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Emulation of spin-orbit coupling for solitons in nonlinear optical media
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We design a framework based on the spatial-domain copropagation of two light beams with mutually
orthogonal polarizations and opposite transverse components of carrier wave vectors in a nonlinear waveguide
with randomly varying birefringence, the averaging with respect to which introduces an effective Manakov
nonlinearity in the system. The corresponding two-component system of nonlinear Schrödinger equations
is derived, being similar to the system of coupled one-dimensional Gross-Pitaevskii equations for a binary
spin-orbit-coupled Bose-Einstein condensate. The system may also include an effective Rabi coupling (direct
linear mixing of the components) and a periodic potential, representing a photonic-crystal structure in the
underlying waveguide. For self-focusing and self-defocusing signs of nonlinearity, soliton solutions of several
symmetry types are obtained by means of numerical methods, and their stability is investigated, including gap
solitons in the case when the periodic potential is present.
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I. INTRODUCTION AND THE MODEL

Ultracold bosonic gases provide a versatile platform
for simulating many fundamental phenomena originating in
quantum optics and condensed-matter physics [1,2]. A mile-
stone result in this direction was the experimental imple-
mentation of the (pseudo) spin-orbit coupling (SOC) and
synthetic gauge fields in atomic gases [3]. The emulation
of the SOC of the Dresselhaus [4] and Rashba [5] types,
which play the fundamental role in the physics of semicon-
ductors, was implemented in two-component Bose-Einstein
condensates (BECs), under the action of a specially de-
signed laser-illumination pattern. The implementation was
performed by mapping the spinor wave functions of elec-
trons in the semiconductor material into the two-component
bosonic wave function of the binary condensate, so that the
Hamiltonian of the bosonic gas is made tantamount to the
Rashba-Dresselhaus Hamiltonians [6,7]. The realization of
SOC, synthetic gauge fields [8–11], and various topological
phases [12–14] in ultracold bosonic gases opens up a new field
in atomic and low-temperature physics, offering powerful
methods for reproducing, in a “pristine” form, various effects
that were originally known in other areas, in quite complex
contexts.

In BEC, nonlinearity originates from interactions between
atoms. In the case of repulsive or attractive interactions,
the respective mean-field Gross-Pitaevskii (GP) equations
[15–17] give rise to dark [18] and band-gap [19,20] solitons or
bright ones [21], respectively (localized band-gap modes are
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supported by the interplay of the repulsive nonlinearity and a
spatially periodic potential). While SOC in BEC is, by itself, a
linear effect, it is natural to consider the interplay of SOC with
the intrinsic BEC’s nonlinearity. In many theoretical works,
a great variety of modes were predicted in such settings,
including dark [22,23], band-gap [24,25] and bright solitons
[26–29], Dirac monopoles [30], skyrmions [31], vortices [32]
and vortex lattices [33], and others; see also [34] for a brief
review.

The realm of photonics also offers various options for
emulating basic effects known in other areas of physics.
In particular, the similarity between GP equations and the
nonlinear Schrödinger (NLS) equation governing the paraxial
propagation of waves in optics suggests various possibilities
for emulation of matter-wave effects by optical ones and vice
versa [35]. In this vein, a counterpart of the remarkable mech-
anism of the stabilization of two-dimensional (2D) solitons in
binary BEC with the attractive intrinsic nonlinearity, provided
by SOC [28,29], may be applied to spatiotemporal “light
bullets” in dual-core planar optical waveguides with intrinsic
self-focusing [36]. In the latter case, the role of SOC terms
is played by the temporal dispersion of the linear intercore
coupling.

This work aims to develop an optical framework for sim-
ulating SOC effects known in pseudospinor BEC. To this
end, we consider copropagation of two orthogonally polarized
optical beams in a self-focusing waveguide with randomly
varying birefringence. Thus, the electric constituent of the
electromagnetic field is taken as

E(x, z, t ) = (1/2)[exEx(x, z, t ) + eyEy(x, z, t )] + c.c., (1)

2469-9926/2020/101(5)/053816(7) 053816-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3133-2887
https://orcid.org/0000-0002-3218-8381
https://orcid.org/0000-0002-8605-176X
https://orcid.org/0000-0002-9111-5342
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.053816&domain=pdf&date_stamp=2020-05-05
https://doi.org/10.1103/PhysRevA.101.053816


