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Characterizing high-dimensional entangled states is of crucial importance in quantum information science
and technology. Recent theoretical progress has been made to extend Hardy’s paradox into a general scenario
with multisetting and multidimensional systems, which enables the maximum probability of nonlocal events
to surpass the bound that was limited in Hardy’s original test. Hitherto, no experimental verification has
been conducted to verify Hardy’s paradox, as most of the previous experimental efforts were restricted to
two-dimensional systems. Here, based on two-photon high-dimensional orbital angular momentum (OAM)
entanglement, we report an experiment to demonstrate Hardy’s paradox for multiple settings and multiple
outcomes. We demonstrate the paradox for two-setting higher-dimensional OAM subspaces up to d = 7,
which reveals that the nonlocal events increase with dimension. Furthermore, we showcase the nonlocality
with an experimentally recorded probability of 36.77% for a five-setting three-dimensional OAM subspace via
entanglement concentration, thus showing a sharper contradiction between quantum mechanics and classical
theory.

DOI: 10.1103/PhysRevA.101.053821

I. INTRODUCTION

In 1935 Einstein, Podolsky, and Rosen (EPR) raised a
famous paradox concerning the completeness of quantum
mechanics [1]. In 1964 Bell formulated Bell’s inequality to
resolve the EPR paradox, which stated that the results of
quantum theory could not be reproduced with a classical,
deterministic local model based on “elements of reality” [2].
Since then, numerous experiments have been performed to
demonstrate the violation of Bell inequalities [3]. An un-
satisfactory feature in the derivation of Bell inequalities is
that it applies only to statistical measurement procedures. In
the 1990s Hardy presented another logical paradox challeng-
ing the idea of locality and hidden variables [4,5], which
represented an attempt to demonstrate nonlocality without
inequalities, and as such, Mermin referred to it as “the best
version of Bell’s theory” [6]. Thereafter, a variety of versions
of Hardy’s paradox were reported to increase the probability
of demonstrating “nonlocality without inequalities.” Boschi
and co-workers developed the ladder version of Hardy’s
paradox for two spin-1/2 particles, significantly increasing
the probability of the nonlocal events [7]. Recent progress
was also made to generalize Hardy’s paradox into a most
general framework of n-qubit systems [8], while in the ex-
perimental implementation, the photonic polarization, energy
time, and orbital angular momentum (OAM) [9–14] have been
employed to test Hardy’s paradox, but only two-dimensional
state spaces were considered.
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High-dimensional systems (qudits) can provide higher in-
formation density coding, improve security in quantum com-
munication, simplify the implementation of quantum logic,
and inspire novel quantum imaging techniques [15–19]. The
nonlocal feature of high-dimensional OAM entangled states
was verified by using the generalized Bell inequalities [20,21].
Unlike using inequalities, recent theoretical efforts were made
to generalize Hardy’s argument into a high-dimensional sce-
nario where two-spin particles were involved. However, it
was proved by Rabelo et al. [22] that there exists an ana-
log of Tsirelson’s bound [23] for Hardy’s test, e.g., with
the maximum Hardy’s fraction equal to pH = (5

√
5 − 11)/2,

irrespective of the dimension of the system. Subsequently, we
employed high-dimensional OAM entangled states, up to d =
3, 4, to very this theoretical limit in experiment [24]. In con-
trast, Chen and co-workers formulated another novel logical
structure for two-qudit entangled states and showed that the
probability of nonlocal events could grow significantly with
the dimension d [25]. Very recently, they further generalized
their high-dimensional Hardy’s proof to a ladder version,
i.e., multisetting and multidimensional Hardy’s paradox for
general (k, d ) systems, where (k, d ) denotes a measuring
scenario with k settings and d outcomes (dimensions) [26].
Such a generalization to a high-dimensional system is of
crucial importance, because it is much closer to the original
EPR scenario where the measurements have an arbitrarily
large number of outcomes [27]. Besides, it is equivalent
to the violation of a tight Bell inequality [25], making the
contradiction between quantum mechanics and local variable
theory sharper than in previous versions [22,28,29]. How-
ever, these theoretical schemes for both high-dimensional
systems [25] and general (k, d ) systems [26] have not yet
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been translated into experimental implementations. Here we
exploit the photonic orbital angular momentum (OAM) [30]
to demonstrate the general multisetting multidimensional ver-
sion of Hardy’s paradox. In theory, we transform Hardy’s
logical proof to an experiment-friendly model. In experiment,
we employ two-photon high-dimensional OAM states gener-
ated by spontaneous parameter down-conversion (SPDC) and
demonstrate the paradox for two-setting higher-dimensional
OAM subspaces up to d = 7. Our experimental observations
reveal that the nonlocal events can increase with the dimen-
sion of the system, significantly surpassing the bound lim-
ited by the original version [22]. Furthermore, we showcase
the nonlocality with an experimentally recorded probability
of 36.77% for five-setting three-dimensional OAM subspace
(5, 3) by entanglement concentration, which generalizes the
ladder version of Hardy’s proof [7] to a truly high-dimensional
scenario, showing a sharper contradiction between quantum
mechanics and classical theory.

