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Population inversion and entanglement in single and double glassy Jaynes-Cummings models
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We find that a suppression of the collapse and revival of population inversion occurs in response to insertion of
Gaussian quenched disorder in atom-cavity interaction strength in the Jaynes-Cummings model. The character
of suppression can be significantly different in the presence of non-Gaussian disorder, which we uncover by
studying the cases when the disorder is uniform, discrete, and Cauchy-Lorentz. Interestingly, the quenched
averaged atom-photon entanglement keeps displaying nontrivial oscillations even after the population inversion
has been suppressed. Subsequently, we show that disorder in atom-cavity interactions helps to avoid sudden
death of atom-atom entanglement in the double Jaynes-Cummings model. We identify the minimal disorder
strengths required to eliminate the possibility of sudden death. We also investigate the response of entanglement
sudden death in the disordered double Jaynes-Cummings model in the presence of atom-atom coupling.
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I. INTRODUCTION

The Jaynes-Cummings (JC) model, developed by Jaynes
and Cummings in 1963 [1], is possibly the simplest model
describing a two-level quantum system, interacting with a
single mode of a quantized field. In this model, the field
interacting with the two-level system was treated quantum
mechanically, in contrast to the (semiclassical) methods where
the field was treated classically. Evidence of oscillation of
coherence of this model and decay of the oscillation amplitude
was noted by Cummings [2], for short time intervals. In [3],
the authors demonstrated periodic collapses and succeeding
revivals, at larger times, of the atomic population. They
found an expression for a short-time “collapse function,” and
observed periodical long-time revivals and a monotonically
decreasing envelope of the revivals. In [4], the quantum col-
lapse and revival conjectured in the JC model were verified
experimentally. The time evolution for relatively short times
of population inversion in the JC model has periodic collapse-
revival nature [5]; however, at later times, there appear frac-
tional revivals, i.e., revivals that occur at a time which is a
noninteger multiple of the time interval between revivals near
the initial time and that has a smaller amplitude than that of the
initial revivals [6,7]. The superstructure (revivals, fractional
revivals, and super-revivals) of this model was also described
later in 1993 [8]. The nature of atom-photon entanglement
in this model was studied in [9]. See also [10]. Evolution
of the atomic density matrix of a dissipative JC model was
studied in [11]. The authors of that work also proposed a
limit for which the matrix converges to a state of maximum
von Neumann entropy. The entanglement dynamics of a dou-
ble Jaynes-Cummings model was studied in [12–16]. The
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phenomenon of entanglement sudden death (ESD) was ob-
served in the double JC model in [17,18]. For further studies,
see [19–26].

In realistic scenarios, the fabrication of a perfect cavity
with the atom sitting at a locked position inside the cav-
ity is quite challenging. There are copious possibilities of
fluctuations in tuning the components of the setup, which
pushes the actual experiment away from the ideal scenario,
typically described in the literature. This difficulty gives
rise to disorder in the parameters, contributing to alteration
in the dynamics of the atom-cavity system, which in turn
changes the nature of dynamics of various physical properties
associated to the system. Our aim in this paper is to look
into such effects of disorder on the dynamics of JC models.
More precisely, we find the response to disparate strains of
quenched disorder in the atom-cavity interaction parameter
on population inversion and atom-photon entanglement in a
single atom-cavity system described by the JC model, and the
atom-atom entanglement in a double JC model.

In Sec. II, we briefly describe the JC model and the
phenomenon of collapse and revival of population inversion.
In Sec. III, the concept of quenched disorder and quenched
averaging is discussed in the context of the Jaynes-Cummings
model with a quenched disordered atom-cavity coupling con-
stant. The coupling constant is assumed to be, respectively,
affected by four paradigmatic forms of disorder distributions,
viz., Gaussian, uniform, discrete, and Cauchy-Lorentz. The
concepts of median and semi-interquartile range, required
for analyzing the Cauchy-Lorentz disordered parameter, are
also reviewed. Sections IV and V consider the response
of population inversion to the different types of disorder.
Section VI briefly recapitulates the dynamics of atom-photon
entanglement in the clean JC model. In Sec. VII, we present
the results about the response of atom-photon entanglement
to a disordered interaction in the JC model. In Sec. VIII,
we consider the double JC model, focusing on the behavior
in time of atom-atom entanglement. We separately consider
the cases which exhibit entanglement sudden death and the
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ones which do not. In each case, we find the response of
atom-atom entanglement to quenched disordered atom-cavity
interactions. In particular, in Sec. VIII B, we locate the regions
in the system parameter spaces, formed by the strengths
of the disorders in the interactions and the initial-state
entanglement, that allow entanglement sudden death even af-
ter quenched averaging and that preclude the same. In Sec. IX,
we investigate the effects of the Gaussian quenched disordered
atom-photon coupling term on the sudden death of atom-
atom entanglement in the double JC model in the presence
of additional atom-atom coupling terms in the Hamiltonian.
A conclusion is presented in Sec. X.

II. THE JAYNES-CUMMINGS MODEL

The interaction Hamiltonian of a single mode of a quan-
tized field of frequency ν with a single two-level atom in the
JC model is given by

HI = h̄g(|1〉〈0|a + |0〉〈1|a†), (1)

where |0〉 and |1〉 are the ground and excited states of the
two-level atom; a and a† are, respectively, the annihilation
and creation operators of the photon field mode; and g is the
coupling strength between the cavity (realizing the mode) and
the atom. The total Hamiltonian of a single Jaynes-Cummings
setup can be represented as

H = h̄ω

2
σz + h̄νa†a + HI , (2)

where h̄ω is the energy difference between the atomic levels
and σz = |0〉〈0| − |1〉〈1|.

The initial states of the field and atom are, respectively,
chosen as

|ψ (0)〉field =
∞∑

n=0

Cn|n〉

and

|ψ (0)〉atom = α|0〉 + β|1〉.
The states |n〉, n = 0, 1, 2, . . . , of the mode are the photon
number states. Cn, α, and β are complex constants.