HUAGANG LI et al. PHYSICAL REVIEW A 101, 053816 (2020)

where ex,y are unit vectors transverse to the propagation axis
z, Ex and Ey being complex amplitudes of the respective field
components, while x is the transverse coordinate in the waveg-
uide, t is time, and c.c. stands for the complex-conjugate con-
tribution. The birefringence of the medium is accounted for
by the respective values of the linear refractive index, n0x =
n0 + δn(z) + �n and n0y = n0 − δn(z) − �n, where �n is a
constant part of the birefringence, and δn(z) represents the
above-mentioned term, varying as a random function of z.
Further, the field components in Eq. (1) are written as

Ex = Ax exp (ikzz + ikxx − iωt ),

Ey = Ay exp (ikzz − ikxx − iωt ), (2)

assuming opposite signs of transverse components ±kx of
their wave vectors, which are related to the carrier wavelength,√

k2
z + k2

x = 2πn0/λ, ω being the respective frequency. In the
usual paraxial approximation [37], and applying averaging
with respect to the randomly varying δn(z), which casts the
nonlinearity in Manakov’s form [34,38], that is, δn(z) is
transformed into the self-phase modulation effect and the
cross-phase modulation effect, the coupled NLS equations
for slowly varying amplitudes Ax,y from Eqs. (1) and (2) are
obtained in the following form:

2ikz
dAx

dz
+ 2ikx

∂Ax

∂x
+ ∂2Ax

∂x2
+ 2k2

0n0�nAx

+ 2k2
0n0n2(|Ax|2 + |Ay|2)Ax = 0,

2ikz
dAy

dz
− 2ikx

∂Ay

∂x
+ ∂2Ay

∂x2
− 2k2

0n0�nAy

+ 2k2
0n0n2(|Ax|2 + |Ay|2)Ay = 0, (3)

where n2 is the Kerr coefficient. Next, defining Q± = (Ax ±
iAy)/

√
2, Eq. (3) is transformed into a system with linear

couplings between the components, represented by the fields
and their first x derivatives:

2ikz
dQ+

dz
+ 2ikx

∂Q−

∂x
+ ∂2Q+

∂x2

+2k2
0n0�nQ− + 2k2

0n0n2(|Q+|2 + |Q−|2)Q+ = 0,

2ikz
dQ−

dz
+ 2ikx

∂Q+

∂x
+ ∂2Q−

∂x2

+2k2
0n0�nQ+ + 2k2

0n0n2(|Q+|2 + |Q−|2)Q− = 0. (4)

Next, introducing normalized variables, q+ =
w0k0

√
n0n2Q+, q− = w0k0

√
n0n2Q− and ξ = x/w0,

ζ = z/(kzw
2
0 ), where w0 is a scale factor, we arrive at

the final form of the NLS system,

i
dq+

dζ
+ iα

∂q−

∂ξ
+ 1

2

∂2q+

∂ξ 2
+ ρq− + g(|q+|2 + |q−|2)q+ = 0,

i
dq−

dζ
+ iα

∂q+

∂ξ
+ 1

2

∂2q−

∂ξ 2
+ ρq+ + g(|q−|2 + |q+|2)q− = 0,

(5)

where g = +1 and −1 correspond to the self-focusing and
self-defocusing media, respectively. The constants are α =
kxw0 and ρ = k2

0w
2
0n0�n. By means of additional scaling, it

is possible to fix α = 1 in Eq. (5), but it is more convenient

to keep α as a free parameter, which measures the effective
SOC strength in the system. System (5) admits an obvious
reduction to a single NLS equation for complex field q(ξ, ζ )
by substituting

q+ = ±q− = 1√
2

exp

[
i

(
−1

2
α2 ± ρ

)
z ∓ iαx

]
q(ξ, ζ ). (6)

The NLS system (5) may be used for the optical emulation
of SOC in the 1D setting because, in the case of ρ = 0, it is
similar to the GP equations for the SOC system [24–27,39–
43]. However, Zeeman terms, in the form of ±�q±, with
real constant �, in the equations for q±, which are often
included in SOC models, do not appear in the present system.
In particular, the spatially periodic potential, which is added
to the present system [see Eq. (13) below], was introduced
differently, viz., as a Zeeman lattice, in Ref. [24].

