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Extended polarized semiclassical model for quantum-dot cavity QED
and its application to single-photon sources
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We present a simple extension of the semiclassical model for a two-level system in a cavity, in order to
incorporate multiple polarized transitions, such as those appearing in neutral and charged quantum dots (QDs),
and two nondegenerate linearly polarized cavity modes. We verify the model by exact quantum master equation
calculations and experimentally using a neutral QD in a polarization nondegenerate microcavity, and in both
cases we observe excellent agreement. Finally, the usefulness of this approach is demonstrated by optimizing a
single-photon source based on polarization postselection, where we find an increase in the brightness for optimal
polarization conditions as predicted by the model.
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I. INTRODUCTION

Understanding the interaction of a two-level system, such
as atomic transitions or excitonic transitions in a semiconduc-
tor quantum dot (QD), with an optical cavity mode, is key for
designing efficient single-photon sources [1–4] and photonic
quantum gates [5] for quantum networks [6]. Traditionally,
the interaction of a two-level quantum system with an electro-
magnetic mode is described by the Jaynes-Cummings model,
which can be approximated in the so-called semiclassical
approach, where the light field is treated classically and atom-
field correlations are neglected. We focus here on QD-cavity
systems in the weak coupling “bad cavity” regime (g � κ ).
The transmission amplitude in the semiclassical approxima-
tion is given by [7–13]

t = ηout
1

1 − 2i� + 2C
1−i�′

. (1)

Here ηout is the probability amplitude that a photon leaves the
cavity through one of the mirrors, and we assume two iden-
tical mirrors. � = ( f − fc)/κ is the normalized detuning of
the laser frequency [14] f with respect to the cavity resonance
frequency fc and cavity loss rate κ , and �′ = ( f − f ′)/γ⊥
is the normalized detuning with respect to the QD resonance
frequency f ′ and dephasing rate γ⊥ = γ||

2 + γ ∗. � is related to
the round-trip phase φ by φ ≈ 2π�

F for small detuning �, and
F is the finesse of the cavity. The coupling of the QD to the
cavity mode is given by the cooperativity parameter C = g2

κγ⊥
,

where the QD-cavity coupling strength is g. In Appendix A we
show how Eq. (1) can be derived in a fully classical way. The
main limitation of semiclassical models is that the population
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of the excited state is not taken into account, as well as
phonon-assisted transitions, spin flips, and other interactions
with the environment.

In this paper, Eq. (1) is extended to take into account
two orthogonal linearly polarized fundamental optical cavity
modes and multiple polarized-QD transitions oriented at an
arbitrary angle relative to the cavity polarization axes. This
extension is important because it is experimentally very chal-
lenging to produce perfectly polarization degenerate micro-
cavities [15,16], and the slightly nonpolarization degenerate
case has attracted attention recently [4,17,18]. It is essential to
have access to a good analytic model, for instance, to numer-
ically fit experimental data to derive the system parameters,
or to optimize the performance of a single-photon source; this
is very time-consuming using exact quantum master equation
simulations. Exemplary code of our model is available online
[19]. We compare our model to experimental data as well
as numerical solutions of the quantum master equation, and
we demonstrate that it can be used to significantly increase
the brightness of a single-photon source. We focus here on
Fabry-Perot type QD-cavity systems, but our results are valid
for a large range of cavity QED systems.

II. EXTENDED SEMICLASSICAL MODEL

To start the analysis, we show in Fig. 1 a sketch of a
polarized-QD cavity system with two cavity modes (H,V) and
two QD dipole transitions (X,Y). In order to demonstrate the
complexity of the transmission spectrum that appears in this
case, we show in the inset of Fig. 1 the transmission of linearly
polarized input light (θin = 45◦) as a function of the relative
laser frequency � f .

