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Quantum φ synchronization in a coupled optomechanical system with periodic modulation
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Based on the concepts of quantum synchronization and quantum phase synchronization proposed by A.
Mari et al. [Phys. Rev. Lett. 111, 103605 (2013)], we introduce and characterize the measure of a more
generalized quantum synchronization called quantum φ synchronization under which pairs of variables have
the same amplitude and possess the same φ phase shift. Naturally, quantum synchronization and quantum
antisynchronization become special cases of quantum φ synchronization. Their relations and differences are
also discussed. To illustrate these theories, we investigate the quantum φ synchronization and quantum phase
synchronization phenomena of two coupled optomechanical systems with periodic modulation and show that
quantum φ synchronization is more general as a measure of synchronization. We also show the phenomenon of
quantum antisynchronization when φ = π .
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I. INTRODUCTION

As a collective dynamic behavior in complex systems,
synchronization was first proposed by Huygens in the 17th
century [1,2]. He noticed that the oscillations of two pen-
dulum clocks with a common support tend to synchronize
with each other [3]. Since then, synchronization has been
widely studied and applied in classical physics. Furthermore,
with the development of quantum mechanics, the concept
of quantum synchronization was proposed and widely ap-
plied in fields such as cavity quantum electrodynamics [4,5],
atomic ensembles [6–8], van der Pol oscillators [5,9–11],
Bose-Einstein condensation [12], and superconducting circuit
systems [13,14].

In recent years, there has been growing interest in ex-
ploiting synchronization [15] for significant applications in
microscale and nanoscale systems [16]. For example, syn-
chronization of two anharmonic nanomechanical oscillators
is implemented in [17]. And, experimentally, the synchro-
nization measure of the system has been realized through
optomechanical devices, including the synchronization of two
nanomechanical beam oscillators coupled by a mechanical
element [18], two dissimilar silicon nitride micromechanical
oscillators coupled by an optical cavity radiation field [19],
and two nanomechanical oscillators via a photonic resonator
[20]. These ingenious experiments fully test the theoretical
prediction of the synchronization of optomechanical sys-
tems. In addition, the relationship between quantum syn-
chronization and the collective behavior of classical systems
is also widely concerned, such as quantum synchroniza-
tion of van der Pol oscillators with trapped ions [21] and
quantum-classical transition of correlations of two coupled
cavities [22]. In addition, the role of the environment and the
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correlation between subsystems in a system with quantum
synchronization, such as entanglement and mutual informa-
tion, have been discussed as the main influencing factors
[23–25].

Another aspect of synchronization drawing much more
attention recently is the generalization of its classical con-
cepts into continuous-variable quantum systems, such as com-
plete synchronization [26], phase synchronization [27,28],
lag synchronization [29], and generalized synchronization
[30]. After Mari et al. introduced the concepts of quan-
tum complete synchronization and quantum phase syn-
chronization [31], some interesting efforts have been de-
voted to enhancing quantum synchronization and quantum
phase synchronization by manipulating modulation [32,33],
changing the ways of coupling between two subsystems
[31,34–36], and introducing nonlinearity [37,38]. Further-
more, the concepts of quantum generalized synchronization,
time-delay synchronization, and in-phase and antiphase syn-
chronization have also been mentioned in [39] and [40].
However, other than quantum complete synchronization under
which pairs of variables have the same amplitude and phase,
the concept of quantum antisynchronization corresponding
to classical antisynchronization has not been proposed yet.
Moreover, a more generalized quantum synchronization can
be defined as follows: “The pairs of variables have the same
amplitude and possess the same φ phase shift” (hereafter
referred to as quantum φ synchronization), i.e., for φ = π ,
the pairs of variables, such as positions and momenta, will
always have a π phase difference with each other [40]. This
type of quantum φ synchronization is called quantum antisyn-
chronization. Hence, one will naturally ask how to define and
measure quantum φ synchronization.

To shed light on this question, in this work we give the def-
inition of quantum φ synchronization for continuous-variable
quantum systems by combining the concept of quantum syn-
chronization and the phenomenon of transition from in-phase
to antiphase synchronization [40]. The paper is organized
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as follows. In Sec. II, we first reexamine the definitions of
quantum complete synchronization and phase synchroniza-
tion. Based on these concepts, the definition of quantum φ

synchronization is given, under which quantum synchroniza-
tion and quantum antisynchronization can be treated as special
cases of quantum φ synchronization. The φ synchronization
of a coupled optomechanical system with periodic modulation
is studied to illustrate our theory in Sec. III. In Sec. IV, a brief
discussion and summary are given.