Although the Zeeman term is absent in this model, the
effect of the additional linear term ∼ρ is the same as that
of the Zeeman term in the band-gap structure of the system,
and it can also be derived from Eq. (3). So, ∼ρ may affect
the topology of the structure, but we do not consider the
topological properties of the structure here. ∼ρ in Eq. (5) may
be interpreted as an emulation of the Rabi coupling in the
spinor BEC system, which was introduced in Refs. [42,43].
In this connection, it is relevant to mention that the SOC-Rabi
system that was introduced in Ref. [43] is written, in terms of
the present notation, as

i
dq+

dζ
+ λ

∂q−

∂ξ
+ 1

2

∂2q+

∂ξ 2
+ ρq− + (|q+|2 + |q−|2)q+ = 0,

i
dq−

dζ
− λ

∂q+

∂ξ
+ 1

2

∂2q−

∂ξ 2
+ ρq+ + (|q−|2 + |q+|2)q− = 0,

(7)

with real coefficient λ. In the spinor form, the SOC operator in
system (5) is σ1 p̂, where σ1 is the Pauli matrix and p̂ ≡ −i∂x

is the 1D momentum operator. On the other hand, in Eq. (7)
the SOC operator is −σ2 p̂. Unlike stationary soliton solutions
found below, system (7) gives rise to shuttle motion of 1D
solitons, coupled to their intrinsic oscillations [43].

In the subsequent part of the paper, we report families
of solitons generated by system (5) with the self-focusing
nonlinearity (g = 1), and we address their stability in Sec. II.
This is followed in Sec. III by producing soliton families
in the semi-infinite and finite band gaps of the system with
the focusing and defocusing nonlinearity, augmented by a
spatially periodic potential. The paper is concluded in Sec. IV.

II. SOLITONS IN HOMOGENEOUS MEDIA

The linearized version of Eq. (5) gives rise to two
branches of the dispersion relation for excitations q± ∼
exp(ibζ + ipξ ), viz., b = −(p2/2) ± (αp + ρ), where b and
p are the real propagation constant and the transverse wave
number, respectively. This dispersion relation contains a semi-
infinite gap, b > bmax = α2/2 + ρ, in which solitons may
exist.

Stationary soliton solutions to Eq. (5) were sought as
q±(ξ, ζ ) = u±(ξ )eibζ , where the complex functions u± satisfy
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the equations

−bu+ + iα
du−

dξ
+ 1

2

d2u+

dξ 2
+ ρu− + g(|u+|2 + |u−|2)u+ = 0,

−bu− + iα
du+

dξ
+ 1

2

d2u−

dξ 2
+ ρu+ + g(|u−|2 + |u+|2)u− = 0.

(8)

To find localized (soliton) solutions of Eq. (8), we used
the modified-squared-operator method [44]. Here, the time
step �t = 1. The operator M = cc − ∂ξξ , where cc = 20
denotes a constant. We chose this method because it converges
quickly and can be replaced by the squared-operator method
with slower convergence speed by blocking some program
segments of the modified-squared-operator method near the
side band. In this way, we can compare the two methods to
get the exact soliton solution.

When ρ = 0, Eq. (8) admits solutions composed of real
and imaginary components u+(ξ ) and u−(ξ ) ≡ iv−(ξ ), which
are subject to conditions of spatial parity of two different
types. First, these are composite states in which one compo-
nent [say, u+(ξ )] is an even (symmetric) function of ξ , while
u−(ξ ) is an odd (antisymmetric) one:

u+(−ξ ) = u+(ξ ), v(−)(−ξ ) = −v−(ξ ). (9)

Typical solutions of this type for ρ = 0 are shown in
Figs. 1(a) and 1(b). When ρ �= 0, the solutions for both
components are complex, as shown in Figs. 1(c) and 1(d).

A different species of solitons available in the case of ρ =
0 is a state subject to the condition of the cross-symmetry:

u+(−ξ ) = v−(ξ ), v−(−ξ ) = u+(ξ ), (10)

cf. Ref. [45]. An example of a stable soliton of this type
is shown in Figs. 1(e) and 1(f). Note that similar cross-
symmetric solutions are displayed below in Fig. 5 for the
system including the spatially periodic potential (13).