We now show how Eq. (1) can directly be extended to take
care of all polarization effects, by replacing the scalar quan-
tities by appropriate Jones vectors and matrices. To motivate
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FIG. 1. Sketch of a polarized cavity-neutral QD system. H and
V denote the linearly polarized cavity modes, X and Y represent
the dipole polarization axes of the QD at an angle θQD with respect
to the H cavity polarization, and ein and eout indicate the incident
polarization and output polarization postselection. The inset shows
the transmission spectrum calculated with the extended semiclassical
model for incident linear polarized light (θin = 45◦). The difference
in dip depth between the X and Y transitions is due to the specific QD
dipole orientations (θQD). Here no polarization postselection is done.
The parameters are fH = −10 GHz, fV = 10 GHz, f ′

X = −9 GHz,
f ′
Y = 9 GHz, θQD = 10◦.

the precise form, we first write Eq. (1) as its Taylor expansion

t = ηout

[
1 +

(
−2i� + 2C

1 − i�′

)

+
(

−2i� + 2C

1 − i�′

)2

+ · · ·
]
,

where we now can clearly identify contributions from the
cavity and from the QD. This form reminds us of the multiple
round trips happening in a Fabry-Perot cavity, and we show a
complete derivation of Eq. (1) in Appendices A and B. In the
polarization basis of the cavity, the normalized detuning phase
2i� becomes the Jones matrix(

2i�H 0
0 2i�V

)
, (2)

where �m = ( f − fm)/κm for m = H,V are the normalized
laser detunings from the polarized cavity resonances at fre-
quencies fm. The interaction with the QD modifies the round-
trip phase, but because of a possible misalignment of the
dipole axes of the QD transitions and the cavity polarization
basis, we have to calculate the QD effect in its own basis,
which is accomplished with R−θQD XRθQD , where RθQD is the
2D rotation matrix and θQD the rotation angle between the
cavity and QD frame; see Fig. 1. There are many different
transitions possible in QDs [20,21]. This can be described by
a transmission matrix X composed of the appropriate Jones
matrices Jn (see Table 2.1 in Ref. [22]) and the Lorentzian
frequency-dependent phase shifts φn:

X =
∑

n

Jnϕn =
∑

n

Jn
2Cn

1 − i�′
n

, (3)

�′
n = ( f − f ′

n)/γ⊥n are the normalized laser detunings from
the QD resonances at f ′

n, and Cn are their cooperativity param-
eters. The case discussed here is that of a neutral QD exciton,
where X = ϕH H + ϕV V , which is equal to Eq. (2). Note that,
due to the nature of semiclassical models, nonlinear [such as
electromagnetically induced transparency (EIT)] and nonres-
onant effects (such as spin relaxation and phonon interactions)
are not reproduced. The resulting polarized Taylor-expanded
expression for the transmission of the QD-cavity system is
then given by

ttot = ηout

{
I2×2 +

[
−

(
2i�H 0

0 2i�V

)
+ R−θQD XRθQD

]
+

[
−

(
2i�H 0

0 2i�V

)
+ R−θQD XRθQD

]2

+ · · ·
}

.

Finally, we perform the reverse Taylor expansion and obtain the full transmission amplitude matrix, which is the main result
of this paper:

ttot = ηout

[
I2×2 −

(
2i�H 0

0 2i�V

)
+ R−θQD XRθQD

]−1

. (4)

Note that this result could have been directly obtained by
plugging in the appropriate matrix expressions into Eq. (1).
Experimentally most relevant is the scalar transmission am-
plitude for the case that the cavity QED system is placed
between an input and output polarizer. This can be obtained
by eT

outttotein, where ein = (EH
in , EV

in )T and eout = (EH
out, EV

out )
T

are the input and output Jones vectors or polarizations, also
shown in the published code examples [19].