The initial atom-cavity joint state is

|ψ (0)〉 =
∞∑

n=0

Cn(α|0, n〉 + β|1, n〉), (3)

where |0, n〉 and |1, n〉 are the states of the total system, having
n photons in the field and the atom being in ground and excited
states, respectively. The eigenvectors evolve as [24]

|ψ1,n(t )〉 = e
−iHt

h̄ |1, n〉
= cos(gt

√
n + 1)|1, n〉

− i sin(gt
√

n + 1)|0, n + 1〉 (4)

and

|ψ0,n(t )〉 = e
−iHt

h̄ |0, n〉
= cos(gt

√
n)|0, n〉

− i sin(gt
√

n)|1, n − 1〉, (5)

FIG. 1. Various types of revivals in time evolution of the JC
model. The population inversion is plotted on the vertical axes
against time on the horizontal ones, for n̄ = 50 and �n = 2. The
revivals in the early times in (a) are quite different from those in
the later ones. So, there are revivals of period TR

3 in (b) (fractional
revivals), and super-revivals for 99TR < t < 101TR in (c). All axes
represent dimensionless parameters. See text for references where
this figure was previously plotted and analyzed.

so that the wave function at some time t [6] reads as

|ψ (t )〉 =
∞∑

n=0

{[βCn cos(g
√

n + 1t )

− iαCn+1 sin(g
√

n + 1t )]|1〉
+ [−iβCn−1 sin(g

√
nt ) + αCn cos(g

√
nt )]|0〉}|n〉

with the detuning parameter � = ω − ν being set to zero.
Now, assuming that the atom is initially in its ground state
i.e., α = 1 and β = 0, the population inversion [8] of this
system is

W (t ) =
∞∑

n=0

|Cn|2 cos(2gt
√

n). (6)

In the above expression, |Cn|2 stands for the initial photon
distribution. Here we consider a sub-Poissonian statistics,
i.e., �n � n̄, with n̄ and �n being the mean and standard
deviation of photon distribution. As in [6], we choose the
initial state of the field as a Gaussian distribution of Cn, viz.,
Cn being real, and

C2
n = 1√

2π�n
exp

[
− (n − n̄)2

2�n2

]
. (7)

The time evolution of the population inversion for an initially
large average number of photons gives rise to the collapse and
revival phenomenon. The revival period TR can be estimated
as the time when the n̄th and (n̄ + 1)th components are in the
same phase. The expression of TR for large n̄ is [8]

TR = 2π
√

n̄

g
. (8)

With the increase of time, fractional revivals and super-
revivals can also occur [6]. See Fig. 1.
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III. THE JAYNES-CUMMINGS MODEL WITH A
QUENCHED DISORDERED COUPLING

The presence of different types of randomness or disorder
in the parameters describing the quantum system, or inhomo-
geneity in the medium of the system, can have a multitude
of consequences, like the breakdown of periodicity in that
medium. This in turn can result in localization behavior of
the wave function, in certain regions of the medium. This
localization, in the context of cooperative phenomena, was
first suggested by Anderson in [27], where diffusive waves
were shown to vanish in the presence of a disordered medium.
Introducing disorder can lead to an altered nature in behavior
of different other physical quantities of the system. The dis-
order may be either inherent in the physical realization of the
quantum system or artificially incorporated in the system. The
relevant value of a physical quantity of a disordered system is
obtained by an averaging over a large number of realizations
of the disorder. Depending on the characteristic timescales
of the system and the disorder, there are two paradigmatic
methods of this averaging—“annealing” and “quenching.” We
will discuss the second one, i.e., quenched disorder and the
corresponding averaging, in the next subsection. In the rest
of the paper, we consider different distributions of quenched
disorder in the system parameters of the JC model, and study
the response to it on characteristics like population inversion
and entanglement of the system.

The investigation of effects of disorder in the Jaynes-
Cummings model can hardly be overemphasized. It is often
challenging to fabricate a perfect cavity with a uniform field
inside, and a two-level atom with a fixed energy difference
between its levels. In reality, it is more probable to have
some disorder in the tuning of the parameters, due to the
nonachievement of ideal experimental situations. Previous
work on systems akin to the JC model in the presence of
disorder includes [28–30]. For investigations in the JC model
with fluctuating coupling constants, see, e.g., [31–38].

The aim in this paper is to find the response, of population
inversion and atom-photon entanglement in the JC model, and
atom-atom entanglement in a double JC model, to quenched
disorder in the atom-photon coupling(s). We will consider
four types of quenched disordered couplings, three of which
are continuous while one is discrete. Among the continuous
ones, two have finite mean and standard deviation, while for
the third the quantities are undefined.

A. Quenched disorder

A system parameter is said to be quenched disordered
when the equilibration time of the disorder in the system is
much larger than the typical observation time that is being
considered. This means that these disordered parameters, for
a particular realization of the disorder, virtually do not change
during the time of observation. They may change after a long
time, but that range of time is not in the domain of our interest.
Such systems are often referred to as “glassy” [39], and,
likewise, we term a Jaynes-Cummings model with this type
of disorder, as a glassy Jaynes-Cummings model.

B. Models of disorder

We consider an insertion of disorder in the atom-cavity
coupling strength g in the interaction Hamiltonian HI . This

is realistically justifiable because the fluctuation of position of
the atom inside the cavity, if any, can give rise to a fluctuating
g. The interaction Hamiltonian with disorder is written as

H̃I = h̄g(1 + δ)(|1〉〈0|a + |0〉〈1|a†), (9)

where the disorder is modeled by δ, which we have taken to
have different continuous and discrete distributions. Specifi-
cally, we have assumed the following types of the disorders.

1. Gaussian quenched disorder

In this case, δ is chosen to be from a Gaussian distribution
with zero mean and standard deviation, s, so that the corre-
sponding probability density function is given by

P(δ = δ) = 1

s
√

2π
e− 1

2 ( δ
s )2

, −∞ < δ < ∞. (10)

We will often refer to the dispersion of a distribution of
a disordered system parameter, as quantified by the stan-
dard deviation or the “semi-interquartile range” (see below
for a definition) of the distribution, to gauge (measure) the
“strength” of the disorder introduced.

2. Uniform quenched disorder

In this instance, δ is distributed as

P(δ = δ) = 1/s when − s

2
� δ � s

2
,

P(δ = δ) = 0 otherwise. (11)

3. Discrete quenched disorder

In this case, δ is distributed as

P(δ = δ) = 1

2
when δ = ± s

2
,

P(δ = δ) = 0 otherwise. (12)

Note that, unlike the other cases, we have considered here a
discrete probability distribution.