II. MEASURE OF QUANTUM SYNCHRONIZATION AND
QUANTUM φ SYNCHRONIZATION

Unlike the synchronization in classical systems, the com-
plete synchronization in quantum systems cannot be defined
straightforwardly, since fluctuations of the variables in the
two subsystems must adhere strictly to the limits brought by
the Heisenberg principle. To address this issue, Mari et al.
proposed the measurement criterion of quantum complete
synchronization for continuous-variable systems [31],

Sc = 1

〈q−(t )2 + p−(t )2〉 , (1)

where q−(t ) = 1√
2
[q1(t ) − q2(t )] and p−(t ) = 1√

2
[p1(t ) −

p2(t )] are error operators. In order to study purely quantum
mechanical effects, the changes of variables are generally
taken as

q−(t ) → δq−(t ) = q−(t ) − 〈q−(t )〉,
p−(t ) → δp−(t ) = p−(t ) − 〈p−(t )〉. (2)

Then the contribution of the classical systematic error brought
by the mean values 〈q−(t )〉 and 〈p−(t )〉 in Sc can be dropped,
and Sc is replaced by the pure quantum synchronization
measure

Sq = 1

〈δq−(t )2 + δp−(t )2〉 . (3)

This definition requires that the mean values of q−(t ) and
p−(t ) are exactly 0, i.e., 〈q−(t )〉 = 0 and 〈p−(t )〉 = 0.

Mari et al. have explained that if the averaged phase-space
trajectories (limit cycles) of the two systems are constant but
slightly different from each other, a classical systematic error
can be easily excluded from the measure of synchronization
[31]. The mean-value synchronization is also regarded as a
necessary condition of pure quantum synchronization [38].
It is more reasonable and rigorous to study pure quantum
synchronization based on mean-value synchronization. There-
fore, we can generalize the definition of quantum complete
synchronization into quantum φ synchronization

Sφ = 1

〈qφ
−(t )2 + pφ

−(t )2〉 , (4)

which does not require mean-value synchronization. The φ

error operators are defined as qφ
−(t ) = 1√

2
[qφ

1 (t ) − qφ

2 (t )] and

pφ
−(t ) = 1√

2
[pφ

1 (t ) − pφ

2 (t )] with

qφ
j (t ) = q j (t ) cos(φ j ) + p j (t ) sin(φ j ),

pφ
j (t ) = p j (t ) cos(φ j ) − q j (t ) sin(φ j ),

(5)

where the phase φ j = arctan[〈p j (t )〉/〈qj (t )〉], φ j ∈ [0, 2π ].
The upper limit of Sφ is also given by the Heisenberg
principle,

Sφ = 1

〈qφ
−(t )2 + pφ

−(t )2〉

� 1

2
√

〈qφ
−(t )2〉〈pφ

−(t )2〉

� 1

2
√

[〈qφ
−(t )2〉 − 〈qφ

−(t )〉2][〈pφ
−(t )2〉 − 〈pφ

−(t )〉2]

� 1√∣∣ 1
2

[
qφ

1 (t ), pφ

1 (t )
] + 1

2

[
qφ

2 (t ), pφ

2 (t )
]∣∣2

= 1.

(6)

This means that the closer Sφ is to 1, the better the quantum φ

synchronization. Again, let us take the changes of variables

qφ
−(t ) → δqφ

−(t ) = qφ
−(t ) − 〈qφ

−(t )〉,
pφ

−(t ) → δpφ
−(t ) = pφ

−(t ) − 〈pφ
−(t )〉.

(7)

The mean values of qφ
−(t ) and pφ

−(t ) are 0 when the average
amplitude and period of the mean value of the two variables
are the same. In this case, Sφ equals the pure quantum φ-
synchronization measure Sφ

q mathematically,

Sφ
q = 1

〈δqφ
−(t )2 + δpφ

−(t )2〉

=
〈

1

2
[(δp1)2 + (δq1)2 + (δp2)2 + (δq2)2

+ 2(δp1δq2 − δq1δp2) sin φ − 2(δp1δp2 + δq1δq2)

× cos φ]

