parts of the composite
wave.
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In the case corresponding to Fig. 10(b) the contact DSW
is attached at its soliton edge to the rarefaction wave which
matches at its right edge the right boundary plateau. The
velocities of the characteristic points identified in Fig. 11(b)
are expressed in terms of the boundary Riemann invariants by
the formulas

s− = −1

δ
− 1

4δ

[(λL
+)2 − (λL

−)2]2

(λL−)2 + (λL+)2
,

s(1)
+ = −1

δ
+ 1

4δ
[3(λR

−)2 + (λL
+)2],

s(2)
+ = −1

δ
+ 1

4δ
[3(λR

−)2 + (λR
+)2]. (75)

The resulting combined wave structures are shown in
Fig. 12(b) (thin blue lines) where they are compared with the
numerical solution of the generalized CLL equation (thick red
line). Here boundary parameters are ρL = 1, uL = 1, ρR =
2.489, uR = −0.3. For this parameter choice the approximate
solution consists of the trigonometric DSW (44) and the
rarefaction wave of (62) type. The leading edge of the DSW,
at s(1)

+ = 0.59, consists of an algebraic soliton (45). At the
left edge of the DSW, at s− = 0.33, small-amplitude sinu-
soidal waves occur. The extent of rarefaction wave is s(1)

+ <

x/t < s(2)
+ , where s(1)

+ = 0.59 and s(2)
+ = 0.87. One can see

that agreement between numerical simulations and analytical
results is very good.

This completes the characterization of all the key elements
which may appear in a complex wave structure evolving from
an arbitrary initial discontinuity of type (53). We can now
proceed to the classification of all the possible composite
structures.

V. CLASSIFICATION OF WAVE PATTERNS

Now we turn to the Riemann problem. This problem arose
long ago and it remains an active area of research nowadays
(see, e.g., [59–61]). As was noted above, one of the simplest
cases is the KdV equation, where there are only two possible
ways of evolution of initial discontinuity: it can evolve into
either a rarefaction wave or cnoidal DSW. It was shown that
the NLS equation evolution of any initial discontinuity leads
to a wave pattern consisting of a sequence of building blocks
two of which are represented by either the rarefaction wave or
the DSW, and they are separated by a plateau, or a vacuum,
or a two-phase self-similar solution close to an unmodulated
nonlinear periodic wave. In total, there are six different pos-
sible wave patterns that can evolve from a given initial dis-
continuity. A similar classification of wave patterns was also
established for the dispersive shallow water Kaup-Boussinesq
equation [62,63]. For classification of wave patterns arising
in solutions of the Riemann problem of the KdV or NLS
type, it is important that the corresponding dispersionless
limits are represented by the genuinely nonlinear hyperbolic
equations. If this is not the case, then the classification of
the KdV-NLS type becomes insufficient and it was found
that it should include new elements—kinks, trigonometric
dispersive shocks, or combined shocks. An example of such
equations can be the modified KdV [56], Gardner [51], or
Miyata-Camassa-Choi [64] equations. These new elements

B
A

C D

E

F

(1+ u)/

u

r =const

r =const

FIG. 13. Domains in the upper left monotonicity region of the
(u, ρ) plane corresponding to different wave structures shown in
Fig. 14.

can be labeled by two parameters only and therefore these
possibilities can be charted on a two-dimensional diagram. In
our present case the initial discontinuity (53) is parametrized
by four parameters uL, ρL, uR, ρR; hence the number of possi-
ble wave patterns considerably increases and it is impossible
to present them in a two-dimensional chart. Therefore it seems
more effective to formulate the principles according to which
one can predict the wave pattern evolved from a discontinuity
with given parameters. A similar method was used [48,50]
in the classification of wave patterns evolving from initial
discontinuities according to the generalized NLS equation and
the Landau-Lifshitz equation.

As is clear from the previous section, it is convenient to
distinguish the situations where both points representing the
left and right boundary conditions belong to the same region
of monotonicity from those where they belong to different
such regions (see Fig. 13). It is convenient to begin with
the consideration of the classification problem from the case
when both boundary points lie on one side of the line ρ =
(1 + δu)/δ2 separating two monotonicity regions in the (u, ρ)
plane. For definiteness, we denote the point of coordinates
(uL, ρL ) referring to the left boundary by L and plot the
two curves of constant Riemann invariants λL

+ and λL
−. These

divide the region into six subdomains. It is easy to see that
when the point R referring to the right boundary is located in
one of these domains (labeled by the symbols A, B, ..., F), one
of the following inequalities is fulfilled:

A: λR
− < λR

+ < λL
− < λL

+, B: λR
− < λL

− < λR
+ < λL

+,

C: λL
− < λR

− < λR
+ < λL

+, D: λR
− < λL

− < λL
+ < λR

+,

E: λL
− < λR

− < λL
+ < λR

+, F: λL
− < λL

+ < λR
− < λR

+. (76)