4. Cauchy-Lorentz quenched disorder

This disorder is differently distributed as compared to the
previous three types of disorder, because the mean does not
exist for this distribution. In this instance, δ is distributed as

P(δ = δ) = s

π

1

δ2 + s2
, −∞ < δ < ∞. (13)

It is a continuous probability distribution, the mean of which,
i.e.,

∫ ∞
−∞ δP(δ = δ)dδ, does not exist.

C. Median

The mean of a probability distribution is a very important
measure of central tendency. However, in instances when it
does not exist and in some other cases, it is fruitful to consider
the median [40]. The median M of a continuous probability
distribution P(δ) is its middlemost value, and is given by

∫ M

−∞
P(δ = δ)dδ = 1

2
.

053805-3



GHOSHAL, DAS, SEN(DE), AND SEN PHYSICAL REVIEW A 101, 053805 (2020)

One can similarly identify the first and third quartiles, respec-
tively, as

∫ Q1

−∞
P(δ = δ)dδ = 1

4
and

∫ Q3

−∞
P(δ = δ)dδ = 3

4
,

with the median being the second quartile. The semi-
interquartile range, 1

2 (Q3 − Q1), may be asked to play the role
of the standard deviation, being another measure of dispersion
of the probability distribution. For a discrete probability dis-
tribution, P(A = ai ) = pi, of a random variable A, the median
can be defined as 1

2 (ãr + ãr+1), if
∑

i�r P̃i < 1
2 <

∑
i>r P̃i,

and as ãr , if
∑

i�r P̃i = 1
2 , where {ãi} is an ordered set arranged

in ascending or descending order and is equal to {ai} as a set.
And, P(A = ãi ) = p̃i.

D. Quenched averaging

A physically relevant value of a system characteristic of a
disordered physical system is obtained by a suitable averaging
over the disorder. If the disorder parameters are quenched
disordered, the averaging has to be performed only after all
other relevant operations have already been carried out. In
particular, for finding the quenched averaged atom-photon
entanglement of the system described by the JC Hamiltonian
H̃I of Eq. (9), we first evaluate the entanglement Eδ (t ), of the
relevant quantum state ψδ (t ) for an arbitrary but fixed time, t .
The quenched averaged entanglement is then given by

∫ ∞

−∞
Eδ (t )P(δ = δ)dδ,

where the integral is to be replaced by a sum for discrete
probability distributions. If such an integral or sum cannot be
handled analytically, we take recourse to a numerical method.
Typically, we will then Haar uniformly generate N instances
of the disorder δ, and if they are referred to as δi the quenched
averaged entanglement will be

1

N

N∑
i=1

Eδi (t ),

with the N being sufficiently large that convergence, till a
certain precision, with respect to N has been reached. This
avenue for finding the quenched averaged quantity, however,
preassumes that the integrals and sums converge to finite val-
ues, which may not be guaranteed, in general, and especially
for probability distributions without a finite mean. Therefore,
if P(δ) is a Cauchy-Lorentz distribution, we will consider
the median of the set {Eδi (t )}N

i=1 as the quenched averaged
entanglement, where N is again chosen to be sufficiently high
so that convergence, till a certain precision, with respect to N
has been reached.

IV. LOCALIZATION OF POPULATION INVERSION FOR
GAUSSIAN QUENCHED DISORDER

A Gaussian distributed disorder has a very prominent
effect, as compared to other types of disorder, on the dynamics
of population inversion of the JC model. Suppose we choose δ

as a random variable from the Gaussian distribution with zero
mean and standard deviation s. So, the population inversion

for the Gaussian disorder after quenched averaging is

WG(t ) =
∞∑

n=0

C2
n

∫ ∞

−∞
cos[2g(1 + δ)t

√
n]

e− δ2

2s2

s
√

2π
dδ

=
∞∑

n=0

C2
n cos(2gt

√
n)e−2ns2g2t2

.

Using Eq. (8), we get

WG(t ) =
∞∑

n=0

C2
n cos(2gt

√
n)e−8π2nn̄s2( t

TR
)2

. (14)

As seen in Fig. 2 (left panel), we obtain a very sharp
decay in the collapse-revival phenomenon of population in-
version in the presence of Gaussian quenched disorder. After
a moderately long time, the revivals completely disappear.
In the figure, the decaying nature has been depicted for a
very small standard deviation, namely, 0.001, of the Gaussian
distribution of δ (the mean being kept as vanishing), because
for larger standard deviation the decay is very strong and
we could not find any appreciable revivals. The threshold
standard deviation for which there is no appreciable revival is
approximately 0.005. Note that δ is a dimensionless quantity.
The collapse-revival phenomenon, therefore, is rather strongly
“localized in time” in response to Gaussian disorder in the
atom-photon coupling.

V. RESPONSE OF POPULATION INVERSION TO
NON-GAUSSIAN DISORDER

A. Uniform quenched disorder

When δ is chosen randomly from a uniform distribution
in the interval [−s/2, s/2], the quenched averaged population
inversion is

WU (t ) =
∞∑

n=0

C2
n

∫ s
2

− s
2

cos[2g(1 + δ)t
√

n]
1

s
dδ

=
∞∑

n=0

C2
n

1

sgt
√

n
cos(2gt

√
n) sin(sgt

√
n)

=
∞∑

n=0

C2
n

1

2πs
√

nn̄ t
TR

cos

(
4π

√
nn̄

t

TR

)

× sin

(
2πs

√
nn̄

t

TR

)
. (15)

Comparing Eq. (14) with Eq. (15), we see that while the
suppression of the revivals in case of Gaussian quenched
disorder was exponential in time it is only an inverse power
suppression for uniform quenched disorder. See Fig. 3 (left
panel) for a depiction.