〉−1

, (8)

where φ = φ2 − φ1 can be determined by the final steady
state. Now let us explain the relationship between quantum
φ synchronization and quantum complete synchronization,
quantum phase synchronization. We can see from Eq. (8)
that the definition of Sφ

q can be reduced to (a) quantum
synchronization—if φ = 0, then Sq = Sφ

q ; or (b) quantum

phase synchronization—if 〈δqφ
−(t )2〉 = 〈δpφ

−(t )2〉, then Sp =
Sφ

q , or (c) if φ = π , then S̃q = Sφ
q , where S̃q can be defined as

quantum antisynchronization. Therefore, quantum synchro-
nization and quantum antisynchronization are special cases
of quantum φ synchronization. But the definition of quantum
phase synchronization is slightly different [31]:

Sp = 1

2
〈δpφ

−(t )2〉−1 = 1

〈δpφ
−(t )2 + δpφ

−(t )2〉 . (9)

Unlike Sφ in Eq. (6), the measure of quantum phase synchro-
nization Sp can exceed 1. To illustrate these definitions, we
next compare quantum φ synchronization with quantum syn-
chronization and quantum phase synchronization in coupled
optomechanical systems with periodic modulation.
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III. QUANTUM SYNCHRONIZATION, QUANTUM PHASE
SYNCHRONIZATION, AND QUANTUM φ

SYNCHRONIZATION IN COUPLED OPTOMECHANICAL
SYSTEMS WITH PERIODIC MODULATION

To examine the relations and differences between quantum
synchronization, quantum phase synchronization, and quan-
tum φ synchronization, we consider a coupled optomechani-
cal system with periodic modulation [36,37]. Two subsystems
are coupled by optical fibers [41]. Each of them consists of
a mechanical oscillator coupled with a Fabry-Perot cavity
driven by a time-periodic modulated feld (see Fig. 1) [42].
It is noteworthy that the optomechanical device is exper-
imentally possible. On the one hand, the synchronization
of two mechanically isolated nanomechanical resonators via
a photonic resonator has been implemented [20]. On the
other hand, a self-oscillating mechanical resonator in an on-
fiber optomechanical cavity excited by a tunable laser with
periodically modulated power also has been studied [32].
Then the Hamiltonian of the whole coupled system can be
written as

H =
2∑

j=1

{
− � j[1 + Ac cos(ωct )]a†j a j + ω j

2

(
p2

j + q2
j

)

− ga†j a jq j + iE (a†j − a j )

}
+ λ(a†1a2 + a†2a1), (10)

where a and a† are the creation and annihilation operators,
and q j and p j are the position and momentum operators of the
mechanical oscillator with frequency ω j in the jth subsystem,
respectively [43,44]. λ is the optical coupling strength and
E is the intensity of the driving field. � j is the optical
detuning, which is modulated with a common frequency ωc

and amplitude Ac. g is the optomechanical coupling constant.
To solve the time evolution of the dynamical operators O =
q j, p j, a j of the system, we consider the dissipation effects
in the Heisenberg picture and utilize the quantum Langevin
equation [45]. From Eq. (10), the evolution equations of the
operators can be written as

q̇ j =ω j p j,

ṗ j = − ω jq j − γ p j + ga†j a j + ξ j,

ȧ j = − {κ − i� j[1 + Ac cos(ωct )]}a j + iga jq j + E

− iλa3− j +
√

2κain
j ,

(11)

where κ is the radiation loss coefficient [46,47] and
γ is the mechanical damping rate. ain

j and ξ j are in-
put bath operators and satisfy the standard correlation

FIG. 1. Schematic of the coupled optomechanical system with
periodic modulation.

〈ain† (t )ain(t ′) + ain(t ′)ain† (t )〉 = δ(t − t ′) and 1
2 〈ξ j (t )ξ j′ (t ′) +

ξ j′ (t ′)ξ j (t )〉 = γ (2n̄bath + 1)δ j j′δ(t − t ′) under the Markovian
approximation [43,44], where n̄bath = 1/[exp (h̄ω j/kBT ) − 1]
is the mean occupation number of the mechanical baths,
which gauges the temperature T of the system [48–50]. To
solve the set of nonlinear differential operator equations, we
need to linearize Eq. (11). There are several ways to do
that, such as using the stochastic Hamiltonian [51,52] and
the mean-field approximation [34,39,53,54]. Here we use the
mean-field approximation, since it can uncover the effects of
the mean error and quantum fluctuation on quantum synchro-
nization. Namely, the operators are decomposed into a mean
value and a small fluctuation, i.e.,

O(t ) = 〈O(t )〉 + δO(t ). (12)

