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Asymmetrical splitting in the spectrum of stochastic radiation scattered
by non-Hermitian materials having PT symmetry
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The scattering of partially coherent radiation by a localized continuous material having parity-time (PT )
symmetry is considered under the formalism of classical coherence theory and the assumption that the Born
approximation is valid. Our results suggest that the correlation-induced spectral changes are strongly dependent
upon the gain and loss properties of the material. In particular, the center frequency of the scattered radiation
undergoes a discontinuity as a function of the non-Hermitian parameter characterizing the physical properties of
the material. The physical reason behind this abrupt behavior is that the PT symmetry induces the creation of
two asymmetrical frequency bands inside the original Hermitian spectrum. We describe how this splitting occurs
and offer possibilities to dynamically characterize the scattered spectrum.
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I. INTRODUCTION

The temporal and spatial behavior of a classical optical
wave field generated by a physical source (or induced by scat-
tering) is utterly unpredictable. It cannot be described by using
deterministic field functions if one is really concerned with the
true dynamics involved in the propagation process. Important
classical dynamical electromagnetic quantities measured in
the laboratory, such as the intensity and the spectrum of light,
are ultimately dependent upon the statistical behavior of the
wave field [1–4]. Also, the appearance of an interference
pattern, whether in a space or frequency domain, represents
a direct manifestation of the statistical correlations that exist
between distinct spacetime points in the optical wave field. In
fact, these correlations can generate interesting observable ef-
fects such as dramatic changes in the optical spectrum of light
when propagated even in free space [5–8]. The physical rea-
son behind this is that the correlation between points in a wave
field is a dynamical quantity evolving under two coupled wave
equations and possessing, therefore, a dynamics of its own
[3]. Correlation-induced spectral changes are also observed
in linear scattering systems when the incident radiation is, in
general, partially coherent and the material under which the
incident field acts is assumed to be deterministic or random.
In this case, the spectrum in the far zone will, in general, differ
from the source spectrum [9–12]. In such scattering scenarios
with partially coherent radiation, the medium is generally
assumed to be linear, real, and isotropic. However, with the
recent advances of non-Hermitian photonics, one is now able
to consider suitable engineered materials, having gain and loss
properties, and their influence on the classical coherence prop-
erties of the scattered wave field. This approach to scattering
problems is the main motivation behind the present paper.
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The research field of optics and photonics has received
an enormous boost in recent years due to the newly defined
concept of parity-time (PT ) symmetry [13–15]. It has been
recognized since 1998 by Bender and Boettcher that Hamil-
tonians that are invariant under the PT -symmetry condition
can have real eigenvalues [16–20]. This opens the possibility
to extend real, Hermitian systems into the complex domain,
thus generalizing Hermitian quantum mechanics, through a
new definition of the inner product of the Hilbert space [21].
It should be remarked, however, that the requirement of PT
symmetry is neither a necessary nor a sufficient condition for
the reality of the spectrum [22–24]. To give a specific exam-
ple, if one looks for the discrete spectrum of the Hamiltonian
H = p2 − ix, where p is the momentum and x are the position
operators, one finds that its eigenvalues are complex even
though this Hamiltonian has PT symmetry. The reason for
the appearance of complex eigenvalues despite the obvious
PT symmetry of the Hamiltonian is that H and PT do not
share the same set of eigenvectors because PT is an antilinear
operator. When this is the case, we say that H has a broken
PT symmetry. On the other hand, the Hamiltonian H =
p2 + ix3 has a discrete spectrum consisting of real and positive
numbers. In this case, H has an unbroken PT symmetry and
it shares the same eigenvectors with the PT operator. Usually,
the Hamiltonian H is dependent upon a free parameter β

such that when β < βc (β > βc), all eigenvalues are real
(complex), where βc is called the symmetry-breaking point.
Indeed, the two Hamiltonians given above are special cases
(β = 1 and β = 3, respectively) of the class Hβ = p2 − (ix)β

[16]. The symmetry-breaking point (also called exceptional
point) for this class is βc = 2, represented by the simple
harmonic oscillator [16,25].