B. Discrete quenched disorder

Here δ is chosen to take the values − s
2 and s

2 randomly
but with the same probability. So, the quenched averaged
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FIG. 2. Left panel: Population inversion gets strongly localized in time in response to Gaussian quenched disorder in atom-photon
interaction of the JC model. Quenched averaged population inversion is plotted on the vertical axes against time on the horizontal ones.
The Gaussian disorder has mean zero and standard deviation = 0.001. All axes represent dimensionless quantities. Just like in Fig. 1, n̄ = 50
and �n = 2, for the initial photon distribution. The notation for the quenched average is WG here. Right panel: Response of quenched averaged
atom-photon entanglement to quenched Gaussian disorder in the time evolved state of the JC model. All considerations are the same as in
Fig. 2 (left panel), except that the vertical axes are of entanglement, as quantified by local von Neumann entropy, and measured in ebits.

population inversion becomes

WD(t ) =
∞∑

n=0

C2
n

1

2

[
cos

(
2g

√
n

(
1− s

2

)
t

)

+ cos

(
2g

√
n

(
1+ s

2

)
t

)]

=
∞∑

n=0

C2
n cos(2g

√
nt ) cos(sg

√
nt )

=
∞∑

n=0

C2
n cos

(
4π

√
nn̄

t

TR

)
cos

(
2πs

√
nn̄

t

TR

)
. (16)

From Fig. 4 (left panel), we can see that the amplitudes of the
revivals are again suppressed, but the amount of suppression
is very little, in comparison to those for Gaussian and uniform
disorders. The original nature of the collapse and revival
phenomenon is altered, but unlike the Gaussian and uniform
disorders the fractional revivals and also the super-revivals
are present in this case. Hence, it is plausible that discrete
quenched disorder does not leave a strong effect on the
behavior of population inversion in a JC model.

C. Cauchy-Lorentz quenched disorder

If δ is chosen from a Cauchy-Lorentz quenched disorder
with vanishing median and semi-interquartile range s, we
calculate the quenched averaged population inversion by find-
ing the median of the distribution of population inversions
for different realizations of the disorder. See Sec. III for the
method of numerically estimating the median.

Figure 5 (left panel) exhibits the nature of this median-
based quenched averaged population inversion in the pres-
ence of quenched Cauchy-Lorentz disorder. This nature is
quite similar to that for the quenched Gaussian disorder
case.

Among all the impurities considered here, we find that
discrete quenched disorder provides the highest robustness
to the phenomenon of collapse and revival of population
inversion.

VI. ATOM-PHOTON ENTANGLEMENT IN THE
JAYNES-CUMMINGS MODEL

If the population inversion of the atom-photon pure quan-
tum state is ±1, the atomic state is in a pure state, precluding
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FIG. 3. Left panel: Population inversion gets localized for uniform quenched disorder, but not as strongly as for Gaussian disorder. All
considerations are the same as in Fig. 2 (left panel), except that the disorder is uniform, and although it still has mean = 0 it has standard
deviation = 0.1. The notation for the quenched average is WU here. Right panel: Effects of quenched uniform disorder on entanglement in
time evolution within the JC model. All considerations remain the same as in Fig. 3 (left panel), except that the vertical axes are now of
entanglement and measured in ebits.

any atom-photon entanglement. This holds irrespective of
whether disorder is present in a system parameter, which
would then necessitate disorder averaging. The population
inversion is seldom extremal, being instead much more often
at zero. A vanishing population inversion in the atomic energy
eigenbasis may imply a significant amount of the same in
a basis complementary to the atomic energy basis, thereby
again indicating zero entanglement. But it may also imply
near-maximal atom-photon entanglement if all such popula-
tion inversions are insignificant. In other words, studying the
population inversion may not conclusively infer the complete
information about atom-photon entanglement.

In this and the succeeding sections, we study the behavior
of atom-photon entanglement with time in the JC model.
The cases of the disordered couplings are dealt with in the
succeeding section, while the ordered case is briefly described
in this. The entanglement, being of a pure two-party quantum
state at all times, can be measured by using the von Neumann
entropy of any of the local density matrices. See [41] in
this regard. We will see that the atom-atom entanglement,
considered later in this paper and being for a mixed state in
the time evolution of a double JC model, has to be measured
differently.

Let us assume that initially the atom is in the ground
state. Using Eq. (4), we get the wave function of atom-photon

system at time t , as

|ψ (t )〉 =
+∞∑
n=0

[Cn cos(g
√

nt )|0〉|n〉

− iCn+1 sin(g
√

n + 1t )|1〉|n〉].
After tracing out the field part, the reduced density matrix of
the atomic subsystem is

ρ =
[

a ib
−ib 1 − a

]
, (17)

where

a =
∞∑

n=0

C2
n cos2(g

√
nt ),

b =
∞∑

n=0

CnCn+1 cos(g
√

nt ) sin(g
√

n + 1t ),

with Cn being given by Eq. (7). The entanglement of the time
evolved state is given by the von Neumann entropy of one of
the reduced density matrices, i.e.,

E (t ) = −λ1 log2 λ1 − λ2 log2 λ2, (18)
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FIG. 4. Left panel: Population inversion retains much of its features even in the presence of disorder that is discrete in nature. All
considerations are the same as in Fig. 3 (left panel), except that the disorder is from the discrete distribution, as mentioned in the text. The
notation for the quenched average is WD here. Right panel: Effects of a quenched discrete disorder in coupling of the JC model on entanglement
of the time evolved state. All considerations remain the same as in Fig. 4 (left panel), except that the vertical axes are now of entanglement,
being measured in ebits.

where λ1 and λ2 are the eigenvalues of ρ, given by

λ1/2 = 1
2 (1 ∓

√
1 + 4b2 − 4a + 4a2).

We plot the time dynamics of atom-photon entanglement in
Fig. 6. We can see that initially the entanglement increases,
in an oscillatory way, from 0 to 1, but with further increase
of time the atom-photon system drifts far from the maximally
entangled situation. After that, the entanglement again goes
closer to 1 and this behavior repeats periodically. The behavior
changes at even further times, when the entanglement may
remain significantly close to maximal for long durations.

In the succeeding section, we will look at the behavior
of entanglement in the time evolved state in the presence of
different types of disorder.

VII. RESPONSE OF ATOM-PHOTON
ENTANGLEMENT TO DISORDER

Just as for the ordered case, it is almost never possible to
infer the behavior of quenched averaged atom-photon entan-
glement from that of quenched averaged population inversion,
obtained in the disordered case. We study here the time
dynamics of quenched averaged atom-photon entanglement
for the same time evolution and same models of disorder for

which we had examined population inversion. Since the disor-
der is assumed to be quenched, we average over the disorder
after evaluating the entanglements for given realizations of
disorder.