II. THEORETICAL SCHEME

Let us first summarize the generalized Hardy’s paradox
presented in [25,26]. Consider a general (k, d ) scenario with
two observers, Alice and Bob, each of whom chooses k sets
of measurements, on which the measurement outcomes range
from 1 to d . Their von Neumann measurements are defined as
|Ai

s〉〈Ai
s| and |B j

t 〉〈B j
t |, respectively, where i, j ∈ {1, 2, . . . , k}

and s, t ∈ {1, 2, . . . , d}. In the paradox, the following zero
probabilities are assumed:

P(A1 < Bk ) = 0, (1)

P(Bi−1 < Ai−1) = 0, for i = 2, 3, . . . , k, (2)

P(Ai < Bi−1) = 0, for i = 2, 3, . . . , k, (3)

where P(Ai < B j ) = ∑
s<t P(Ai

s, B j
t ) denotes the total joint

probabilities in all cases that the measurement outcome of Ai

is strictly smaller than that of B j . Within any local hidden
variable theory, following Eqs. (1), (2), and (3), we can
straightforwardly obtain an exactly zero probability, namely,
P(Ak < Bk ) = 0. However, with a suitable choice of measure-
ments, quantum mechanics allows a nonzero probability,

P(Ak < Bk ) > 0. (4)

As the OAM eigenstates form an orthogonal and complete
basis [31], twisted photons are the ideal candidate to realize a
high-dimensional Hilbert space. Here, based on two-photon
OAM entanglement generated by SPDC, we can translate
the above theoretical strategy into an experimental imple-
mentation. In SPDC, the high-dimensional OAM entangled
state can be written as |�〉SPDC = ∑

� C�|�〉A|−�〉B, where
C� indicates the probability amplitude of finding one signal
photon (A) with �h̄ OAM and its partner idler photon (B)
with −�h̄ OAM [32]. As we aim to explore a larger but finite
subspace to formulate Hardy’s proof with OAM, we assume
the optimal Hardy states, |�〉Hardy = ∑d

i=1 c�i |�i〉A|−�i〉B, in a
specific d-dimensional OAM subspace. Thus we need to apply
suitable entanglement concentration first to prepare |�〉Hardy
from |�〉SPDC, and look for all desired measurement bases,
|Ai

s〉〈Ai
s| and |B j

t 〉〈B j
t |, to compute the optimal Hardy fraction.

For mathematical convenience, we can rewrite the state as
a diagonal matrix, H = diag(c�1 , c�2 , . . . , c�d ). Our experi-
mental situation is unlike the original proposal in [25,26],
in which the authors started from two presetting standard
bases for Alice and Bob, then calculated the desired two-
photon entangled states, which were represented by upper
(or lower) triangular matrices and could not be produced
by SPDC. In the OAM space, we define the bases |Ai

s〉 =∑d
m=1 ai

s,m|�m〉 and |B j
t 〉 = ∑d

n=1 bj
t,n|�n〉 to specify the von

Neumann measurements, where 〈Ai
s|Ai

s′ 〉 = δss′ and 〈B j
t |B j

t ′ 〉 =
δtt ′ within the ith and jth sets of measurements. In order to
achieve the maximal successful probability, we need to calcu-
late the optimal weight amplitudes, ai

s = [ai
s,1, ai

s,2, . . . , ai
s,d ]T

and bj
t = [bj

t,1, bj
t,2, . . . , bj

t,d ]
T

, according to Eqs. (1), (2), and
(3). We first consider Eq. (1), i.e., P(A1 < Bk ) = 0, which
means that for all s < t , each P(A1

s , Bk
t ) should be exactly

zero, i.e., |Bk
t 〉⊥HT |A1

s 〉, where ⊥ denotes the orthogonality
symbol. Meanwhile, because of the mutual orthogonality,
|Bk

t 〉⊥|Bk
t ′ 〉 (t �= t ′), we can obtain the following orthogonality

relations,∣∣Bk
d

〉⊥{
HT

∣∣A1
1

〉
, HT

∣∣A1
2

〉
, HT

∣∣A1
3

〉
, . . . , HT

∣∣A1
d−2

〉
, HT

∣∣A1
d−1

〉}
,
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Since H is of full rank and 〈A1
s |A1

s′ 〉 = δss′ , we know that
the elements on the right-hand side of Eq. (5a) are lin-
early independent. Mathematically, |Bk

d〉 can then be uniquely
determined by the entries of A1. We can further deter-
mine |Bk

d−1〉 based on Eq. (5b) together with the known
|Bk

d〉. Along this line, we can determine all other |Bk
t 〉 for

t = d − 2, . . . , 1. Thus the kth set of measurements, Bk =
{|Bk

1〉, |Bk
2〉, . . . , |Bk

d〉}, for photon B can all be calculated. We
proceed to consider Eq. (2) with i = 2, namely, P(B1 < A1) =
0, from which we can calculate B1 from A1 in a similar
way. Then, by further considering Eq. (3) with i = 2, namely,
P(A2 < B1) = 0, we can also calculate A2 from the known B1.
Along this line based on the ladder derivation of Eqs. (2) and
(3), we can uniquely determine all other sets of measurements,
A3, A4, . . . , Ak and B2, B3, . . . , Bk−1. In other words, all the
sets of the desired OAM measurement states, Ai and B j , can be
determined finally. Therefore, we can calculate from Eq. (4)
the successful probability,

P(Ak < Bk ) =
d−1∑
s=1

d∑
t=s+1

∣∣〈� ∣∣ Ak
s

〉∣∣Bk
t

〉∣∣2
. (6)

Remember that in Eq. (6), the sets of measurements for
Alice, |Ak

s 〉, and those for Bob, |Bk
t 〉, are completely de-

termined by A1 = {|A1
1〉, |A1

2〉, . . . , |A1
d〉}, which corresponds

to an SU(d) unitary matrix, A1 = (a1
s,m)d×d , with each ele-

ment being the weight amplitude of the OAM eigenmodes.
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FIG. 1. Experimental setup for demonstrating multisetting mul-
tidimensional Hardy’s paradox with high-dimensional OAM entan-
glement. The inset is the experimentally measured two-photon OAM
spectrum.