In the case of ρ �= 0, soliton solutions are complex. In this
case, we focus on a study of solitons obeying relation (6); see
Figs. 1(c) and 1(d).
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FIG. 1. Real component u+ (a) and imaginary one u− (b) of a
numerically obtained soliton solution of Eq. (8) with α = 3, ρ = 0,
and b = 12. (c) and (d) Complex components of a soliton for ρ = 1,
subject to constraint (6), q+ = −q−. (e) and (f) Real component
u+ and imaginary one u− ≡ iv− of a cross-symmetric soliton for
α = 3, ρ = 0, and b = 12, subject to constraint (10). Red dashed,
blue dashed-dotted, and black solid lines display, respectively, the
real part, the imaginary part, and the squared absolute value of
solutions. In all cases, g = 1. All solitons displayed here are stable.
All quantities are plotted in arbitrary dimensionless units.

Analysis of stability for the solitons against small pertur-
bations was carried out by means of the standard lineariza-
tion procedure. For a given stationary soliton, q±(ξ, ζ ) =
u±(ξ )eibζ , small perturbations are added as q±(ξ, ξ ) =
[u± + εF±eδζ + ε(G±)∗eδ∗ζ ]eibζ with infinitesimal amplitude
ε, where F± and G± are perturbation eigenmodes, δ is the
corresponding growth rate, and an asterisk denotes com-
plex conjugation. The soliton is unstable if there is at
least one solution with Re(δ) > 0. Thus, the following lin-
earized equations for small perturbations are derived from
Eq. (5):

⎡
⎢⎢⎢⎣

L̂ + g(2|u+|2 + |u−|2) g(u+)2 gu+(u−)∗+iα ∂
∂x + ρ gu+u−

−g(u+)2∗ −L̂ − g(2|u+|2 + |u−|2) −g(u+u−)∗ −g(u+)∗u− + iα ∂
∂x − ρ

g(u+)∗u−+iα ∂
∂x + ρ gu+u− L̂ + g(|u+|2 + 2|u−|2) g(u−)2

−g(u+u−)∗ −gu+(u−)∗ + iα ∂
∂x − ρ −g(u−)2∗ −L̂ − g(|u+|2 + 2|u−|2)

⎤
⎥⎥⎥⎦

⎛
⎜⎝

F+
G+
F−
G−

⎞
⎟⎠=−iδ

⎛
⎜⎝

F+
G+
F−
G−

⎞
⎟⎠,

(11)

where L̂ ≡ (1/2)∂2/∂x2 − b. Equation (11) can be numer-
ically solved by means of the Fourier collocation method
[46,47]. This method is equivalent to equal-length linear
convolution with values of the middle part, and since this
method always takes an odd number of numerical points, the
program design of linear convolution conversion to matrix
multiplication becomes relatively simple. The method is very
reliable because it is equivalent to the operation of linear con-
volution. Numerical results demonstrate that the solitons may

be stable both for ρ = 0 and for ρ = 1 [note that, although the
system admits exact soliton solutions produced by substitution
(6), the stability of such solutions against small perturbations
breaking relations q+ = ±q− is not guaranteed].

The dependence of the soliton’s total power,

P = P+ + P−,

where P± =
∫ +∞

−∞
| u±(ξ )|2dξ, (12)
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FIG. 2. (a) The total power P vs the propagation constant b for
α = 3 in Eq. (8). The green dashed and magenta curves are plotted,
respectively, for ρ = 0 and 1 [recall that ρ is the coefficient of
the effective Rabi coupling in Eq. (5)], the red and blue circles
corresponding to the solitons shown in Figs. 1(a) and 1(b) and
Figs. 1(c) and 1(d), respectively. Dependences of the powers of
each component, P+, P−, and the total power, P (red solid, black
dashed-dotted, and blue dashed lines, respectively) on SOC strength
α are displayed in panel (b) for ρ = 0, and in (c) for ρ = 1, at a
fixed propagation constant, b = 12. (d) The instability growth rate,
Re(δ), vs the propagation constant, b, corresponding to (a). Dashed
green and magenta lines are plotted, respectively, for ρ = 0 and 1.
(e) and (f) The instability growth rate, Re(δ), vs the SOC strength,
α, corresponding to (b) and (c), respectively. (g) The total power P
vs propagation constant b of the cross-symmetric soliton solutions
for α = 3 in Eq. (8). (h) The instability growth rate, Re(δ), vs the
propagation constant, b, corresponding to (g). The magenta circles
correspond to the soliton shown in Figs. 1(e) and 1(f). (i) Results
of direct simulations, displayed by means of the spatiotemporal
distribution of the total density, |q+|2 + |q−|2, of the evolution of the
soliton, which is displayed in Figs. 1(e) and 1(f), with random-noise
perturbations added at the 5% amplitude level. In all cases, g = 1
(the self-focusing nonlinearity). All quantities are plotted in arbitrary
dimensionless units.