A. Gaussian quenched disorder

For a choice of disorder being randomly selected from a
Gaussian distribution with zero mean and standard deviation
= 0.001, the short-time behavior of quenched averaged en-
tanglement is significantly close to that for the clean case.
Compare the top diagrams of Figs. 6 and 2 (right panel).
This is rather close to the response of population inversion
to Gaussian disordered couplings, at short times. See the top
diagrams of Figs. 1 and 2 (left panel). For longer times,
both population inversion and entanglement become relatively
featureless in the disordered case, while the behaviors in the
ordered case of both are rich in features. However, while the
longer time quenched averaged population inversion is almost
zero, the same of entanglement is almost maximal: while the
latter implies the former, the reverse implication is not true.

We wish to make the following note about the choice
of the value of standard deviation of the disorder. For the
case of population inversion, we had set it to the relatively
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FIG. 5. Left panel: Median-based quenched averaged population inversion gets localized in time for quenched Cauchy-Lorentz disordered
coupling in the JC model. All considerations are the same as in Fig. 2 (left panel), except that the disorder distribution is Cauchy-Lorentz
with its semi-interquartile range s = 0.001, and that the quenched averaging is the median-based one. The notation for the quenched averaged
population inversion is WC here. Right panel: Quenched Cauchy-Lorentz disorder in the JC model and its effect on entanglement in the time
evolved state. All aspects remain the same as in Fig. 5 (left panel), except that the vertical axes here are of entanglement and measured in ebits.

small value of 0.001, because higher values lead to complete
suppression of the collapse-revival phenomenon of disorder-
averaged population inversion. The situation is somewhat dif-
ferent for the disorder-averaged atom-photon entanglement.
Higher values of the standard deviation keep the profile of the
disorder-averaged entanglement to approximately the same as
that for 0.001, with an interesting distinction. For standard
deviation = 0.001, there is a strongly oscillating behavior
of the profile of disorder-averaged entanglement within an
oscillating envelope at near-initial times. See the top diagram

FIG. 6. Time evolution of atom-photon entanglement in the JC
model. The vertical axes are for entanglement and they are measured
in ebits. The horizontal axes are dimensionless. All other considera-
tions are the same as in Fig. 1.

of the right panel of Fig. 2. For higher standard deviations,
this strongly oscillating behavior is suppressed, and occurs for
very small initial times only.

B. Uniform quenched disorder

The effect of this disorder is quite similar to that of the
Gaussian disorder, but for a higher value of the standard
deviation. Compare the right panels of Figs. 2 and 3. This is
in contrast to the relative behaviors of population inversion
in response to Gaussian and uniform disorders: quenched
averaged population inversion had many more features for
uniform disorder in comparison to that for Gaussian disorder.
Compare the left panels of Figs. 2 and 3. The standard
deviation of the disorder has been chosen to be 0.1 for the
diagrams in the panels of Fig. 3. The features of the envelope
of the disorder-averaged entanglement remain approximately
unaltered for other values of the standard deviation of the
disordered interaction. However, for higher values of the
standard deviation, the strong oscillations within the envelope
for near-initial times are suppressed.

C. Discrete quenched disorder

Figure 4 (right panel) shows the nature of atom-photon en-
tanglement in the presence of the discrete quenched disorder.
In contrast to the previous cases of disorder, the discrete dis-
order retains many more features of the clean case, especially
for longer times.

D. Cauchy-Lorentz quenched disorder

Figure 5 (right panel) shows the effect of this disorder. It
is very similar to that due to Gaussian disorder, just as for
population inversion.
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VIII. ENTANGLEMENT IN TIME EVOLUTION OF
THE QUENCHED DISORDERED DOUBLE

JAYNES-CUMMINGS MODEL

In this section, we want to investigate the behavior of atom-
atom entanglement in a double Jaynes-Cummings model. In a
double Jaynes-Cummings model, there are two noninteracting
atoms, each inside a cavity, and the cavities are isolated from
each other. We will study the effect on the time evolution
of an initially entangled state, between the two atoms, due
to the presence of disorder in the atom-cavity interaction
strengths. A note on the initial entanglement is in order here.
The atoms are noninteracting for t � 0, and therefore such
an interaction cannot create any entanglement. Therefore, the
initial entanglement is to be created by a mechanism that is
independent of the Hamiltonian effective for t � 0.

The double JC Hamiltonian is given by

H = h̄ω

2
σ A

z + h̄(GAσ A
+a + G∗

Aσ A
−a†) + h̄νa†a

+ h̄ω

2
σ B

z + h̄(GBσ B
+b + G∗

Bσ B
−b†) + h̄νb†b (19)

where ω is the natural transition frequency between the ex-
cited state |1〉 and the ground state |0〉 of both the atoms, and
a†(a) and b†(b) are the creation (annihilation) operators of
the two single-mode fields with natural angular frequency ν.
σ+ = |1〉〈0| and σ− = |0〉〈1|, while σz is the Pauli-z operator.
The superscripts A and B on them refer to the two atoms.
GA(GB) is the coupling strength between atom A (B) and its
cavity. The behavior of entanglement in the time dynamics
of an initially entangled state when the dynamics is governed
by the double JC Hamiltonian has been studied before. In
particular the GA = GB case was studied in [16,17,21,23–25]
and the GA 	= GB case was studied in [19,20,24]. Here, we
assume ω = ν for simplicity, but keep GA 	= GB, in general,
and study the response of atom-atom entanglement in the time
evolved state to quenched disordered atom-cavity couplings.

In the ordered case, an interesting phenomenon uncovered
a few years back in the time evolved state of the double JC
model is “entanglement sudden death”—entanglement van-
ishes with a noncontinuous derivative with respect to time, and
remains zero for a finite range of time for certain combinations
of parameters in the initial state and the Hamiltonian. Below,
we separately and briefly review the cases of the absence and
presence of sudden death of entanglement in the clean cases,
and after each case we correspondingly consider the response
of the general properties of entanglement and of entanglement
sudden death to quenched disorder in the coupling strengths of
atom-cavity interactions.

A. When sudden death of entanglement is not
present in the clean Hamiltonian

1. Review of the clean case

While the cases for which there is sudden death of entan-
glement in the double JC model are more appealing and have
justly received more attention, there are also certain families
of initial states for which the same model does not exhibit
the phenomenon [17,19,21,23,24]. We briefly recapitulate the
corresponding results.

Consider a partially entangled atomic pure state which is
in the span of the two Bell states, |ψ±〉, and is given by

|ψatom〉 = cos α|1A, 0B〉 + sin α|0A, 1B〉, (20)

where |ψ±〉 = 1√
2
(|01〉 ± |10〉).