Hereafter we denote by Popt the optimal value of Hardy
fraction by ranging over all unitary matrices A1 with a given
optimal OAM Hardy state. In our experiment, we demonstrate
Hardy’s paradox for the general (k, d ) systems with the
optimal Hardy states, which are prepared from the original
two-photon OAM entangled states and then are manipulated
via the Procrustean method of entanglement concentration
with two spatial light modulators (SLMs).

III. EXPERIMENTAL SETUP AND RESULTS

Our experimental setup is sketched in Fig. 1, which has
been employed for demonstrating the angular or radial version
of the EPR paradox [33,34], based on the reconfigurable fea-
ture of SLMs. A mode-locked 355 nm ultraviolet laser pumps
a 3-mm-thick β-barium borate crystal (BBO) and creates
710 nm frequency-degenerate photon pairs collinearly. We use
a long-pass filter (IF) behind the crystal to block the pump
beam, and then use a nonpolarizing beam splitter (BS) to sep-
arate the signal and idler photons. In each of down-converted
arms, a 4- f telescope consisting of two lenses ( f 1 = 100 mm
and f 2 = 400 mm) is constructed to image the output facet of
the BBO crystal onto both SLMs (Hamamatsu, X10486-1).
Each SLM is loaded with specially designed holographic
gratings both for preparing the desired measurement OAM
states and for performing the entanglement concentration.
Then another telescope ( f 3 = 1000 mm and f 4 = 2 mm)
is used to reimage the plane of the SLM onto the input
facet of the single-mode fiber (SMF), which is connected
to a single-photon counter (Excelitas, SPCM-AQRH-14-FC).
Besides, two bandpass filters (BF) centered at 710 nm with
10 nm width are placed in front of the SMF to reduce the
detection of noise photons. The outputs of both single-photon
counters are connected to a coincidence circuit with a time
resolution of 25 ns.

In our first set of experiments, we restrict our attention
to a two-setting Hardy’s proof for high-dimensional OAM
subspace, i.e., in the (2, d ) scenario with the dimensions
ranging from d = 2 to 7. We consider the original scheme
proposed by Chen et al. [25]. However, their optimal Hardy
states are represented by upper triangular matrices, which
obviously differ from the diagonal ones generated originally
via SPDC [32]. Thus we need to apply the Schmidt decompo-

sition [35,36] to transform the upper triangular matrices into
the diagonal ones. Generally, a bipartite pure state |�〉 with
any fixed orthonormal bases |u〉 and |v〉 for Alice and Bob
can be expressed as |�〉 = ∑

uv auv|u〉|v〉, where auv is a com-
plex number. We assume its Schmidt decomposition, |�〉 =∑

g λg|gA〉|gB〉, where |gA〉 = ∑
u xug|u〉 and |gB〉 = ∑

v ygv|v〉
are the Schmidt bases for photons A and B, respectively,
and λg is the weight amplitude [35]. As |gA〉 and |gB〉 are
two orthonormal bases in their own spaces, our experiment
can naturally employ the OAM eigenstates to represent them.
After some algebra, we obtain the diagonal matrices in the
(2, d ) scenario, as follows:

Hopt
(2,2) = diag (0.9070, 0.4211), (7a)

Hopt
(2,3) = diag (0.8585, 0.4040, 0.3159), (7b)

Hopt
(2,4) = diag (0.8263, 0.3947, 0.3013, 0.2657), (7c)

Hopt
(2,5) = diag (0.8024, 0.3882, 0.2938, 0.2532, 0.2344),

(7d)

Hopt
(2,6) = diag (0.7837, 0.3830, 0.2889, 0.2462,

0.2237, 0.2123), (7e)

Hopt
(2,7) = diag (0.7683, 0.3787, 0.2852, 0.2417,

0.2173, 0.2030, 0.1955). (7f)

Another issue here is that the original OAM entangled
states produced via SPDC are not exactly the same as
the optimal Hardy states. For example, we have the origi-
nal state, HSPDC

(2,3) = diag(0.7975, 0.5316, 0.2853), residing in
the subspace spanned by two-photon OAM bases, |0〉A|0〉B,
| + 1〉A| − 1〉B, and | + 2〉A| − 2〉B. In an effort to achieve the
maximal probability of nonlocal events, here we need to apply
the so-called Procrustean method of entanglement concentra-
tion [37] to tailor the original state HSPDC

(2,3) into the desired

optimal one Hopt
(2,3). For this, we choose the local operation to

change the weight amplitude of each OAM mode by altering
the diffraction efficiencies of the blazed phase gratings [21].
For each weight amplitude of the OAM modes in the original
two-photon state, if it is larger than that in the optimal Hardy
state, then we decrease the contrast of blazed phase grating to
obtain a lower diffraction efficiency for this OAM mode, and
therefore the weight amplitudes of each OAM mode between
the optimal Hardy states and the experimental one can be
equalized. Then, based on the numeric strategy mentioned
above with the optimal Hardy states of Eq. (7), we can cal-
culate the desired OAM measurement states, |Ai

s〉 and |B j
t 〉, all

of which are specified and listed in Appendix A. By loading
these OAM superposition states on the SLM and recording the
coincidence counts accordingly, we obtain the experimental
observations as shown in Fig. 2. We can see that the opti-
mal successful probability can reach Popt

(2,2) = 8.75% ± 0.29%,

Popt
(2,3) = 13.31% ± 0.50%, Popt

(2,4) = 15.98% ± 0.32%, Popt
(2,5) =

19.87% ± 0.50%, Popt
(2,6) = 23.24% ± 0.49%, and Popt

(2,7) =
24.15% ± 0.65%. One can see that these results show a good
agreement with the quantum-mechanical predictions. Besides,
our observations from d = 2 to d = 7 confirm that the non-
local events can significantly increase with the dimension
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FIG. 2. Hardy’s paradox in (k, 2) scenario: (a) Hopt
(2,2), (b) H opt

(2,3), (c) H opt
(2,4), (d) H opt

(2,5), (e) H opt
(2,6), and (f) Hopt

(2,7). The empty bars (blue edges)
are the theoretical predictions while the solid bars (green) are experimental results.

regardless of the two-setting configuration only, which clearly
surpasses the bound limited by the original version [22].