on the propagation constant, b, represents a monotonically in-
creasing function; see Fig. 2(a). It is worth noting that this de-
pendence meets the well-known necessary stability condition,
viz., the Vakhitov-Kolokolov criterion, dP/db > 0 [48–50].
Note also that the power of the solitons with ρ = 1 is larger
than that for their counterpart with the same b and ρ = 0.

Further, the dependence of the soliton’s power on SOC
strength α is displayed in Figs. 2(b) and 2(c), which demon-
strate that the solitons exist at values of α below a threshold
level, viz., α(thr) = 3.9 for ρ = 0 and α(thr) = 3.7 for ρ = 1.
Above the threshold, the nonlinear self-focusing effect cannot
balance the SOC-driven walk-off and diffraction of the two
components.
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FIG. 3. (a) The evolution of the band structure (black) of the
linearized system, including periodic potential (13), with the increase
of the Rabi-coupling strength, ρ. Here b is the propagation constant.
Green, magenta, blue, and cyan circles correspond to the solitons
shown in panels (b)–(e), respectively, by means of intensity profiles
|u+(ξ )|2 and |u−(ξ )|2 of the two components (black solid and red
dashed lines, respectively): (b) g = −1, b = −0.1, and ρ = 0; (c)
g = 1, b = 3.2, and ρ = 0; (d) g = −1, b = 0.4, and ρ = 0.5; and
(e) g = 1, b = 3.2, and ρ = 0.5. In the cases of the self-focusing
and self-defocusing nonlinearity, i.e., g = 1 and −1, respectively, the
displayed solitons belong to the semi-infinite and finite band gaps,
respectively. In all panels, the SOC strength is α = 1.5. All quantities
are plotted in arbitrary dimensionless units.

We have performed the linear-stability analysis for the
solitons based on Eq. (11). The results presented in Figs. 2(d)–
2(f) demonstrate that the solitons are stable in the region
where they exist. For the cross-symmetric soliton solutions,
such as the one displayed in Figs. 1(e) and 1(f), we show the
dependence of the total power P and the instability growth
rate Re(δ) on the propagation constant b in Figs. 2(g) and
2(h), respectively. This soliton family is stable, too. We have
checked the robustness of this soliton species by simulating its
evolution with the addition of 5% random-noise perturbations.
The results, illustrated by Fig. 2(i), corroborate the stability
predicted by the linear-stability analysis.

III. GAP SOLITONS IN THE PERIODIC POTENTIAL

The existence and stability of gap solitons was studied in
the presence of a periodic potential,

V (ξ ) = 3 cos(2ξ ), (13)

added to both equations in system (5), with the amplitude of
the potential scaled to 3. The potential, which emulates the
effect of an optical lattice in BEC, may be induced by the
photonic-crystal structure of the underlying waveguide [51].

053816-4



EMULATION OF SPIN-ORBIT COUPLING FOR … PHYSICAL REVIEW A 101, 053816 (2020)

FIG. 4. The total power, P [see Eq. (12)], and the instability
growth rate, Re(δ), vs the propagation constant, b, for solitons found
in the semi-infinite and finite band gaps (right and left/central boxes,
with g = 1 and −1, respectively) of the system including lattice
potential (13), with the Rabi-coupling constant ρ = 0 in (a), (b)
and ρ = 0.5 in (c), (d). In all panels, Re(δ) ≡ 0 implies that all the
soliton families are completely stable (δ is the instability growth
rate). Green, magenta, blue, and cyan circles represent the solitons
shown in Figs. 3(b)–3(e), respectively. In all cases, the SOC strength
is α = 1.5. All quantities are plotted in arbitrary dimensionless units.