We assume that both the cavities are prepared initially in
the vacuum states, |0a〉 and |0b〉. So, the initial state for the
total system is

|ψ0〉 = (cos α|1A, 0B〉 + sin α|0A, 1B〉) ⊗ |0a0b〉, (21)

where the suffixes a and b indicate states of the cavities
interacting with atoms A and B, respectively. The evolved state
of the double atom-cavity system can be written as

|ψt 〉 = e− iHt
h̄ [(cos α|1A, 0B〉 + sin α|0B, 1A〉) ⊗ |0a0b〉].

Using Eqs. (4) and (5), we get

|ψt 〉 = [cos α{cos(GAt )|1A, 0a〉
− i sin(GAt )|0A, 1a〉}|0B, 0b〉 + sin α|0A, 0a〉
× {cos(GBt )|1B, 0b〉 − i sin(GBt )|0B, 1b〉}]. (22)

After tracing out the cavity parts, we have the density matrix
for the two-atom system as

ρAB(t ) =

⎡
⎢⎣

0 0 0 0
0 a p 0
0 p∗ b 0
0 0 0 1 − a − b

⎤
⎥⎦, (23)

where

a = cos2 α| cos(GAt )|2,
b = sin2 α| cos(GBt )|2,
p = cos α sin α cos(G∗

At ) cos(GBt ).

We now wish to evaluate the entanglement of the two-atom
state. An information-theoretically meaningful entanglement
measure is the entanglement of formation, which reduces
to the local von Neumann entropy for pure bipartite states
[42]. For two-qubit systems, the entanglement of formation
is related to the “concurrence” via a monotonically increasing
function [43], and, therefore, we use concurrence to measure
the entanglement of ρAB, the state of the two atoms. The
concurrence of a two-qubit state ρ is given by

C = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4} (24)

where λ1, λ2, λ3, and λ4 are the eigenvalues, arranged in
decreasing order, of the matrix ρρ̃, where

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy),

with σy being the Pauli-y matrix. Consequently, the concur-
rence of the two atoms is

C(t ) = | sin 2α cos(GAt ) cos(GBt )|. (25)

In Fig. 7, the time evolution of entanglement between the two
atoms is exhibited for the cases when GA = GB and also when
GA is slightly different from GB.
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FIG. 7. Atom-atom entanglement in the time evolved state of
the double Jaynes-Cummings model. We exhibit here the behavior
with respect to time of the atom-atom entanglement, as quantified by
concurrence, within the double JC model, when the evolution starts
off from the state in Eq. (21), for α = π

6 . We choose GA = 0.9GB

in diagram (a), while GA = GB in diagram (b). The vertical axes
represent concurrence and are measured in ebits, while the horizontal
ones are of a dimensionless time.

2. Response to disordered couplings

Moving to the disordered case, we will now investigate
the behavior of concurrence between the two atoms in the
presence of quenched disorder in coupling strengths. The
Hamiltonian of the double JC model with disordered cou-
plings is

H̃ = h̄ω

2
σ A

z + h̄(1 + δA)(GAσ A
+a + G∗

Aσ A
−a†) + h̄νa†a

+ h̄ω

2
σ B

z + h̄(1 + δB)(GBσ B
+b + G∗

Bσ B
−b†) + h̄νb†b, (26)

where δA and δB are quenched disordered system parameters.
For a given realization of δA and δB, the atom-atom concur-
rence is

CδAδB (t ) = | sin 2α cos(GA(1 + δA)t ) cos(GB(1 + δB)t )|.
(27)

We will now choose δA and δB from different types of distri-
butions.

a. Gaussian quenched disorder. In this case, we choose δA

and δB randomly and independently from Gaussian distribu-
tions. In Fig. 8, we have shown the nature of the time evolu-
tion of quenched disordered entanglement for three cases. In
general, the short-time quenched averaged entanglement has
oscillations, which decrease in time to reach a steady value.
The latter is nearly equal to the average concurrence in the
corresponding case without disorder, although in the clean
case the oscillations do not die out with time. How fast the
average value is reached depends on the standard deviations
of δA and δB. The larger the standard deviations, the faster the
concurrence reaches the average value. This nature is quite
similar to that in the single JC model with Gaussian disordered
atom-cavity coupling, in which the population inversion and
also the atom-photon entanglement approached a steady-state

FIG. 8. Atom-atom entanglement in the double JC model quickly
attains a nonzero steady-state value in response to Gaussian
quenched disorder. This is for the initial state corresponding to
which the clean case is devoid of entanglement sudden death. The
constant steady-state entanglement in the disordered case is to be
compared with the strongly oscillating behavior of entanglement
in time in the ordered case. See Fig. 7. This can be seen as an
advantage of the insertion of disorder for practical utilization of
the atom-atom entanglement. In the ordered case, to obtain a high
entanglement, we would be required to “freeze” the system at
certain specific times. However, in the disordered case, the freezing
mechanism is automatically provided by the system dynamics, as
a steady-state entanglement, not varying in time for moderately
high times, is present, although its value is about half the maximal
entanglement reachable in the ordered case. The vertical axes of
the diagrams represent quenched averaged concurrence, measured in
ebits, while the horizontal axes represent a dimensionless time. δA

and δB are independently Gaussian disordered with mean zero and
certain (nonzero) standard deviations. The different diagrams are for
different sets of standard deviations, as marked on them. The notation
δA = N (0, 0.1) implies that δA is chosen randomly from a Gaussian
(i.e., normal) distribution with mean zero and standard deviation 0.1.
The situation is the same for (δB ). Here GA = GB = g.

value, but the speed of the approach depended on the standard
deviation of the disordered coupling strength.

b. Uniform quenched disorder. Here we choose δA and δB

randomly and independently from uniform distributions in the
range [− s

2 , s
2 ] and [− r

2 , r
2 ], respectively. In Fig. 9, we can see

that introduction of a uniform disorder also shows a decay to
a steady value for the time evolved quenched averaged entan-
glement, but the rate of decay is weaker than that for Gaussian
quenched disorder. The rate depends on the values of the
disorder strengths. Once again, the larger the disorder strength
(as measured by the corresponding standard deviation), the
quicker is the suppression of amplitude of oscillations. Like
for Gaussian disorders, the steady-state value is again similar
to the average of the clean case.

c. Discrete quenched disorder. Here, δA and δB are chosen
from the two-element sets {− s

2 , s
2 } and {− r

2 , r
2 }, respectively,

with equal probabilities of having − s
2 (− r

2 ) and s
2 ( r

2 ).
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FIG. 9. Response of atom-atom entanglement to uniform
quenched disorder. The considerations are the same as in Fig. 8,
except that the disorders are uniform, and the values of r and s
mentioned in each diagram refer to the standard deviations of δA and
δB used for the plot in that diagram.