And as long as |〈O(t )〉| 	 1, the usual linearization approx-
imation to Eq. (11) can be implemented [35]. Then Eq. (11)
can be divided into two different sets of equations, one for the
mean value,

∂t 〈q j〉 = ω j〈p j〉,
∂t 〈p j〉 = −ω j〈q j〉 − γ 〈p j〉 + g|〈a j〉|2,
∂t 〈a j〉 = −{κ − i� j[1 + Ac cos(ωct )]}〈a j〉 + ig〈a j〉〈q j〉 + E

− iλ〈a3− j〉, (13)

and the other for the fluctuation,

∂tδq j = ω jδp j,

∂tδp j = −ω jδq j − γ δp j + g(〈a j〉δa†j + 〈a j〉∗δa j ) + ξ j,

∂tδa j = −{κ − i� j[1 + Ac cos(ωct )]}δa j + ig(〈a j〉δq j

+〈q j〉δa j ) − iλδa3− j +
√

2κain
j . (14)

In Eq. (14), the second-order smaller terms of the
fluctuation have been ignored. Then, by defining
u = (δq1, δp1, δx1, δy1, δq2, δp2, δx2, δy2)� with δx j =

1√
2
(δa†j + δa j ) and δy j = i√

2
(δa†j − δa j ), Eq. (14) can be

simplified to

∂t u = Mu + n, (15)

where n = (0, ξ1,
√

2κxin
1 ,

√
2κyin

1 , 0, ξ2,
√

2κxin
2 ,

√
2κyin

2 )�

is the noise vector with xin
1 = 1√

2
(ain† + ain ) and yin

1 =
i√
2
(ain† − ain ). M is a time-dependent coefficient matrix,

M =
(

M1 M0

M0 M2

)
, (16)
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with

Mj =

⎛
⎜⎜⎝

0 ω j 0 0
−ω j −γ

√
2gRe(〈a j〉)

√
2gIm(〈a j〉)

−√
2gIm(〈a j〉) 0 −κ −Fj√

2gRe(〈a j〉) 0 Fj −κ

⎞
⎟⎟⎠,

and

M0 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 λ

0 0 −λ 0

⎞
⎟⎠,

where Fj = � j[1 + Ac cos(ωct )] + g〈q j〉 and the evolution
process of matrix element M(t ) at any time can be obtained
by solving Eq. (13) numerically when the initial conditions
are 0. In order to study the contribution of quantum fluctua-
tion to quantum synchronization, we consider the following
covariance matrix:

Vi j ≡ 1
2 〈uiu j + u jui〉. (17)

The evolution of V over time is governed by [35,53,55,56]

∂tV = MV + V MT + N. (18)

The noise matrix N = diag(0, γ (2n̄bath +
1), κ, κ, 0, γ (2n̄bath + 1), κ, κ ) satisfying Ni jδ(t − t ′) =
1
2 〈ξi(t )ξ j (t ′) + ξ j (t ′)ξi(t )〉. Hence, Eq. (3), Eq. (8), and
Eq. (9) can be rewritten in terms of Vi j ,

Sq = [
1
2 (V11 + V22 + V55 + V66 − V15 − V51 − V62 − V26)

]−1
,

Sφ
q = [

1
2 (V11 + V22 + V55 + V66 + 2V25 sin φ − 2V16 sin φ

− 2V26 cos φ − 2V15 cos φ)]−1,

Sp = [V11(sin φ1)2 + V22(cos φ1)2 + V55(sin φ2)2

+V66(cos φ2)2 − 2V12 sin φ1 cos φ1 − 2V15 sin φ1 sin φ2

+ 2V16 sin φ1 cos φ2 + 2V25 cos φ1 sin φ2

− 2V26 cos φ1 cos φ2 − 2V56 cos φ2 sin φ2]−1, (19)

and their evolutions can be derived by solving Eq. (13),
Eq. (15), and Eq. (18). In addition, under different parameters,
the calculated time-averaged synchronization

So(t ) = lim
T →∞

1

T

∫ T

0
So(t )dt (20)

is used as the synchronization measure in the asymptotic
steady state of the system, where o = φ, p. According to
the R-H criterion [57], all the eigenvalues of coefficient
matrix M will be negative after a temporary evolutionary
process. Hence, a stable limit-cycle solution representing a
periodic oscillation will exist [58].