The corresponding sketches of wave structures are shown
in Fig. 14. In cases (B)–(E) two elementary wave structures
presented in the previous section are connected by a plateau
whose parameters are determined by the dispersionless Rie-
mann invariants λP

± equal to λP
− = λR

− and λP
+ = λL

+. In case
(F) two rarefaction waves are separated by a region with
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FIG. 14. Examples of wave structures corresponding to the location of the point R referring to the right boundary in one of the six domains
shown in Fig. 13. In this case, the points corresponding to the boundaries of the initial state belong to one monotonicity region; therefore, the
structures consist of a sequence of building blocks two of which are represented by either the rarefaction wave or the cnoidal DSW. Red (thick)
curves show the numerical solution of the generalized CLL equation (2); blue (thin) curves illustrate the analytical solution. Vertical dashed
lines reflect the edges of different waves.

intensity and chirp which are expressed by formulas

ρ = 1 + δζ

δ2
, u = −1

δ
. (77)

The last property is a feature of the generalized CLL equation
(2), since similar behavior for intensity (density for Bose-
Einstein condensates or depth for water waves) was not previ-
ously observed.

Let us look at each case separately:
In case (A) two DSWs are produced with a nonlinear

wave which can be presented as a nonmodulated cnoidal wave
between them. The evolution of the wave structure is shown
in Fig. 14(A).

In case (B) two DSWs are produced with a plateau be-
tween them. Here we have a collision of two light fluids [see
Fig. 14(B)].

In case (C) we obtain a DSW on the right, a rarefaction
wave on the left, and a plateau in between is produced [see
Fig. 14(C)].

In case (D) we get the same situation as in case (C), but
now the DSW and rarefaction wave exchange their places [see
Fig. 14(D)].

In case (E) two rarefaction waves are connected by a
plateau. Here rarefaction waves are able now to provide
enough flux of the light fluid to create a plateau in the region
between them [see Fig. 14(E)].

In case (F) two rarefaction waves are combined into a
single wave structure where they are separated by a region
with parameters varying according to (77). This means that
two light fluids flow in opposite directions with velocities so
large that the rarefaction waves are not able to form a plateau
between them. A sketch of the wave structure is shown in
Fig. 14(F).

Now we turn to consideration of the classification problem
for the case when both boundary points lie below and to the

right of the line ρ = (1 + δu)/δ2. This situation is shown in
Fig. 15. We see that the curves divide again this right mono-
tonicity region into six domains. For this case the Riemann
invariants can have the same orderings (76) as in the previous
case. Depending on the location of the right boundary point
in a certain domain, the corresponding wave structure will
be formed. For all cases these structures coincide with those
for the previous case. The only difference from the previous
situation is structure (F), where in this case two rarefaction
waves are combined into a single wave structure where they
are separated by an empty region. This means that two light
fluids flow in opposite directions with velocities so large that
the rarefaction waves are not able to fill in an empty region
between them.

At last, we have to investigate the situation when the
boundary points are located on different sides of the line

E

A

B

C F

D

(1
+
u)
/

u

r =const

r =const

FIG. 15. Domains in the (u, ρ) plane on the lower right side of
the line ρ = (1 + δu)/δ2 corresponding to different structures.
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ρ = (1 + δu)/δ2, that is, in different monotonicity regions. As
we have seen in the previous section, in this case new complex
structures consisting of contact DSWs or combined shocks
appear. Since the total number of possible wave patterns is
very large, we shall not list all of them here but rather illustrate
the general principles of their classification.

For given boundary parameters, we can construct the
curves corresponding to constant Riemann invariants rL,R

± :
each left or right pair of these parabolas crosses at the point L
or R representing the left or right boundary state’s plateau.
Our task is to construct the path joining these two points;
then this path will represent the arising wave structure. We
already know the answer for the case when the left and right
points lie on the same r curve. If this is not the case and the
right point R lies, say, below the curve rL

− = constant then we
can reach R by means of a more complicated path consisting
of two curves joined at the point P. Evidently, this point P
represents the plateau between two waves represented by the
curves. At the same time, each curve corresponds to a wave
structure discussed in the preceding section. In fact, there are
two paths with a single intersection point that join the left
and right boundary points. We choose the physically relevant
path by imposing the condition that velocities of edges of all
regions must increase from left to right. Having constructed a
path from the left boundary point to the right one, it is easy
to draw the corresponding λ diagram. To construct the wave
structure, we use the formulas connecting the zeros νi of the
resolvent with the Riemann invariants λi and expressions for
the solutions parametrized by νi. This solves the problem of
construction of the wave structure evolving from the initial
discontinuity with given boundary conditions.