In our second set of experiments, we further consider the
general multisetting and multidimensional scenario (k, d ),
where k = 3, 4, 5, and d = 3 in the OAM subspaces. Here we
employ the diagonal matrices to represent the optimal Hardy
states rather than that with the upper (or lower) triangle matri-
ces in [26]. For this, we first apply the Schmidt decomposition
to obtain the eigenvalues of their upper (or lower) triangle
matrices and obtain that

Hopt
(3,3) = diag (0.8006, 0.4578, 0.3865), (8a)

Hopt
(4,3) = diag (0.7630, 0.4856, 0.4267), (8b)

Hopt
(5,3) = diag (0.7366, 0.5025, 0.4526). (8c)

Then we look at the original entangled OAM spectrum
(inset of Fig. 1), and exploit suitable OAM subspaces with
entanglement concentration to prepare the optimal OAM
Hardy states. After some similar algebra, we can calcu-
late all the desired OAM measurements, which are listed
in Appendix B. As shown in Fig. 3, we experimentally
obtain the successful probabilities Popt

(3,3) = 23.85% ± 0.70%,

Popt
(4,3) = 32.60% ± 0.18%, and Popt

(5,3) = 36.77% ± 0.77%, re-
spectively, showing an excellent agreement with the theoreti-
cal predictions in [26].

When we translate our theoretical findings to a real ex-
periment, it is necessary to take the effect of imperfect mea-
surements into account, as the observed correlation function
generally deviates from that assumed in an ideal situation.
Thus the derivation of a Bell-type inequality is practically
desirable. In analogy to Refs. [7,12] and in light of Eqs.
(1)–(4), we introduce the Clauser-Horne inequality [38],

S(k,d ) = P(Ak < Bk ) −
k∑

i=2

P(Ai < Bi−1)

−
k∑

i=2

P(Bi−1 < Ai−1) − P (A1 < Bk ) � 0, (9)

which is established in any local realistic theories. However,
in quantum mechanics, all other probabilities can be zero
except for the first terms, and therefore resulting in a violation
of the inequality. For comparison, we present in Table I the
measured S values in the (k, 3) scenario for both the original
states HSPDC

(k,3) and the optimal states Hopt
(k,3). Our experimental

results can violate the inequality by 58 standard deviations,

A1B3 B1A1 A2B1 B2A2 A3B2 A3B3
0.24 0.84 0.83 0.64 0.46

23.85±0.70
26.78

A1B4 B1A1 A2B1 B2A2 A3B2 A4B4B3A3 A4B3
0.20 0.39 0.38 0.62 0.32 0.40 0.19

32.60±0.18
34.82

A1B5 B1A1 A2B1 B2A2 A3B2 A5B5B3A3 A4B3 B4A4 A5B40
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40.48

15%

(a)

(b)

(c)
45%

0

30%

15%

45%
0

30%

15%

45%

FIG. 3. Hardy’s paradox in (k, 3) scenario: (a) Hopt
(3,3), (b) H opt

(4,3),

and (c) H opt
(5,3). The empty bars (blue edges) are the theoretical values

while the solid bars (green) are experimental results. AiB j and B jAi

stand for P(Ai < B j ) and P(B j < Ai ), respectively.
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TABLE I. Experimental S(k,3) for the original states HSPDC
(k,3) and

the optimal states Hopt
(k,3) in (k, 3) scenario.

k = 3 k = 4 k = 5

(%) (%) (%)

SSPDC
(k,3) 15.27 ± 0.58 23.58 ± 0.60 26.55 ± 0.73

Sopt
(k,3) 20.85 ± 0.53 29.76 ± 0.75 34.23 ± 0.59

thus confirming the contextual behavior of quantum mechan-
ics.

IV. CONCLUSIONS

In summary, we have presented an experiment to demon-
strate Hardy’s paradox for multisetting and multidimensional
systems by exploiting two-photon entangled OAM states. The
experimental results in the (2, d ) scenario with dimensions
up to d = 7 revealed that the nonlocal events could increase
with the dimension, significantly surpassing the analog of
Tsirelson’s bound in the original version. Besides, we have
achieved a maximum successful probability up to 36.77%
for the (k, 3) scenario with the ladder up to k = 5. Our
experiment demonstrates evidently that both the multisetting
and multidimensional features of the used quantum systems
can yield a much sharper contradiction between quantum
mechanics and classical theories. For some quantum com-
munication tasks, our scheme of tailoring high-dimensional
OAM entangled states may offer some other advantages; for
example, nonclassical correlations can be made more robust
to the presence of noise and other deleterious environmental
effects [18,39].

ACKNOWLEDGMENTS

We are grateful to Miles Padgett at the University of Glas-
gow for kind support. This work is supported by the National
Natural Science Foundation of China (Grants No. 61975169
and No. 91636109), the Fundamental Research Funds for
the Central Universities at Xiamen University (Grants No.
20720190057 and No. 20720190054), the Natural Science
Foundation of Fujian Province of China for Distinguished
Young Scientists (Grant No. 2015J06002), and the program
for New Century Excellent Talents in the University of China
(Grant No. NCET-13-0495).