As discussed in the last section, if φ = 0, which re-
quires the condition of mean-value complete synchro-
nization, i.e., 〈q−(t )〉 = 〈q1(t )〉 − 〈q2(t )〉 = 0, 〈p−(t )〉 =
〈p1(t )〉 − 〈p2(t )〉 = 0, the measures of quantum φ synchro-
nization and quantum synchronization are equivalent, i.e.,
Sφ

q = Sq. As shown in Fig. 2(a), 〈q1(t )〉 and 〈q2(t )〉 are
found to oscillate exactly in phase when entering the stable

state. The same conclusion holds for 〈p1(t )〉 and 〈p2(t )〉
in Fig. 2(b). In Fig. 2(c), the evolutions of 〈q1(t )〉�
〈p1(t )〉 and 〈q2(t )〉� 〈p2(t )〉 of the two oscillators trend
to an asymptotic periodic orbit (i.e., the two limit cycles
tend to be consistent), which indicates that the system is
stable. And Figs. 2(d) and 2(e) show that the changes

in Sq and Sφ
q over time are exactly the same. When the

mean-value synchronization is not complete, as shown in
Figs. 3(a) and 3(b), there exists a phase advance between
φ2 and φ1, i.e., φ = φ2 − φ1 = arctan[〈p2(t )〉/〈q2(t )〉] −
arctan[〈p1(t )〉/〈q1(t )〉] ≈ 0.2π . Similarly, the two consistent
limit cycles are shown in Fig. 3(c), indicating that the evolu-
tion of the system can still reach a steady state when the mean
value is not in complete synchronization. However, quan-
tum synchronization Sq and quantum φ synchronization are
different as shown in Fig. 3(d). This is because the definition
of quantum φ synchronization takes the effect of mean-value
incomplete synchronization into account. Quantum φ syn-
chronization is then more general and rigorous than quantum
synchronization. As mean-value incomplete synchronization
will break the condition for Eq. (2), the contribution of
〈q−(t )〉 and 〈p−(t )〉 to the quantum complete synchronization
Sc is much greater than that of the quantum fluctuation.
Besides, mean-value incomplete synchronization will always
occur with a change of parameters. As shown in Fig. 4,
different phase differences φ will be generated by a different
modulation frequency ωc. And similar phenomena have been
shown in [40]. Therefore, it is necessary to give the quantum

FIG. 2. Time evolution of (a) the mean values 〈q1〉 (solid red
line) and 〈q2〉 (dashed blue line), (b) the mean values 〈p1〉 (solid red
line) and 〈p2〉 (dashed blue line), (c) the limit-cycle trajectories in
the 〈q1〉� 〈p1〉 (red) and 〈q2〉� 〈p2〉 (blue) spaces, (d) the measure
of quantum synchronization Sq, and (e) the measure of quantum φ

synchronization Sφ
q . Parameters are chosen to refer to [31], [36],

[38] and [41]: λ = 0.03�1, Ac = 2, ωc = 3�1. Other parameters
are normalized by �1 = 1, �2 = 1.005�1, ω1 = �1, ω2 = �2, g =
0.005�1, γ = 0.005�1, κ = 0.15�1, E = 100�1.
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FIG. 3. Time evolution of (a) the mean values 〈q1〉 (solid red
line) and 〈q2〉 (dashed blue line), (b) the mean values 〈p1〉 (solid red
line) and 〈p2〉 (dashed blue line), (c) the limit-cycle trajectories in the
〈q1〉� 〈p1〉 (red) and 〈q2〉� 〈p2〉 (blue) spaces, and (d) the time
evolution of the measure of quantum synchronization Sq [(upper)

red line] and quantum φ synchronization Sφ
q [(lower) blue line] with

λ = 0.14�1 and Ac = 1, ωc = 2�1. Other parameters are the same
as in Fig. 2.

synchronization when the mean-value synchronization is not
complete, namely, quantum φ synchronization. Moreover,
quantum φ synchronization also can be related to quantum
phase synchronization. As shown in Fig. 5(a), both quantum

φ synchronization Sφ
q and quantum phase synchronization

Sp first decrease and then increase as the optical coupling

strength λ increases, and the changing trend of Sp and Sφ
q with

λ is accordant. When λ = 0.016�1, both Sφ = 0.58 and Sp =
0.36 are minimized. This means that 〈δqφ

−(t )2〉 is approxi-
mately proportional to 〈δpφ

−(t )2〉 [〈δqφ
−(t )2〉 > 〈δpφ

−(t )2〉]. In
this case, the measure of φ synchronization is in accor-
dance with that of phase synchronization. When 〈δqφ