We now compare our model to experiments and exact
numerical simulations of the quantum master equation using
QuTiP [23,24], for a neutral QD in a polarization nonde-
generate cavity. The device consists of a micropillar cavity
with an embedded self-assembled QD [25]. In Fig. 2 a false

color plot of the measured transmission as a function of
the relative laser detuning and the orientation of linearly
polarized input laser is shown. By careful fitting of our model
to the experimental data we obtain excellent agreement (see
Fig. 2) using the following parameters: θQD = 94◦ ± 2◦, cav-
ity splitting fV − fH = 10 ± 0.1 GHz, and QD fine-structure
splitting f ′

Y − f ′
X = 2 ± 0.1 GHz, κ = 11.1 ± 0.1 GHz, g =

1.59 ± 0.08 GHz, and γ‖ = 0.32 ± 0.15 GHz (γ ∗ set to zero).
From this, we obtain for both transitions the cooperativity
C = 1.42 ± 0.5. Inserting these parameters in the quantum
master equation for this system [25] we again find excellent
agreement (see Fig. 2). In Appendix C we show that, for low
mean photon number, the numerical results from the quantum
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FIG. 2. False color plots of the cavity transmission as a function
of laser frequency and linear input polarization orientation. The three
false color plots show the experimental data, corrected for reduced
detection efficiency, polarized semiclassical theory results based on
Eq. (4), and numerical simulations based on the quantum master
model.

master equation are equal to our extended semiclassical
approach.

III. APPLICATION TO SINGLE-PHOTON SOURCES

Now we show that our model can be used to optimize
the polarization configuration for QD-based single-photon
sources, in particular the single-photon purity [determined by
the second-order correlation g2(0)], and the brightness. To
calculate g2(0), we need to take into account two contribu-
tions: first, single-photon light that has interacted with the QD,
ρsp(x) = x|1〉〈1| + (1 − x)|0〉〈0|, where x is the mean photon
number, and, second, “leaked” coherent laser light, ρcoh(α),
with the mean photon number, 〈ncoh〉 = |α|2, where |α|2 can
be determined by tuning the QD out of resonance. With a
weighting parameter, ξ , the density matrix of the total detected
light can be written as

ρ tot = [
ξρsp(x) + (1 − ξ )ρcoh(α)

]
. (5)

After determining ρ tot, it is straightforward to obtain g(2)(0)
of the total transmitted light [26].

To find the optimal polarization condition, we numerically
optimize the input and output polarization, as well as the
QD and laser frequency, in order to maximize the light that
interacted with the QD transition (single-photon light) and
to minimize the residual laser light. This is easily feasible
because calculation of the extended semiclassical model is
fast. We compare the optimal result to the conventional polar-
ization conditions 90Cross (excitation of the H- and detection
along the V-cavity mode) and “45Circ.” For 45Circ, the sys-
tem is excited with 45◦ linear polarized light, and we detect
a single circular polarization component. This works because,
in this configuration, the birefringence of the cavity modes
functions as a quarter wave plate. Figure 3 compares the
theoretical prediction to the experimental data for these cases,
each with and without the QD. These results show almost
perfect agreement between experiment and theory. Only for
the 90Cross configuration, the experimental data are slightly

FIG. 3. Measured (left), semiclassical simulated (middle), and
quantum master simulated (right) transmitted intensity as a function
of the relative laser frequency, with and without the QD, and for the
three polarization configurations: 90Cross (top), 45Circ (center), and
Optimal (bottom). For constant laser power, the measured single-
photon intensity (frequency indicated by the dashed vertical line) of
the optimal configuration is about 3× (1.6×) higher compared to the
90Cross (45Circ) configuration.

higher than expected, which we attribute to small changes
of the polarization axes of the QD induced by the necessary
electrostatic tuning of the QD resonance.