APPENDIX A: THE DESIRED OAM MEASUREMENT
STATES FOR (2, d ) WITH DIMENSIONS RANGING FROM

d = 2 TO 7

In our actual experiment, we choose the OAM modes
�1 = 0, �2 = +1 for two-dimensional optimal state Hopt

(2,2);
�1 = 0, �2 = +1, �3 = +2 for three-dimensional optimal
state Hopt

(2,3); �1 = 0, �2 = +1, �3 = +2, �4 = −2 for

four-dimensional optimal state Hopt
(2,4); �1 = 0, �2 = +1, �3 =

−1, �4 = +2, �5 = −2 for five-dimensional optimal state
Hopt

(2,5); �1 = 0, �2 = +1, �3 = +2, �4 = −2, �5 = +3, �6 =
−3 for six-dimensional optimal state Hopt

(2,6); and �1 = 0, �2 =

+1, �3 = −1, �4 = +2, �5 = −2, �6 = +3, �7 = −3 for
seven-dimensional optimal state Hopt

(2,7). The desired OAM

measurement states, |Ai
s〉 and |B j

t 〉, in the (2, 2) scenario are

|A1,1〉 =
[

0.8264

0.5631

]
, |A1,2〉 =

[−0.5631

0.8264

]
,

|A2,1〉 =
[

0.3016

0.9534

]
, |A2,2〉 =

[−0.9534

0.3016

]
,

|B1,1〉 =
[

0.5631

0.8264

]
, |B1,2〉 =

[−0.8264

0.5631

]
,

|B2,1〉 =
[

0.9534

0.3016

]
, |B2,2〉 =

[−0.3016

0.9534

]
.

The desired OAM measurement states, |Ai
s〉 and |B j

t 〉, in the
(2, 3) scenario are

|A1,1〉 =
⎡
⎣

−0.7232

0.6129

0.3182

⎤
⎦, |A1,2〉 =

⎡
⎣

0.5484

0.2295

0.8041

⎤
⎦,

|A1,3〉 =
⎡
⎣

−0.4198

−0.7561

0.5021

⎤
⎦, |A2,1〉 =

⎡
⎣

−0.1953

0.7475

0.6349

⎤
⎦,

|A2,2〉 =
⎡
⎣

−0.3437

0.5541

−0.7582

⎤
⎦, |A2,3〉 =

⎡
⎣

−0.9185

−0.3663

0.1487

⎤
⎦,

|B1,1〉 =
⎡
⎣

−0.4198

0.7561

0.5021

⎤
⎦, |B1,2〉 =

⎡
⎣

−0.5484

0.2295

−0.8041

⎤
⎦,

|B1,3〉 =
⎡
⎣

−0.7232

−0.6129

0.3182

⎤
⎦, |B2,1〉 =

⎡
⎣

−0.9185

0.3663

0.1487

⎤
⎦,

|B2,2〉 =
⎡
⎣

0.3437

0.5541

0.7582

⎤
⎦, |B2,3〉 =

⎡
⎣

−0.1953

−0.7475

0.6349

⎤
⎦.

The desired OAM measurement states, |Ai
s〉 and |B j

t 〉, in the
(2, 4) scenario are

|A1,1〉 =

⎡
⎢⎢⎢⎣

−0.6536

0.6006

−0.4108

−0.2083

⎤
⎥⎥⎥⎦, |A1,2〉 =

⎡
⎢⎢⎢⎣

−0.5128

0.0602

0.5883

0.6224

⎤
⎥⎥⎥⎦,

|A1,3〉 =

⎡
⎢⎢⎢⎣

−0.4407

−0.4562

0.3767

−0.6751

⎤
⎥⎥⎥⎦, |A1,4〉 =

⎡
⎢⎢⎢⎣

−0.3400

−0.6539

−0.5859

0.3369

⎤
⎥⎥⎥⎦,

|A2,1〉 =

⎡
⎢⎢⎢⎣

−0.1428

0.5750

−0.6749

−0.4400

⎤
⎥⎥⎥⎦, |A2,2〉 =

⎡
⎢⎢⎢⎣

−0.2480

0.6508

0.1493

0.7019

⎤
⎥⎥⎥⎦,
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|A2,3〉 =

⎡
⎢⎢⎣

−0.3490
0.3040
0.6931

−0.5526

⎤
⎥⎥⎦, |A2,4〉 =

⎡
⎢⎢⎣

−0.8924
−0.3917
−0.2045
0.0915

⎤
⎥⎥⎦,

|B1,1〉 =

⎡
⎢⎢⎣

−0.3400
0.6539

−0.5859
−0.3369

⎤
⎥⎥⎦, |B1,2〉 =

⎡
⎢⎢⎣

−0.4407
0.4562
0.3767
0.6751

⎤
⎥⎥⎦,

|B1,3〉 =

⎡
⎢⎢⎣

−0.5128
−0.0602
0.5883

−0.6224

⎤
⎥⎥⎦, |B1,4〉 =

⎡
⎢⎢⎣

−0.6536
−0.6006
−0.4108
0.2083

⎤
⎥⎥⎦,

|B2,1〉 =

⎡
⎢⎢⎣

−0.8924
0.3917

−0.2045
−0.0915

⎤
⎥⎥⎦, |B2,2〉 =

⎡
⎢⎢⎣

−0.3490
−0.3040
0.6931
0.5526

⎤
⎥⎥⎦,

|B2,3〉 =

⎡
⎢⎢⎣

−0.2480
−0.6508
0.1493

−0.7019

⎤
⎥⎥⎦, |B2,4〉 =

⎡
⎢⎢⎣

−0.1428
−0.5750
−0.6749
0.4400

⎤
⎥⎥⎦.