Figure 10 shows the behavior of quenched averaged con-
currence with discrete quenched disorder. It does not show
any sign of decay with time in response to the insertion of
the quenched disordered couplings. The frequency of the os-
cillations increases with increase in standard deviations of the
disordered couplings. If the values of the disorder strengths for
the two δ’s are different, then we get revivals with nonuniform
amplitudes.

d. Cauchy-Lorentz quenched disorder. Here we have cho-
sen δA and δB from Cauchy-Lorentz distributions and the
quenched average is calculated by using the median of the
corresponding distribution of atom-atom entanglement. In
Fig. 11 we can see that the effect of Cauchy-Lorentz quenched

FIG. 10. Time evolution of atom-atom concurrence with discrete
quenched disordered couplings. The considerations are the same as
in Fig. 8, except that here the disordered couplings are independent
discrete random variables. Precisely, δA and δB are independent
discrete random variables taking up values ± s

2 and ± r
2 , respectively,

and with equal probabilities. The different values of s and r used in
the different diagrams are marked therein.

FIG. 11. Decay of atom-atom entanglement oscillations in re-
sponse to Cauchy-Lorentz disordered couplings. The quenched av-
eraged concurrence is calculated by using the median of the concur-
rence distribution generated by the quenched disordered couplings.
The semi-interquartile ranges of the Cauchy-Lorentz distributions of
δA and δB are denoted by s and r, respectively. All other consid-
erations remain the same as in Fig. 8. The profiles in the different
diagrams in the figure are similar to the ones in the case of Gaussian
disorder (see the corresponding diagrams in Fig. 8), although the
Cauchy-Lorentz disorder leads to slightly more oscillations before
reaching the steady-state values.

disorder is almost the same as that of Gaussian quenched
disorder. Compare with Fig. 8.

B. When sudden death of entanglement is
present in the clean Hamiltonian

1. Review of the clean case

We now move over to the scenario where the initial state
is so chosen that the clean Hamiltonian manifests the phe-
nomenon of entanglement sudden death. For this case we will
take a partially entangled atomic pure state which is a member
of the span of the two Bell states |ϕ±〉, and is written as

|ϕatom〉 = cos α|1A, 1B〉 + sin α|0A, 0B〉,
where |ϕ±〉 = 1√

2
(|00〉 + |11〉). So, the initial state for the

total system is

|ϕ0〉 = (cos α|1A, 1B〉 + sin α|0A, 0B〉) ⊗ |0a0b〉. (28)

Now, using Eqs. (4) and (5), the wave function at time t is

|ϕt 〉 = [cos αe−iωt {cos(GAt )|1A, 0a〉 − i sin(GAt )|0A, 1a〉}
⊗{cos(GBt )|1B, 0b〉 − i sin(GBt )|0B, 1b〉}
+ sin αeiωt |0A, 0a〉 ⊗ |0B, 0b〉]. (29)

Tracing out the cavity parts, we have the density matrix for
the two-atom system as

ρAB =

⎡
⎢⎣

e 0 0 h∗
0 f 0 0
0 0 g 0
h 0 0 1 − e − f − g

⎤
⎥⎦, (30)
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FIG. 12. Entanglement sudden death. See text for references
where this phenomenon and the picture above were discussed, an-
alyzed, and plotted. All considerations are the same as in Fig. 7,
although the profiles are significantly different. Especially, there are
semiperiodically appearing points on the time axis where entangle-
ment vanishes with a discontinuous derivative, remains zero for a
finite span of time, and becomes nonzero (“revival”) again, and again
with a discontinuous derivative. Also, the initial state of evolution is
a different one here. See text.

where

e = cos2 α| cos(GAt ) cos(GBt )|2,
f = cos2 α| cos(GAt ) sin(GBt )|2,
g = cos2 α| sin(GAt ) cos(GBt )|2,
f = cos2 α| sin(GAt ) sin(GBt )|2 + sin2 α,

h = cos α sin α cos(GAt ) cos(GBt ).

The atom-atom concurrence is therefore

C̃(t ) = max
{
0, | sin 2α cos(GAt ) cos(GBt )|

− 1
2 cos2 α| sin(2GAt ) sin(2GBt )|}. (31)

In Fig. 12, we can see that there are sudden deaths of
entanglement, followed by revivals, for both the cases when
GA = GB [16,17,21,23–25] and when GA is slightly different
from GB [19,20,24]. Here, by the phrase “sudden death,” it is
meant that entanglement vanishes at a point in time in such a
way that its derivative is discontinuous there. Note that we can
express C̃(t ) as

max
{
0,C(t ) − 1

2 cos2 α| sin(2GAt ) sin(2GBt )|},
where C(t ) is the entanglement in the case when there is no
sudden death, given by Eq. (25). From the expression for
C(t ), it is clear that it cannot exhibit entanglement sudden
death. The positive quantity 1

2 cos2 α| sin(2GAt ) sin(2GBt )|
getting subtracted from C(t ) creates the possibility that C̃(t )
may exhibit entanglement sudden death, although this is not
guaranteed, and depends on the relative values of C(t ) and the
additional quantity 1

2 cos2 α| sin(2GAt ) sin(2GBt )|.