Due to the analogy between the paraxial wave equation
of optics (in inhomogeneous media) and the time-dependent
Schrödinger equation of nonrelativistic quantum mechanics,
it became possible to map the time-independent potential
function V (r) of quantum theory to the index of refraction
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n(r) of an inhomogeneous material [15]. The invariance of
the refractive index under the PT symmetry restricts the class
of possible non-Hermitian materials having PT -symmetric
characteristics. The invariance (PT )−1n(r)PT = n(r) im-
plies that n∗(−r) = n(r), and if we write n(r) = nR(r) +
inI (r) with nR,I (r) being real functions, then nR(−r) = nR(r)
and nI (−r) = −nI (r) must be satisfied to ensure the PT -
symmetry condition. Since the imaginary part of the refractive
index is related to the loss and gain properties of the material,
PT symmetry requires a balance between loss and gain. The
concepts of PT symmetry have found numerous applications
in a variety of optical scenarios, including unidirectional
invisibility [26], lasing [27], microring lasers [28], four-wave
mixing [29], and topological insulators [30], to cite a few.
Two published articles have considered the influence of PT -
symmetric materials on the classical coherence properties
of scattered wave fields [31,32]. It was suggested that the
spectral and cross-spectral densities of the scattered radiation
are strongly dependent upon the loss and gain properties of the
deterministic material causing the scattering. However, in ar-
riving at these claims, two major assumptions were imposed.
In [31], the considered material is infinite (albeit continuous)
in extension and [32] assumes a finite (albeit discontinuous)
material, consisting of two point (δ-Dirac) scatterers. In this
paper, we formulate a more realistic scattering scenario where
the material has a finite extension in space and is described
by a continuous, non-Hermitian index of refraction having
PT symmetry. Our main objective is to unveil the influence
of the non-Hermitian parameter describing the material on
the spectrum and the directions of the emitted radiation. In
particular, we address the following questions: (1) Under
what conditions will the loss and gain properties of the
material cause a deviation in the spectrum of the scattered
radiation compared to its Hermitian counterpart? (2) How
does the non-Hermitian parameter of the material change the
directional properties of the scattered radiation? The answers
to these questions can be obtained once we calculate the
spectral density S(r, ω) of the scattered radiation. In Sec. II,
we provide a revision of the scattering theory for partially
coherent radiation. Section III presents the analytic results
for a specific class of PT -symmetric localized continuous
materials; in Sec. IV, we present our main results.

II. SCATTERING THEORY FOR PARTIALLY
COHERENT RADIATION

The scattering theory for partially coherent radiation is
well documented [3]. Here we revise the most important
concepts and fix some notation. The incident radiation
field is characterized by the ensemble {U i(r, ω) =
a(ω) exp(ikŝ0 · r)}, where ŝ0 is a unit vector representing
the incident direction, ω is the angular frequency,
a(ω) is a random function of the angular frequency,
k = ω/c, and c is the speed of light in free space. The
cross-spectral density describing correlations for a particular
frequency ω of the incident radiation is W i(r1, r2, ω) =
〈U i∗(r1, ω)U i(r2, ω)〉 = Si(ω) exp[ikŝ0 · (r2 − r1)], where
Si(ω) = W i(r, r, ω) = 〈|a(ω)|2〉 is the incident spectral
density, assumed to be independent of position (notice that the
incident radiation is spatially fully coherent). The stochastic

scattered radiation U s is represented by the ensemble
{U s(r, ω)} and its corresponding cross-spectral density
W s(r1, r2, ω) = 〈U s∗(r1, ω)U s(r2, ω)〉. Once the relation
between incident and scattered cross-spectral densities is
found, the spectral density S(r, ω) = W s(r, r, ω) of the
scattered radiation can be easily obtained. If we consider the
scattered radiation in the far zone, this relation is given by [3]

W s(rŝ1, rŝ2, ω) = Si(ω)

r2
F̃ ∗[k(ŝ1 − ŝ0), ω]F̃ [k(ŝ2 − ŝ0), ω],

(1)
where r1 = rŝ1, r2 = rŝ2 (with ŝ1,2 radial unit vectors) and
F̃ (K, ω) is the Fourier transform of the “scattering potential”
F (r, ω) = (1/4π )k2[n2(r, ω) − 1],

F̃ (K, ω) =
∫

F (r, ω) exp(−iK · r)d3r, (2)

with n(r, ω) being the inhomogeneous index of refraction.
In deriving (1), the Born approximation was assumed to be
valid. The spectral density S(r, ω) is obtained from (1) by
performing ŝ1 = ŝ2 = ŝ:

S(rŝ, ω) = Si(ω)

r2
|F̃ [k(ŝ − ŝ0), ω]|2. (3)

Relation (3) shows that the spectral density of the scattered
radiation is, in general, different from the spectral density of
the incident radiation Si(ω). The role of classical coherence
on scattering was considered in several different contexts,
including deterministic and random media [9,10,33–36]. In
the next section, we apply the formalism developed here to
a class of materials having PT symmetry and investigate the
role of the gain and loss on the spectral density.