The desired OAM measurement states, |Ai
s〉 and |B j

t 〉, in the
(2, 5) scenario are

|A1,1〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.6023
0.5774
0.4400

−0.2965
0.1493

⎤
⎥⎥⎥⎥⎥⎦

, |A1,2〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.4799
0.1963

−0.3300
0.6254

−0.4808

⎤
⎥⎥⎥⎥⎥⎦

,

|A1,3〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.4304
−0.2028
−0.6054
−0.1019
0.6299

⎤
⎥⎥⎥⎥⎥⎦

, |A1,4〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.3725
−0.5111
−0.0308
−0.5558
−0.5387

⎤
⎥⎥⎥⎥⎥⎦

,

|A1,5〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.2879
−0.5707
0.5745
0.4491
0.2443

⎤
⎥⎥⎥⎥⎥⎦

, |A2,1〉 =

⎡
⎢⎢⎢⎢⎢⎣

0.1116
−0.4570
−0.6080
0.5514

−0.3240

⎤
⎥⎥⎥⎥⎥⎦

,

|A2,2〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.1931
0.6078
0.2270
0.4517

−0.5811

⎤
⎥⎥⎥⎥⎥⎦

, |A2,3〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.2667
0.4821

−0.4890
0.2769
0.6170

⎤
⎥⎥⎥⎥⎥⎦

,

|A2,4〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.3453

0.1607

−0.5342

−0.6300

−0.4155

⎤
⎥⎥⎥⎥⎥⎦

, |A2,5〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.8717

−0.4043

0.2331

0.1354

0.0631

⎤
⎥⎥⎥⎥⎥⎦

,

|B1,1〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.2879

0.5707

0.5745

−0.4491

0.2443

⎤
⎥⎥⎥⎥⎥⎦

, |B1,2〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.3725

0.5111

−0.0308

0.5558

−0.5387

⎤
⎥⎥⎥⎥⎥⎦

,

|B1,3〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.4304

0.2028

−0.6054

0.1019

0.6299

⎤
⎥⎥⎥⎥⎥⎦

, |B1,4〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.4799

−0.1963

−0.3300

−0.6254

−0.4808

⎤
⎥⎥⎥⎥⎥⎦

,

|B1,5〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.6023

−0.5774

0.4400

0.2965

0.1493

⎤
⎥⎥⎥⎥⎥⎦

, |B2,1〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.8717

0.4043

0.2331

−0.1354

0.0631

⎤
⎥⎥⎥⎥⎥⎦

,

|B2,2〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.3453

−0.1607

−0.5342

0.6300

−0.4155

⎤
⎥⎥⎥⎥⎥⎦

, |B2,3〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.2667

−0.4821

−0.4890

−0.2769

0.6170

⎤
⎥⎥⎥⎥⎥⎦

,

|B2,4〉 =

⎡
⎢⎢⎢⎢⎢⎣

−0.1931

−0.6078

0.2270

−0.4517

−0.5811

⎤
⎥⎥⎥⎥⎥⎦

, |B2,5〉 =

⎡
⎢⎢⎢⎢⎢⎣

0.1116

0.4570

−0.6080

−0.5514

−0.3240

⎤
⎥⎥⎥⎥⎥⎦

.

The desired OAM measurement states, |Ai
s〉 and |B j

t 〉, in the
(2, 6) scenario are

|A1,1〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.5624

0.5536

0.4466

−0.3372

0.2262

0.1135

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, |A1,2〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.4517

0.2639

−0.1457

0.4810

−0.5734

−0.3807

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

|A1,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.4139

−0.0385

−0.5508

0.3179

0.3520

0.5467

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, |A1,4〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.3744

−0.3271

−0.3943

−0.4788

0.2186

−0.5659

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

|A1,5〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.3243

−0.5098

0.1682

−0.3088

−0.5686

0.4336

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, |A1,6〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.2510

−0.5055

0.5406

0.4788

0.3535

−0.1870

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

053821-6



ORBITAL-ANGULAR-MOMENTUM-BASED EXPERIMENTAL … PHYSICAL REVIEW A 101, 053821 (2020)

|A2,1〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.0909
−0.3747
−0.5314
0.5522

−0.4488
−0.2502

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, |A2,2〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.1572
0.5409
0.3939
0.1219

−0.5343
−0.4766

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

|A2,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.2160
0.5224

−0.1655
0.5604
0.0844
0.5761

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, |A2,4〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.2733
0.3458

−0.5595
−0.1260
0.4536

−0.5207

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

|A2,5〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.3392
0.0737

−0.3993
−0.5695
−0.5391
0.3242

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, |A2,6〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.8548
−0.4112
0.2502
0.1610
0.0981

−0.0467

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

|B1,1〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.2510
0.5055
0.5406

−0.4788
0.3535
0.1870

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, |B1,2〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.3243
0.5098
0.1682
0.3088

−0.5686
−0.4336

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

|B1,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.3744
0.3271

−0.3943
0.4788
0.2186
0.5659

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, |B1,4〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.4139
0.0385

−0.5508
−0.3179
0.3520

−0.5467

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

|B1,5〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.4517
−0.2639
−0.1457
−0.4810
−0.5734
0.3807

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, |B1,6〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.5624
−0.5536
0.4466
0.3372
0.2262

−0.1135

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

|B2,1〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.8548
0.4112
0.2502

−0.1610
0.0981
0.0467

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, |B2,2〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.3392
−0.0737
−0.3993
0.5695

−0.5391
−0.3242

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

|B2,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.2733
−0.3458

−0.5595

0.1260

0.4536

0.5207

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, |B2,4〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.2160
−0.5224

−0.1655

−0.5604

0.0844

−0.5761

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

|B2,5〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.1572
−0.5409
0.3939

−0.1219
−0.5343
0.4766

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, |B2,6〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.0909
0.3747

−0.5314
−0.5522
−0.4488
0.2502

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The desired OAM measurement states, |Ai
s〉 and |B j

t 〉, in the
(2, 7) scenario are

|A1,1〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5302
0.5315
0.4440

−0.3562
0.2683

−0.1796
0.0901

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |A1,2〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4277
0.2985