As an example of complex wave structure, we take the
boundary conditions of the form ρL = 1.2, uL = −0.8, ρR =
0.6, uR = 0 with δ = 1. It can be seen from the top panel of
Fig. 16 that such initial conditions lie in different monotonic-
ity regions. This means that one of the waves must consist
of a contact DSW or of a combined shock wave. We have
a plateau between the waves indicated by a single point P in
Fig. 16. This plateau is characterized by two relations between
Riemann invariants rP

− = rR
− and rP

+ = rL
+. Calculating the

dispersionless Riemann invariants, we arrive at the diagram
shown in the bottom panel of Fig. 16. It can be seen from
this figure that the wave propagating to the left consists of
a cnoidal wave (sL

1 < ζ < sL
2 ) and a contact wave (sL

2 < ζ <

sL
3 ). In this case, the right wave consists of a rarefaction wave

only (sR
1 < ζ < sR

2 ). Substitution of the dispersion Riemann
invariants, which are the solution of the Whitham equations,
into the periodic solution gives the wave structure, which is
shown in Fig. 17. For comparison, a numerical solution is
shown in red (thick curve). The vertical dashed lines corre-
spond to the velocities sL

1 , sL
2 , sL

3 , sR
1 , and sR

2 . As we can see,
analytical calculations agrees well with numerics.

We also give an example of a structure that illustrates
the distinguishing feature of the generalized CLL equation
(2). Let us take following boundary conditions: ρL = 0.5,
uL = −1, ρR = 1.5, and uR = −1 with δ = 1. In this case, the
path in the (u, I ) plane lies on the border with the region of
modulation instability u < −1/δ (see the top panel in Fig. 18).
Then the chirp u is constant and is equal to u = −1/δ = −1.
The Riemann invariants on the boundaries are equal: rL

+ = rL
−

R

(1+
u)/

P

L

uu

ζsL
1 sL

2 sL
3 sR

1 sR
2

λL
+

λL
−

λR
+

λR
−

FIG. 16. Top panel: Relation between ρ and u for the simple
wave solutions in the dispersionless regime for ρL = 1.2, uL = −0.8,
ρR = 0.6, and uR = 0. Bottom panel: Diagram representing the evo-
lution of the Riemann invariants as functions of ζ = x/t for complex
structure.

and rR
+ = rR

−. We can assume that for such initial conditions
the Riemann invariants are equal everywhere. Then we get
that the dependence of light intensity ρ on x is given by the
first Eq. (77). A comparison of the numerical calculations with
the analytical solution is shown in the bottom panel of Fig. 18.
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ρ

Numerical Simulations
Analytical Solution

Analytical Envelopes

FIG. 17. Comparison of analytic (blue line) and numerical (red
line) solutions for the initial profile (53) with ρL = 1.2, uL = −0.8,
ρR = 0.6, and uR = 0.
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FIG. 18. Top panel: Path in the (u, I ) plane for the initial profile
(53) with ρL < ρR and uL = uR = −1/δ. The left and right boundary
conditions correspond to points L and R, respectively. Bottom panel:
Comparison of analytic (blue line) and numerical (red thick line)
solutions for ρL = 0.5, uL = −1, ρR = 1.5, and uR = −1 with δ = 1.

One can easily calculate the velocities of the wave edges

s− = −1

δ
+ δρL, s+ = −1

δ
+ δρR. (78)

The vertical dashed lines correspond to these velocities.

VI. CONCLUSION

In this work, the propagation of sufficiently long pulses in
fibers is described by the generalized Chen-Lee-Liu equation,
which is related to the class of the nonlinear Schrödinger
equations modified by a self-steepening term. The Riemann
problem of evolution of an initial discontinuity is solved for
this specific case of nonconvex dispersive hydrodynamics.
It is found that the set of possible wave structures is much
richer than in the convex case and includes, as structural ele-
ments, trigonometric shock combined with rarefaction waves
or cnoidal dispersive shocks. In the resulting scheme, one
solution of the Whitham equations corresponds to two dif-
ferent wave patterns, and this correspondence is provided
by a two-valued mapping of Riemann invariants to physical
modulation parameters. To determine the pattern evolving
from the given discontinuity, we have developed a graphical
method.

In principle, one may hope that the results found here can
be observed experimentally in systems similar to that used in
the recent experiment [30]. However, one should keep in mind
that in standard fibers in addition to the self-steepening effect,
the Raman effect also occurs. However, the manifestations
of these two effects are quite different and therefore they
can be identified separately. As was shown in Ref. [65], the
main consequence of the Raman scattering is the formation of
stationary shock waves at finite length, while self-steepening
leads to the formation of complex wave structures. At the
same time, the generalized Chen-Lee-Liu theory is also
used in the investigation of modulated wave dynamics of
propagation through a single nonlinear transmission network,
which presents some practical interest [47] (see also [66]
where dispersive shock waves in transmission networks
were studied). The method presented here is quite flexible
and was also applied to other systems with nonconvex
hydrodynamics [48–50].
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