III. SPECTRAL DENSITY OF THE
SCATTERED RADIATION

The influence of the gain and loss of a material on the
classical correlations has been investigated in two somewhat
idealized scattering scenarios [31,32]. Here we attempt to
create a more realistic model in order to describe the scattering
of partially coherent radiation from a localized and continuous
PT -symmetric material. To this end, let us consider one of the
many possible classes of scattering potentials described by

F (r, ω) = Ak2

(2πσ 2)3/2
exp

(
− r2

2σ 2

)
(1 + i�β · r), (4)

which is a complex PT -symmetric extension [F ∗(−r, ω) =
F (r, ω)] of the Hermitian material considered in [11]. The
real and imaginary parts of the (squared) refractive index are

Re[n2(r, ω)] = 2A

σ 3
√

2π
exp(−r2/2σ 2) + 1,

Im[n2(r, ω)] = (�β · r)
2A

σ 3
√

2π
exp(−r2/2σ 2). (5)

A plot of the real and imaginary parts of n2(r, ω) in the
xy plane is shown in Fig. 1. The real vector �β is the non-
Hermitian parameter which controls the gain and loss prop-
erties of the material; the real parameter σ is associated with
the size of the material and A is a constant (we are assuming
that σ and A are frequency independent). When compared
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FIG. 1. Normalized real (top) and imaginary (bottom) parts of
the (squared) refractive index. Parameters used: A = 1, λ = 550 nm,
σ = 3λ, �β = β x̂, with β = 106 m−3.

to previous models [31,32], we see that the proposed system
is the only one considering a more realistic scenario with a
finite-size, non-Hermitian, and continuous material. Since this
represents a more complex scatterer, we expect the formalism
to be more involved. However, the Gaussian function chosen
to represent the material has a direct, finite, and continu-
ous Fourier transform such that the mathematical analysis
can be made without numerical approximations. Certainly
there are more classes of continuous functions possessing a
Fourier transform as well, and every one should give rise to
a different spectral density. A general analysis with arbitrary
PT -symmetric materials is still lacking in the literature.

The Fourier transform of (4) is

F̃ (K, ω) = Ak2 exp

(
−|K|2σ 2

2

)
(1 + σ 2 �β · K), (6)

and since the spectral density (3) is given in terms of K =
k(ŝ − ŝ0), the evaluation of |K|2 gives

|K|2 = |k(ŝ − ŝ0)|2 = 4k2 sin2

(
θ

2

)
, (7)

where θ is the angle between ŝ0 and ŝ. If the material is
Hermitian (�β = 0), the angle θ would be the only signifi-
cant spatial quantity characterizing the spectral density. The
physical properties of the spectrum would solely depend on
the angle between the incident and scattered directions [11].
However, when �β �= 0, the last term in (6) introduces a kind
of anisotropic contribution to the spectral density,

�β · K = k(�β · ŝ − �β · ŝ0). (8)

Clearly, the spectral properties of the scattered radiation in
this non-Hermitian context depend not only on the relative
orientation between the incident and scattered directions, but
also on the relative orientation between the non-Hermitian
parameter �β and the incident and scattered directions.

To simplify, consider a particular class of materials de-
scribed by �β = β ŝ0, with β constant. Therefore, we are con-
sidering the particular situation in which the variation of the
imaginary part of the refractive index is in the same direction

as the incident radiation. In this case, relation (8) turns into

�β · K = −2kβ sin2

(
θ

2

)
, (9)

and if we assume a Gaussian profile centered at ω0 for the
spectral density of the incident radiation,

Si(ω) = S0 exp

[
− (ω − ω0)2

2	2
0

]
, (10)

where S0 is a constant and 	0 is the bandwidth, the spectral
density of the scattered radiation is finally given by

Sβ (θ, ω) = A2S0

r2

(
ω

c

)4

× exp

[
− (ω − ω0)2

2	2
0

− 4

(
ω

c

)2

σ 2 sin2

(
θ

2

)]

×
[

1 − 2σ 2β

(
ω

c

)
sin2

(
θ

2

)]2

. (11)

Equation (11) is the principal result of this paper. We first
note that the class of materials described by (4) introduces
some dramatic changes on the spectral density of the scattered
field, represented by the term inside the brackets. When
β = 0, meaning the class of Hermitian materials, relation
(11) reduces to the results previously reported by Lahiri and
Wolf where correlation-induced spectral shifts were observed
[11]. By making ω, 	0, β, and σ dimensionless through the
transformations

ω → ω

ω0
, 	0 → 	0

ω0
, β → c

ω0
β, and σ → ω0

c
σ, (12)

and defining the normalized spectral density S → c4r2S
ω4

0A2S0
,

Eq. (11) can be rewritten as

Sβ (θ, ω) = exp

[
− (ω − 1)2

2	2
0

− 4σ 2ω2 sin2 θ

2

]

×
(

ω2 − 2βσ 2ω3 sin2 θ

2

)2

. (13)

This normalized form of the spectral density is more suitable
for the treatment that follows.