−0.0224
0.3327

−0.5152
0.5055

−0.3095

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

|A1,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3969
0.0658

−0.4281
0.4794

−0.0298
−0.4529
0.4681

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |A1,4〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3674
−0.1796
−0.5044
−0.1196
0.5251
0.0602

−0.5335

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

|A1,5〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3327
−0.3824
−0.1875
−0.5294
−0.2060
0.3765
0.4935

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |A1,6〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2881
−0.4895
0.2757

−0.1041
−0.4289
−0.5290
−0.3559

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

|A1,7〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2232
−0.4539
0.5034
0.4767
0.3993
0.2861
0.1490

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |A2,1〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0764
−0.3151
−0.4639
0.5185

−0.4832
0.3704

−0.2004

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

|A2,2〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1319
0.4771
0.4547

−0.1086
−0.3147
0.5301

−0.3954

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |A2,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1810
0.5105
0.0721
0.4840

−0.3466
−0.2906
0.5125

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

|A2,4〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2274
0.4240

−0.3691
0.3183
0.4726

−0.1696
−0.5280

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |A2,5〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2747
0.2450

−0.5291
−0.3454
0.1384
0.5037
0.4387

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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|A2,6〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3325
0.0177

−0.2972
−0.4826
−0.5389
−0.4574
−0.2613

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |A2,7〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8404
−0.4152
0.2613
0.1776
0.1203
0.0752
0.0363

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

|B1,1〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2232
0.4539
0.5034

−0.4767
0.3993

−0.2861
0.1490

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |B1,2〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2881
0.4895
0.2757
0.1041

−0.4289
0.5290

−0.3559

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

|B1,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3327
0.3824

−0.1875
0.5294

−0.2060
−0.3765
0.4935

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |B1,4〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3674
0.1796

−0.5044
0.1196
0.5251

−0.0602
−0.5335

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

|B1,5〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3969
−0.0658
−0.4281
−0.4794
−0.0298
0.4529
0.4681

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |B1,6〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4277
−0.2985
−0.0224
−0.3327
−0.5152
−0.5055
−0.3095

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

|B1,7〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5302
−0.5315
0.4440
0.3562
0.2683
0.1796
0.0901

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |B2,1〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8404
0.4152
0.2613

−0.1776
0.1203

−0.0752
0.0363

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

|B2,2〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3325
−0.0177
−0.2972
0.4826

−0.5389
0.4574

−0.2613

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |B2,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2747
−0.2450
−0.5291
0.3454
0.1384

−0.5037
0.4387

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

|B2,4〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2274
−0.4240
−0.3691
−0.3183
0.4726
0.1696

−0.5280

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |B2,5〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1810
−0.5105
0.0721

−0.4840
−0.3466
0.2906
0.5125

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

|B2,6〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1319
−0.4771
0.4547
0.1086

−0.3147
−0.5301
−0.3954

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, |B2,7〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0764
0.3151

−0.4639
−0.5185
−0.4832
−0.3704
−0.2004

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

APPENDIX B: THE DESIRED OAM MEASUREMENT
STATES FOR THE (k, 3) SCENARIO WITH k = 3, 4, 5

In the second experiment, we choose the OAM modes �1 =
0, �2 = +1, �3 = +2 for optimal states Hopt

(3,3) and Hopt
(4,3); �1 =

0, �2 = +1, �3 = −1 for optimal states Hopt
(5,3). The desired

OAM measurement states, |Ai
s〉 and |B j

t 〉, in the (3, 3) scenario
are

|A1,1〉 =
⎡
⎣

−0.8625

0.4606

0.2097

⎤
⎦, |A1,2〉 =

⎡
⎣

0.4287

0.4448

0.7863

⎤
⎦,

|A1,3〉 =
⎡
⎣

−0.2689

−0.7681

0.5811

⎤
⎦, |A2,1〉 =

⎡
⎣

−0.4585

0.7489

0.4784

⎤
⎦,

|A2,2〉 =
⎡
⎣

−0.5651

0.1697

−0.8074

⎤
⎦, |A2,3〉 =

⎡
⎣

−0.6858

−0.6406

0.3454

⎤
⎦,

|A3,1〉 =
⎡
⎣

−0.1475

0.7365

0.6601

⎤
⎦, |A3,2〉 =

⎡
⎣

0.2738

−0.611

0.7428

⎤
⎦,

|A3,3〉 =
⎡
⎣

−0.9504

−0.2903

0.1115

⎤
⎦, |B1,1〉 =

⎡
⎣

−0.6858

0.6406

0.3454

⎤
⎦,

|B1,2〉 =
⎡
⎣

0.5651

0.1697

0.8074

⎤
⎦, |B1,3〉 =

⎡
⎣

−0.4585

−0.7489

0.4784

⎤
⎦,

|B2,1〉 =
⎡
⎣

0.2689

−0.7681

−0.5811

⎤
⎦, |B2,2〉 =

⎡
⎣

−0.4287

0.4448

−0.7863

⎤
⎦,

|B2,3〉 =
⎡
⎣

−0.8625

−0.4606

0.2097

⎤
⎦, |B3,1〉 =

⎡
⎣

−0.9504

0.2903

0.1115

⎤
⎦,

|B3,2〉 =
⎡
⎣

0.2738

0.6110

0.7428

⎤
⎦, |B3,3〉 =

⎡
⎣

0.1475

0.7365

−0.6601

⎤
⎦.