For SOC strength α = 1.5, the band-gap structure of the
linearized version of system (5), including periodic potential
(13), is shown in Fig. 3(a) as a function of the Rabi-coupling
strength, ρ, which strongly affects the structure. In particular,
the first and second bands split into two subbands at some
critical values of ρ.

When ρ = 0, two typical solitons, found in the presence
of the lattice in the finite band gap and the semi-infinite one,
are shown, respectively, in Fig. 3(c) for g = −1 and b = −0.1,
and Fig. 3(d) for g = 1 and b = 3.2. These solitons are similar
to those produced by Eqs. (5) with the self-focusing nonlin-
earity (g = 1) in the free space (without the lattice potential),
in the sense that their components u+ and u− are pure real
and imaginary ones, subject to the parity constraint (9). When
ρ = 0.5, typical solitons, satisfying the same relation as in the
free space, q+ = ±q− [cf. Eq. (6)], are shown in Figs. 3(d) and
3(e), respectively, for the self-defocusing and self-focusing
signs of the nonlinearity

Results for the solitons found in the band gaps are sum-
marized in Fig. 4. First, Fig. 4(a) demonstrates that the soli-
tons exist only in the above-mentioned semi-infinite gap for
g = 1 (self-focusing), and in the first band gap for g = −1
(self-defocusing) at ρ = 0, being completely stable in their
existence regions, as shown in Fig. 4(b). Further, Fig. 4(c)
shows that, at ρ = 0.5 (in the presence of the Rabi coupling),
the solitons are again found in the semi-infinite gap at g = 1.
At the same value of ρ = 0.5 and with g = −1, solitons do not
exist in the first band gap, but they are found in the second one.

FIG. 5. Profiles of the pure real and imaginary components, u+

and u− ≡ iv−, of solitons produced by Eq. (8), including potential
terms (13), are displayed, respectively, by black solid and red dashed
lines in panels (a) for g = −1, b = −0.1, ρ = 0, and (b) for g = 1,
b = 3.6, ρ = 0. (c) The total power, P [defined as per Eq. (12)], vs
the propagation constant, b, for solitons found in the semi-infinite
(right) and finite (left) band gaps of the system including the lat-
tice potential (13), without the Rabi-coupling constant (ρ = 0). (d)
The instability growth rate, Re(δ), vs the propagation constant, b,
corresponding to (c). All solitons displayed in this figure satisfy the
cross-symmetry constraint (10). All quantities are plotted in arbitrary
dimensionless units.

These solitons are also completely stable in their existence
region, as shown in Fig. 4(d).

Finally, in the case of ρ = 0 we address solitons
with pure real and imaginary components obeying the
cross-symmetry relation (10). Equation (8), augmented by
potential term (13), produces such solitons belonging to the
semi-infinite and finite band gaps, which are shown, re-
spectively, in Figs. 5(a) and 5(b). Families of the solitons
are presented by means of the respective P(b) curves in
Fig. 5(c). The results of the linear-stability analysis, displayed
in Fig. 5(d), demonstrate that the solitons are stable in their
existence region.

IV. CONCLUSION

We have derived the beam-propagation equations for bi-
modal optical beams propagating in a nonlinear waveguide
with randomly varying birefringence and a photonic-crystal
structure. The averaging with respect to the randomness
naturally casts the nonlinearity of the effective system in
Manakov’s form. The resulting equations may emulate one-
dimensional SOC phenomenology in a nonlinear binary BEC,
both in free space and in an optical-lattice potential. The
effective SOC interaction between the copropagating beams,
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which correspond to the two components of the mean-field
wave function in the binary BEC, is induced by opposite
transverse components of their wave vectors. Numerical re-
sults produce families of stable solitons in free space with
focusing nonlinearity and in the presence of the spatially
periodic potential for both focusing and defocusing signs of
the nonlinearity.

As an extension of this work, it may be interesting to
develop our framework for the spatial-domain propagation of
light in the same setting but with two transverse coordinates,
as well as for spatiotemporal propagation, which may help
to emulate two-dimensional matter-wave solitons [28,32–

34,36,43] and matter-wave topological edge states [52–54] in
an optical setting.
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