IV. NON-HERMITIAN CORRELATION-INDUCED
SPECTRAL SHIFTS

A. Frequency analysis

The normalized spectral density of the scattered radiation,
represented by Eq. (13), has a very rich and nontrivial struc-
ture. To reveal its properties in a more transparent way, we fol-
low Lahiri and Wolf in fixing the scattering angle at θ = 24.9◦

and consider Eq. (13) as a function of frequency ω, describing
the spectrum profile for each value of the non-Hermitian
parameter β. We will later fix the angular frequency ω and
observe the spatial distribution of the scattered radiation.
One of the many possible useful parameters characterizing
a spectral distribution is the center frequency ωc at which
Sβ has its maximum value. Since this will depend upon the
non-Hermitian parameter β, we are actually interested in
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FIG. 2. The dependence of the dimensionless frequency ωc =
ωc(β ) [such that Sβ (ωc ) is a maximum] as a function of the di-
mensionless parameter β. The two dashed lines indicate the values
of ωc for the incident and scattered spectrum in the Hermitian
configuration (β = 0). The dotted line represents the non-Hermitian
situation where a discontinuity around βc ≈ 0.03 is clearly visible.
Parameters used: σ = 6π , 	0 = 0.01, and θ = 24.9◦ [in which σ and
	0 are the same as [11], but normalized following Eq. (12)].

the functional relation ωc = ωc(β ). If one naively plots this
dependence directly from Eq. (13), a discontinuity appears, as
shown in Fig. 2, at a specific βc in the interval β ∈ [0, 0.2].
The dashed line ωc = 1 in the figure indicates the center fre-
quency of the incident spectrum, while the bottom dashed line
indicates the center frequency where the Hermitian scattered
spectral density has a maximum [11]. The first step towards
the understanding of this discontinuous behavior is to notice
that Eq. (13), viewed as a function of ω, is composed of a
product of three functions,

g(ω) = exp

[
− (ω − 1)2

2	2
0

]
, (14)

h(ω) = exp

(
− ω2

2	2
1

)
, (15)

pβ (ω) =
(

ω2 − 2βσ 2ω3 sin2 θ

2

)2

. (16)

The non-Hermitian information of the scattering process is
contained in the sixth-degree polynomial pβ (ω). The func-
tions g(ω) and h(ω) represent Gaussian profiles centered at
1 and 0 and with widths 	0 and

	1 = 1[
8σ 2 sin2

(
θ
2

)]1/2 , (17)

respectively. The appearance of the discontinuity of the center
frequency is due to the fact that the non-Hermitian properties
of the material induce the creation of two separate bands
inside the original, Hermitian spectrum. The appearance of
the two asymmetrical spectral modes displays an interesting
dynamics, which we will explain shortly. Figure 3 illustrates
the spectral density for three values of the non-Hermitian
parameter: β = 0 (Hermitian case), β = 0.03079 (below the
discontinuity), and β = 0.03054 (above the discontinuity).
The scattered spectrum is strongly modified by the material’s
gain and loss in such a way that two critical points appear

FIG. 3. This figure explains the apparent discontinuous behavior
of the center frequency at which Sβ is maximum. As the parameter
β increases from zero value, the scattered spectrum gets strongly
modified and a double frequency band appears in such a way that the
global and local maxima switch places as β passes through a critical
value. The quantities Sβ , ω, and β are dimensionless, as defined in
the main text.

inside the bandwidth of the Hermitian spectrum (β = 0). The
dashed red line in Fig. 3 (below the discontinuity) indicates
that the spectrum has two critical points (ignoring the mini-
mum at which Sβ = 0). There are global and local maxima
that switch places as the parameter β passes through βc,
explaining the discontinuous behavior of ωc. To perform a
quantitative analysis of the switching process, we plot the
center frequency of each mode individually as a function of
β. The upper part of Fig. 4 displays the behavior of the left
mode (smaller in frequency) and the right mode (higher in
frequency) as β varies. It is clear that there is a correlation-
induced spectral shift caused by the non-Hermitian parameter