The optimal polarization condition is found for the input
polarization Jones vector ein = (0.66, 0.50 − 0.57i)T and

output polarization eout = (0.66, 0.50 + 0.57i)T . For this
case, the single-photon intensity is about three times higher
compared to the 90Cross configuration. We emphasize that
this optimal configuration can hardly be found experimentally
because the parameter space, polarization conditions, and
QD and laser frequencies are too large. Instead, numerical
optimization has to be done, for which a simple analytical
model, like the one presented here, is essential. Again we
compare our extended semiclassical model to exact numerical
simulations from the QuTiP to verify the validity of our
model and the experimental results (see Fig. 3). Because, here,
the complex transmission amplitudes of both polarizations
interfere, we can conclude from the good agreement that not
only the transmission but also the transmission phases of
Eq. (4) are correctly reproduced by the model.

For the configurations shown in Fig. 3, we now perform
power-dependent continuous-wave measurements to deter-
mine the experimental brightness and g(2)(0). The laser is
locked at the optimal frequency determined by the model
(dashed vertical line in Fig. 3), and the single-photon count
rate, as well as the second-order correlation function, is mea-
sured using a Hanbury-Brown Twiss setup. The photon count
rate is the actual count rate before the first lens, corrected
for reduced detection efficiency. Gaussian fits to g(2)(τ ) are
used to determine the second-order correlation function at
zero time delay g(2)(0).

In Fig. 4(a) the single-photon count rate is shown as a func-
tion of the input power, and in Fig. 4(b) we show g(2)

exp(0) as a
function of the single-photon count rate. In Fig. 4(b) we see
that, for the optimal configuration, the single-photon rate can
be up to 24 MHz before the purity of the single-photon source
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FIG. 4. (a) Single-photon count rate � behind the first lens as a
function of the input laser power for the three polarization configura-
tions: 90Cross (squares), 45Circ (circles), and Optimal (triangles).
The dashed curves are fits to Eq. (6) and show good agreement.
(b) g(2)

exp(0) as a function of the measured single-photon count rate
behind the first lens. The dashed curves are the theoretical predictions
as described in the text. The increased size of the error bars at higher
power is because the g(2)

exp(τ ) dip becomes small.

decreases. This means that, for the same purity, it is possible
to increase the brightness of the single-photon source by using
different input and output polarization configurations. Note
that g2

exp(0) ≈ 0.5 corresponds to a real g(2)(0) ≈ 0 due to
detector jitter. The two-detector jitter of ≈500 ps, which is
of the same order as the the cavity enhanced QD decay rate,
explains the limited lower value of g(2)

exp(τ ).
The data in Fig. 4(a) show the interplay between single-

photon light scattered from the QD and leaked coherent
laser light. We observe a linear slope for high input power,
which corresponds to laser light that leaks through the output
polarizer. In Fig. 4(a) we fit the single-photon rate, �, using
the formula [27]

(x + 〈ncoh〉)γ⊥ = �

P
P0

1 + P
P0

+ bP. (6)

Here b is the fraction of leaked laser light, P0 is the satu-
ration power of the QD, and � is the experimentally obtained
single-photon rate of the QD. We find for the optimal condi-
tion P0 ≈ 3 nW, � ≈ 40 MHz, and b ≈ 0.5 MHz nW−1. This
single-photon rate is 25% of the maximal output through one
of the mirrors, based on the QD lifetime, γ⊥/2 ≈ 160 MHz.
Calculating g(2)(0) using Eq. (5) gives the predictions shown
by the dashed curves in Fig. 4(b). For these predictions, we use
γ⊥ = 320 MHz in order to obtain the mean photon number
x. Now, considering the detector response, we estimate ξ90 =
0.05 in Eq. (5) for the 90Cross configuration, which allows
us to derive ξ45 = 1.6 × ξ90 = 0.10 and ξopt = 3 × ξ90 = 0.15
using the data shown in Fig. 3. Here ξ corresponds to the
single-photon brightness as a result of the polarization pro-
jection. We see that our theory is in good agreement with the
experimental data in Fig. 4(b).