The desired OAM measurement states, |Ai
s〉 and |B j

t 〉, in the
(4, 3) scenario are

|A1,1〉 =
⎡
⎣

−0.9176

−0.366

0.1553

⎤
⎦, |A1,2〉 =

⎡
⎣

−0.3440

0.5348

−0.7718

⎤
⎦,
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|A1,3〉 =
⎡
⎣ 0.1994

−0.7616
−0.6166

⎤
⎦, |A2,1〉 =

⎡
⎣−0.6648

−0.6547
0.3597

⎤
⎦,

|A2,2〉 =
⎡
⎣ 0.5718

−0.1362
0.8090

⎤
⎦, |A2,3〉 =

⎡
⎣−0.4806

0.7435
0.4649

⎤
⎦,

|A3,1〉 =
⎡
⎣−0.3178

−0.7725
0.5497

⎤
⎦, |A3,2〉 =

⎡
⎣0.4747

0.3722
0.7976

⎤
⎦,

|A3,3〉 =
⎡
⎣−0.8208

0.5144
0.2484

⎤
⎦, |A4,1〉 =

⎡
⎣−0.1216

−0.7300
0.6726

⎤
⎦,

|A4,2〉 =
⎡
⎣0.2315

0.6380
0.7344

⎤
⎦, |A4,3〉 =

⎡
⎣−0.9652

0.2450
0.0914

⎤
⎦,

|B1,1〉 =
⎡
⎣−0.8208

−0.5144
0.2484

⎤
⎦, |B1,2〉 =

⎡
⎣ 0.4747

−0.3722
0.7976

⎤
⎦,

|B1,3〉 =
⎡
⎣ 0.3178

−0.7725
−0.5497

⎤
⎦, |B2,1〉 =

⎡
⎣−0.4806

−0.7435
0.4649

⎤
⎦,

|B2,2〉 =
⎡
⎣0.5718

0.1362
0.8090

⎤
⎦, |B2,3〉 =

⎡
⎣−0.6648

0.6547
0.3597

⎤
⎦,

|B3,1〉 =
⎡
⎣ 0.1994

0.7616
−0.6166

⎤
⎦, |B3,2〉 =

⎡
⎣0.3440

0.5348
0.7718

⎤
⎦,

|B3,3〉 =
⎡
⎣−0.9176

0.3660
0.1553

⎤
⎦, |B4,1〉 =

⎡
⎣−0.9652

−0.245
0.0914

⎤
⎦,

|B4,2〉 =
⎡
⎣−0.2315

0.6380
−0.7344

⎤
⎦, |B4,3〉 =

⎡
⎣ 0.1216

−0.7300
−0.6726

⎤
⎦.

The desired OAM measurement states, |Ai
s〉 and |B j

t 〉, in the
(5, 3) scenario are

|A1,1〉 =
⎡
⎣0.9441

0.3053
0.1240

⎤
⎦, |A1,2〉 =

⎡
⎣−0.2879

0.5812
0.7612

⎤
⎦,

|A1,3〉 =
⎡
⎣−0.1603

0.7543
−0.6366

⎤
⎦, |A2,1〉 =

⎡
⎣0.7896

0.5487
0.2747

⎤
⎦,

|A2,2〉 =
⎡
⎣

0.5022

−0.3206

−0.8031

⎤
⎦, |A2,3〉 =

⎡
⎣

−0.3527

0.7721

−0.5287

⎤
⎦,

|A3,1〉 =
⎡
⎣

0.4951

0.7395

0.4561

⎤
⎦, |A3,2〉 =

⎡
⎣

0.5752

0.1145

−0.8100

⎤
⎦,

|A3,3〉 =
⎡
⎣

0.6512

−0.6634

0.3686

⎤
⎦, |A4,1〉 =

⎡
⎣

0.2408

0.7727

0.5874

⎤
⎦,

|A4,2〉 =
⎡
⎣

0.3936

0.4755

−0.7868

⎤
⎦, |A4,3〉 =

⎡
⎣

0.8872

−0.4206

0.1896

⎤
⎦,

|A5,1〉 =
⎡
⎣

0.1052

0.7257

0.6799

⎤
⎦, |A5,2〉 =

⎡
⎣

−0.2030

−0.6536

0.7291

⎤
⎦,

|A5,3〉 =
⎡
⎣

0.9735

−0.2148

0.0786

⎤
⎦, |B1,1〉 =

⎡
⎣

0.8872

0.4206

0.1896

⎤
⎦,

|B1,2〉 =
⎡
⎣

−0.3936

0.4755

0.7868

⎤
⎦, |B1,3〉 =

⎡
⎣

−0.2408

0.7727

−0.5874

⎤
⎦,

|B2,1〉 =
⎡
⎣

0.6512

0.6634

0.3686

⎤
⎦, |B2,2〉 =

⎡
⎣

0.5752

−0.1145

−0.8100

⎤
⎦,

|B2,3〉 =
⎡
⎣

0.4951

−0.7395

0.4561

⎤
⎦, |B3,1〉 =

⎡
⎣

0.3527

0.7721

0.5287

⎤
⎦,

|B3,2〉 =
⎡
⎣

0.5022

0.3206

−0.8031

⎤
⎦, |B3,3〉 =

⎡
⎣

0.7896

−0.5487

0.2747

⎤
⎦,

|B4,1〉 =
⎡
⎣

0.1603

0.7543

0.6366

⎤
⎦, |B4,2〉 =

⎡
⎣

−0.2879

−0.5812

0.7612

⎤
⎦,

|B4,3〉 =
⎡
⎣

0.9441

−0.3053

0.1240

⎤
⎦, |B5,1〉 =

⎡
⎣

0.9735

0.2148

0.0786

⎤
⎦,

|B5,2〉 =
⎡
⎣

−0.2030

0.6536

0.7291

⎤
⎦, |B5,3〉 =

⎡
⎣

−0.1052

0.7257

−0.6799

⎤
⎦.
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