FIG. 4. This figure shows that the left and right modes that are
created in the scattering process are red- and blueshifted as the
dimensionless parameter β increases. The upper part shows the
dimensionless center frequency of each mode as a function of β

(in normalized units as well). This is the non-Hermitian correlation-
induced spectral shift. The bottom part shows the peak value of the
dimensionless spectral density of each mode as β varies. At the
intersection of these two curves (around β ≈ 0.0306), the switching
of the maxima occurs.
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β. The center frequency of the left mode is redshifted, while
the center frequency of the right mode is blueshifted as β

increases. This synchronized double shift effect is absent in
the Hermitian formulation of the scattering problem. It only
happens when the material has gain and loss. The bottom
part of Fig. 4 shows the peak value of the left and right
mode as a function of β. Since they switch locations, the
intersection of the two curves gives us the critical value βc

at which the discontinuity of ωc occurs. One might wonder
why we did not just differentiate Eq. (13) with respect to ω,
equate it to zero, and calculate the critical points in this way.
This is a perfectly valid procedure. However, the obtained
expressions are not particularly illuminating (it generates a
third-degree polynomial whose expressions for the roots are
very complicated) and many of the most important aspects
of the spectrum can be obtained by the simpler analysis that
we explain later. We will demonstrate in a moment that ωc

depends on the size of the material as well on the scattering
angle and this offers a possibility to control the scattered
spectrum. It should be pointed out that analogous spectral
anomalies have been noticed in diffraction-based systems
[37–42]. Our results indicate that the asymmetrical splitting
effect can also be tuned by controlling the non-Hermitian
properties of the material in scattering-based systems. Also,
we provide analytical formulas to characterize this tuning in a
more efficient fashion.

Every non-Hermitian aspect involved in the scattering pro-
cess can be understood by inspecting the polynomial pβ (ω)
since this is the only quantity in the spectral density that
depends on β. We now demonstrate how the splitting of the
Hermitian spectrum into two asymmetrical modes occurs as
β increases. First, since we are borrowing the same numer-
ical parameters from [11], the width of the Gaussian profile
h(ω) centered at 0 is 	1 = 0.0076, which is much smaller
than the center frequency of g(ω). This implies that in the
product g(ω)h(ω)pβ (ω), the effect of h(ω) is essentially a
multiplication by an approximately constant value in the range
of frequencies considered below, which is ω ∈ [0.9, 1.1].
Let us consider first the Hermitian situation where β = 0 to
understand why there is no splitting inside the spectrum. In
this case, p0(ω) = ω4, i.e., a fourth-degree polynomial that
has zero as a root with multiplicity four. In the frequency
range of interest, the product between the Gaussian g(ω)
and the polynomial p0(ω) = ω4 will result in a distortion
of the Gaussian profile centered at 1. This is the origin of
the correlation-induced spectral shifts present in Hermitian
scattering scenarios [8]. The center frequency at which the
spectral density is a maximum also changes because the
critical points of a Gaussian function get modified if you
multiply it by a polynomial. So, there is a shift on the
maximum value taken by Sβ=0, but there is no splitting. On
the other hand, if we activate the loss and gain properties of
the material, β �= 0, then the polynomial pβ (ω) has new root
dynamics. Figure 5 shows the resultant effect of multiplying
the polynomial pβ (ω) by the function g(ω) as β varies. It can
be seen from this figure that there is a unique root of pβ (ω)
that penetrates the region inside the spectrum, causing the
aforementioned splitting. The blue line in Fig. 5 represents
pβ (ω), the orange line represents the Gaussian g(ω), and
the dashed line represents the resultant spectrum [taking into

(a)

(b)

(c)

FIG. 5. This figure shows how the form of Eq. (13) allows
the creation of two modes inside the bandwidth of the scattered
radiation as the dimensionless non-Hermitian parameter β varies.
The orange curves represent the (dimensionless) Gaussian function
centered at 1, the dashed lines represent the resultant (dimensionless)
spectrum Sβ (ω), and the blue lines represent the (dimensionless)
polynomial pβ (ω) for (a) β = 0.030500, (b) β = 0.030665, and (c)
β = 0.030830. The root of the polynomial swaps the frequency band
as β varies and this induces the mode creation. The plot of the
Gaussian function centered at ω = 0 is not shown here since it has
approximately a constant value inside the frequency range that is
considered.