In principle, if the output polarizer could block all residual
laser light, a perfectly pure single-photon source is expected.
In this case, the brightness of the single-photon source is
determined by the polarization change that the QD-scattered
single-photons experience. At high power, close to QD satura-
tion, the QD also emits nonresonant light, but its effect on the
purity is limited in practice compared to the effect of leaked
laser light [28].

IV. CONCLUSION

In conclusion, we have proposed a polarized semiclassical
cavity QED model and confirmed its accuracy by comparison
to experimental data of a QD microcavity system. We have
shown that this model enables prediction and optimization of
the brightness and purity of QD-based single-photon sources,
where we have obtained a three times higher brightness com-
pared to traditional cross-polarization conditions. The model
can also be used to optimize pulsed single-photon sources by
integrating over the broadened spectrum of the exciting laser.
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APPENDIX A: INTUITIVE DERIVATION OF THE
SEMICLASSICAL MODEL

Here we show an alternative, intuitive, derivation of
Eq. (1). We consider two equal mirrors with reflection coef-
ficient r and transmission coefficient t at a distance L, like a
Fabry-Pérot resonator. The round-trip phase φ0 in the electric
field propagation term, written in terms of the wavelength λ0,
refractive index n, and length L of the cavity, is

φ0 = 2π

λ0
n(2L) = 4πnL

c
f , (A1)

where c is the speed of light and f the frequency of the laser.
Since the laser frequency will be scanned across the resonance
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frequency fc of the Fabry-Pérot cavity, it is convenient to write
the phase shift in terms of the relative frequency:

φ = 4πnL

c
( f − fc). (A2)

Further, we assume that there is dispersion and loss in the
cavity. We quantify loss of the cavity by single-pass amplitude
loss a0. The QD transition is described by a harmonic oscil-
lator. In the rotating wave approximation, a driven damped
harmonic oscillator has a frequency-dependent response simi-
lar to a complex Lorentzian. Including cavity loss a0, QD loss
aQD and Lorentzian dispersion, we obtain a field change in
half a round trip of

exp

(
−a + i

φ

2

)
, where a ≡ a0 + aQD

1 − i�′ . (A3)

Here �′ = ( f − fQD)/γ⊥ with the resonance frequency of the
QD fQD. By summing over all possible round trips, the total
transmission amplitude is

ttot = tt exp (−a + iφ/2)

{ ∞∑
n=0

[r2 exp (−2a + iφ)]n

}

(A4)

which becomes

ttot = t2 exp (−a + iφ/2)

1 − r2 exp (−2a + iφ)
. (A5)

This formula can be written in a form similar to the semi-
classical model by considering R ∼ 1, small phase changes in
the cavity φ � 1, in combination with aQD � 1. This allows
us to use a Taylor expansion of the exponentials in Eq. (A5).
By including all first-order contributions and a few second-
order contributions, we write the complex transmission
amplitude as

ttot ≈ ηout
1

1 − 2i� + 2C
1−i�′

, (A6)

FIG. 5. Comparison of the semiclassical model of Eq. (A6) to
the exact classical model of the lossy Fabry-Pérot cavity in Eq. (B1)
for realistic parameters. The deviation between the dashed and solid
line is because in the semiclassical model only the first-order effect
of absorption is taken into account.

with the out-coupling efficiency

ηout = 1√
1 + 2a0

(
1+R
1−R

) . (A7)

In Appendix B, we show how to derive Eq. (A6) and explain
that the added higher order Taylor terms to write the final
formula in a compact form are negligible. The out-coupling
efficiency ηout gives the probability that a photon leaves the
cavity through one of the mirrors. In Eq. (A6), � is the
normalized laser-cavity detuning and �′ is the normalized
detuning with respect to the QD transition.