−(t )2〉 =
〈δpφ

−(t )2〉, the two definitions are the same. However, if
〈δqφ

−(t )2〉 has no linear relation with 〈δpφ
−(t )2〉, the definitions

of φ synchronization and phase synchronization are quite
different as shown in Fig. 5(b). In Fig. 5(b), the quantum

φ synchronization Sφ
q becomes worse when the modulation

amplitude Ac increases, while the quantum phase synchro-

FIG. 4. Discrete point diagram (left) of phase φ versus mod-
ulation frequency ωc when the system reaches steady state. Time
evolution (right) of the mean values 〈q1〉 and 〈p1〉 (thick red line)
and 〈q2〉 and 〈p2〉 (thin blue line) with two values of ωc from the left
panel. The parameter λ = 0.14�1, Ac = 1, and other parameters are
the same as in Fig. 2.

FIG. 5. Mean values of the quantum phase synchronization mea-

sure Sp (solid red line) and quantum φ-synchronization measure Sφ
q

(dotted blue line) as a function of (a) the optical coupling coefficient
λ with Ac = 2, ωc = 3�1 and (b) the modulation frequency Ac with
λ = 0.03�1, ωc = 3�1. Other parameters are the same as in Fig. 2.

nization Sp is significantly enhanced. This difference is due
to the fact that the quantum φ synchronization takes both
〈δqφ

−(t )2〉 and 〈δpφ
−(t )2〉 into consideration, while quantum

phase synchronization only considers 〈δpφ
−(t )2〉. This also

results in quantum phase synchronization Sp exceeding 1 as
shown in Fig. 5(b). However quantum φ synchronization is
still less than 1 due to the Heisenberg principle, which has
also been demonstrated in Eq. (6).

When φ = π , the φ error operators become
qπ

−(t ) = 1√
2
[q1(t ) + q2(t )] and pπ

−(t ) = 1√
2
[p1(t ) + p2(t )].
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FIG. 6. Evolution of the quantum synchronization S̃q (solid green
line) and the mean values 〈q1〉 and 〈p1〉 (thick red line) and 〈q2〉 and
〈p2〉 (thin blue line) when the system is stable with (a) λ = 0.3�1

and Ac = 1.5, ωc = 2�1 and (b) λ = 0.2�1 and Ac = 1, ωc = 2�1.
Other parameters are the same as in Fig. 2.
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The quantum φ synchronization becomes quantum
antisynchronization, i.e.,

S̃q ≡ Sπ
q = 1

〈δqπ−(t )2 + δpπ−(t )2〉

=
〈

1

2
[(δp1 + δp2)2 + (δq1 + δq2)2]

〉−1

.

(21)

We can also find this phenomenon of quantum antisynchro-
nization in coupled optomechanical systems under certain
parameters. As shown in Fig. 6, in quantum antisynchroniza-
tion the mean value is antisynchronization and quantum φ

synchronization is not 0.

IV. CONCLUSIONS

In summary, we have introduced and characterized a more
generalized concept called quantum φ synchronization. It
can be defined as pairs of variables which have the same
amplitude and possess the same φ phase shift. The measure
of quantum φ synchronization has also been defined with
the phase difference φ. Therefore, quantum synchronization
and quantum antisynchronization can be treated as special
cases of quantum φ synchronization. In addition, quantum
phase synchronization can also be related with quantum φ

synchronization. As an example, we have investigated the
quantum φ synchronization and quantum phase synchro-
nization phenomena of two coupled optomechanical systems
with periodic modulation. It has been shown that quantum

φ synchronization is more general as a measure of synchro-
nization than quantum synchronization. We have also shown
the different effects of the optical coupling coefficient and
the modulation amplitude on quantum phase synchroniza-
tion and quantum φ synchronization. These two definitions
of synchronization are only concordant with each other in
the case where 〈δqφ

−(t )2〉 is approximately proportional to
〈δpφ

−(t )2〉. Based on quantum φ synchronization, the quantum
antisynchronization phenomenon has also been defined and
observed for φ = π under some parameters. Therefore, the
definition of quantum φ synchronization provides a new way
to study the quantum synchronization of continuous-variable
systems. In addition, it will be interesting in the future to study
the linearization method by using the stochastic Hamiltonian
[51,52] and its influence on quantum φ synchronization.
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