account the function h(ω), which contributes with an overall
multiplicative constant in this domain]. The nontrivial root of
the polynomial pβ (ω) is easily found from Eq. (13),

ωr = 1

2σ 2β sin2(θ/2)
. (18)

It is important to mention that the non-Hermitian spectrum
shown in Fig. 3 is about three orders of magnitude smaller
than the Hermitian case. To see why this is so, we rewrite
Eq. (16) using Eq. (18):

pβ (ω) = ω4

(
1 − ω

ωr

)2

. (19)

So, as long as the frequency distribution is close to the root
of pβ (ω), i.e., ω/ωr ≈ 1, this implies that pβ (ω) < p0(ω).
Therefore, the magnitude of the split spectra will be smaller
than the Hermitian case.

Since the polynomial, and therefore its roots, depends on
the non-Hermitian parameter β, Eq. (18) can be used to con-
trol the splitting of the spectrum in a predetermined manner.
For example, regarding Fig. 5 where σ = 6π and θ = 24.9◦,
Eq. (18) gives ωr ≈ 1

33β
, and then one can choose the value
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FIG. 6. Spectral density of the scattered radiation field for a fixed
frequency ω = 1, where Sβ , ω, and β are dimensionless. The red-
shaded areas indicate new scattering angles that are forbidden in the
Hermitian configuration.

of β such that the root ωr falls inside the spectrum being
split. Alternatively, one can fix the non-Hermitian parameter
β along with the scattering direction θ and determine the size
of the material (by changing σ ) such that a splitting occurs.
This manipulation could be used to exclude a very specific
frequency inside the original Hermitian scattered spectrum
since the root of the polynomial implies that Sω(ω) is exactly
zero at the critical point. Clearly, the polynomial pβ contains
all the significant characteristics necessary for a practical
description of the scattering process.

B. Space analysis

Let us turn now to the directional properties of the scattered
radiation. If we fix ω = 1, then the spectral density (13) can
be viewed as a function of θ . We are again interested in which
directions receive most of the scattered radiation and which
receive less. In the Hermitian case, the maximum value of
S0(θ ) is at θ = 0, meaning that a strong part of the scattered
field is in the same direction as the incident wave, a well-
known result. Figure 6 illustrates the general behavior when
β �= 0. It is seen that the material’s gain and loss properties
induce new scattering directions that are originally forbidden
in the Hermitian configuration. The new range of scattering
angles is depicted by the red-shaded area indicated in the two-
dimensional map of Fig. 6. Quantitatively, we are interested in
the critical points for which the spectral density is a maximum
or a minimum. It is easy to see that the critical points θ j

[dSβ (θ j )/dθ = 0] are solutions of the algebraic equation

sin θ j

(
1 − 2βσ 2 sin2 θ j

2

)(
1 + β − 2βσ 2 sin2 θ j

2

)
= 0.

(20)

In the Hermitian case, Eq. (20) turns into sin θ j = 0, which
gives θ1 = 0 and θ2 = π , as discussed above. In the non-
Hermitian situation (β �= 0), these two solutions are still
critical points since they both satisfy Eq. (20). However, in
this case, four additional solutions are possible:

θ3± = ±2 sin−1

(
1√

2σ 2β

)
(21)

and

θ4± = ±2 sin−1

[√
1

2σ 2

(
1 + 1

β

)]
. (22)

These symmetric angles’ solutions can be viewed in Fig. 6.
A more detailed analysis (not shown) reveals that θ3± (θ4±) is
a minimum (maximum) of Sβ (θ ). For the parameters used in
Fig. 6, σ = 6π , and taking, for example, β = 4, the spectral
density has the critical points

θ3±/π = ±0.0119 (minimum),
θ4±/π = ±0.0267 (maximum), (23)

which can be checked by inspecting Fig. 6. Relations (21) and
(22) can be used to select a desired scattering angle simply
by adjusting the loss and gain properties of the material. The
new scattering directions are not influenced by the material’s
geometry (σ is maintained fixed) but depend solely on the gain
and loss properties of the scatterer.

V. CONCLUSIONS

The spectral density of stochastic scattered radiation by
non-Hermitian materials is calculated analytically and its
properties are discussed. We have found that the spectrum
of scattered radiation is strongly influenced by the gain and
loss properties of the material in such a way that it can split
the original Hermitian spectrum into two asymmetrical bands.
We show how to use the information present in the spectral
density to tune the scattered spectrum into a desired pattern as
well as the directional properties of the radiation in real space.
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