APPENDIX B: DETAILED DERIVATION OF EQ. (A6)

To derive Eq. (A6) from Eq. (A5), we switch to transmis-
sion (intensity) instead of the transmission amplitude (elec-
tric field). This has the advantage that the imaginary parts
disappear, and we get a better understanding of each term
in the expansion. Using 1 − R = t2 = 1 − r2, we obtain from
Eq. (A5)

Ttot = (1 − R)2 exp(−2z)

1 + R2 exp(−4z) − 2R exp (−2z) cos (−2x1 + φ)
,

(B1)
with z = a0 + aQD

1
1+(�′ )2 and x1 = aQD

�′
1+(�′ )2 . Now we use

the following approximations: first, we consider small phase

FIG. 6. Transmission spectra for the experimental case discussed
in Figs. 3 and 4 of a neutral QD with fine-structure splitting for the
optimal polarization condition (with and without output polarizer)
at different input power. Only at high input power (〈n〉 = 0.1), our
extended semiclassical model deviates a bit from the quantum master
equation simulations.
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changes φ � 1. This, in combination with aQD � 1, allows
us to approximate the cosine term as cos (−2x1 + φ) ≈ 1 −
(−2x1+φ)2

2 . Trying to put the equation in a Lorentzian form
gives

Ttot ≈ 1

1 + p0 +
(

−2x1+φ

p1

)2 , (B2)

where p1 = 1−R√
R

is related to the finesse of an ideal Fabry-

Pérot cavity F = π
√

R
1−R and p0 contains a contribution of loss

due to the cavity and the QD. We neglect x2
1 in Eq. (B2) and

find

Ttot ≈ 1

1 + p0 +
(

φ

p1

)2
− 4 x1φ

p2
1

. (B3)

After Taylor expanding p0 up to second order in z we simplify
the analysis by splitting both loss terms and write p0 = pc +
pQD with

pc = 2a0

(
1 + R

1 − R

)
, (B4)

pQD = 2
1

1 + (�′)2

(
aQD + a2

QD

)(1 + R

1 − R

)
. (B5)

For the cavity, we take pc up to first order in a0 and pQD up to
second order in aQD. This choice is made to enable agreement
with Eq. (1). With this we can write Eq. (B3) as

Ttot ≈ 1

1 + pc

1

1 + pQD

1+pc
+ φ2

p2
1(1+pc )

− 4 x1φ

p2
1(1+pc )

. (B6)

With the substitutions

κ = c(1 − R)

2πnL
√

R

√
1 + pc, (B7)

� = f − fc

κ
= 1

2π
φF, and (B8)

C = aQD

√
R

1 − R

1√
1 + pc

(B9)

we find for the total transmission

Ttot ≈ 1

1 + pc

1

1 + 4�2 − 8C ��′
1+(�′ )2 + 2C

1+(�′ )2 (2 + 2C)
,

(B10)
where pQD

1+pc
∼ 2C

1+(�′ )2 (2 + 2C) assuming that R ∼ 1. Now we

go back to the complex transmission amplitude ttot = √
Ttot

of Eq. (B10) and arrive at Eq. (A6). In order to confirm that
the above approximations are valid we compare Eq. (B1) to
the semiclassical model of Eq. (A6) in Fig. 5 for a micro-
cavity with center wavelength λ = 930 nm, n = 2, R = 0.95,
a0 = 0.01, aQD = 0.03, and L = 0.1 μm. We see that both
models agree very well, suggesting that our approximations
are valid. The slight deviations in the peak height is due to
the assumption that the cavity absorption a0 is treated as a
first-order effect in the semiclassical model.

APPENDIX C: COMPARISON BETWEEN THE EXTENDED
SEMICLASSICAL AND THE QUANTUM MASTER MODEL

Here we investigate the limit of our semiclassical model
by increasing the power to higher mean photon numbers. The
mean photon number is changed for the optimal polarization
condition (Fig. 3) and the condition where the output polarizer
is removed. We see in Fig. 6 that our results are similar up to
〈n〉 = 0.01, and for higher power the results deviate due to
saturation of the QD transitions.
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