2. Response to disordered couplings

As for the case where entanglement sudden death is absent,
we now consider quenched disordered coupling strengths
within the Hamiltonian H̃. The concurrence, for a given

FIG. 13. Response of entanglement sudden death to Gaussian
quenched disorder in the double JC model. All considerations are the
same as in Fig. 8, except that here the initial state of evolution is given
by Eq. (28). The sudden death can be avoided, unless the disorder
strengths are very low, viz., standard deviations ≈ 0.1 of δA and δB.
It is to be noted here that quenched averaging can transform an
occurrence of entanglement sudden death into a noninflexion double
root of the function given by the disorder-averaged entanglement
with respect to time. Such instances in the above diagrams are to
within numerical precision in our calculations.

realization of the disordered parameters, is given by

C̃δAδB (t ) = max
{
0, | sin 2α cos(GAt (1 + δA))

× cos(GBt (1 + δB))|− 1
2 cos2 α|

× sin(2GAt (1 + δA)) sin(2GBt (1 + δB))|}. (32)

Just like in the ordered case, we find that C̃δAδB (t ) can be
expressed as

max
{
0,CδAδB (t ) − 1

2 cos2 α| sin(2GAt (1 + δA))

× sin(2GBt (1 + δB))|}, (33)

where CδAδB (t ) is the entanglement for a particular configura-
tion of disorder in the case when there is no sudden death, as
given by Eq. (27). An average over the disorder for CδAδB (t )
cannot exhibit entanglement sudden death. However, the pos-
itive quantity, 1

2 cos2 α| sin[2GAt (1 + δA)] sin[2GBt (1 + δB)]|,
after averaging over the disorder will remain positive, and
when subtracted from a disorder-averaged CδAδB (t ) creates the
possibility of entanglement sudden death, even after disor-
der averaging. However, whether entanglement sudden death
will actually be exhibited will depend on the relative values
of the disorder-averaged CδAδB (t ) and 1

2 cos2 α| sin[2GAt (1 +
δA)] sin[2GBt (1 + δB)]|.

a. Gaussian quenched disorder. The quenched averaged
time evolved concurrence, corresponding to which the clean
case has entanglement sudden death, has a behavior that is
quite similar to the case for which the clean case does not
exhibit the sudden death. An important difference is obtained
when the disorder strengths are weak, and in such cases, for
short times, the sudden death of the clean case persists in the
disordered one. See Fig. 13, and compare with Fig. 8. Note
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FIG. 14. Higher disorder strength or longer time needed for
uniform disorder than for Gaussian to wipe out entanglement sudden
death. All considerations remain the same as in Fig. 13, except that
the disorders are uniform. The meanings of r and s in the different
diagrams are as in Fig. 9.

that disorder averaging can lead to situations where the sudden
death in the ordered case is transformed into a noninflection
double root of the profile of disorder-averaged entanglement
as a function of time.

b. Uniform quenched disorder. Figure 14 shows the na-
ture of atom-atom concurrence in the presence of uniform
quenched disorder in the coupling strengths. Just like for the
Gaussian disorder, the general behavior, after quenched aver-
aging, seems to obliterate the differences between the cases
of the presence and absence of entanglement sudden death in
the corresponding clean cases. The exceptions are when the
disorder strengths are low or the time of observation is longer.
However, the obliteration by using uniform quenched disorder
requires more disorder strength than the Gaussian one. We
remember that the standard deviation of a disorder is being
used to quantify the strength of that disorder.

FIG. 15. Persistence of entanglement sudden death despite onset
of discrete quenched disorder. All considerations are the same as in
Fig. 13, except that the disorders are discrete. The meanings of r and
s in the different diagrams are the same as in Fig. 10.

FIG. 16. Response of atom-atom entanglement to Cauchy-
Lorentz disordered couplings in the double JC model. All consid-
erations are the same as in Fig. 13, except that the disorders are
Cauchy-Lorentz. The meanings of s and r are as in Fig. 11.

c. Discrete quenched disorder. Figure 15 shows the be-
havior of atom-atom concurrence in the presence of discrete
quenched disorder. In this case, in contrast to the two previous
cases of continuous disorders, the phenomenon of entangle-
ment sudden death persists for much longer time spans and
for much higher disorder strengths.

d. Cauchy-Lorentz quenched disorder. Like in the previous
cases, here also Cauchy-Lorentz quenched disorder garners
a response that is similar to that for Gaussian disorder, al-
though the rate of decrease of amplitude of oscillations is
less than that for Gaussian disorder and also the phenomenon
of entanglement sudden death persists to higher strengths of
the disorder. Note that the strength of the Cauchy-Lorentz
disorder is measured by using the semi-interquartile range,
while that for the Gaussian one is quantified by employing
the standard deviation. The quenched averaged entanglement
is calculated by using the median. See Fig. 16 for depictions
in a few cases.

e. Region of disorder and atomic parameters sustaining
entanglement sudden death. Let us now identify the regions in
the space of disorder and atomic parameters that support en-
tanglement sudden death, even after quenched averaging. By
“disorder parameters,” we mean the strengths of the disorders
inserted in the atom-cavity couplings. By “atomic parameter,”
we mean the parameter α of the initial state [in Eq. (28)] of
the two atoms. In this three-dimensional space, we find out the
region for which entanglement sudden death persists, vis-à-vis
the region which does not support the same. These regions, for
the four different types of disorders considered in this paper,
are depicted in Figs. 17, 18, 19, and 20. Except for small
differences, the regions are quite similar for uniform, discrete,
and Cauchy-Lorentz disorders. The region for Gaussian disor-
der is, however, significantly different and much smaller. The
following note is in order here. In all the previous discussions,
we have seen that Cauchy-Lorentz disorder inflicts a similar
effect, qualitatively, on the system characteristics as Gaussian
disorder. There were, however, quantitative differences. A
measure of that difference is seen in the difference in volumes
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FIG. 17. How much disorder is needed to wipe out entanglement
sudden death, and its relation to initial entanglement in the double
JC model. The initial state of the evolution is given by Eq. (28). For
points in the marked region, the quenched averaged entanglement
retains entanglement sudden death, while the same is absent in the
remaining region. σA and σB are standard deviations of the Gaussian-
distributed δA and δB, the means of the latter being both zero. α

quantifies the amount of entanglement in the initial atom-atom state.
All quantities are dimensionless.

of the regions where entanglement sudden death is present,
after quenched averaging, in Figs. 17 and 20.

IX. ENTANGLEMENT IN TIME EVOLUTION OF THE
QUENCHED DISORDERED DOUBLE JAYNES-CUMMINGS

MODEL WITH THE ATOM-ATOM COUPLING TERM
PRESENT IN THE HAMILTONIAN

In this section, we want to see the effect of atom-atom cou-
pling terms on the phenomenon of entanglement sudden death
in the double Jaynes-Cummings model. We have investigated
the response of entanglement sudden death to the separate
introduction of two prototypical atom-atom interaction terms,
viz., (1) the Ising interaction term and (2) the anisotropic XY
spin-exchange interaction term.

FIG. 18. Absence and presence of entanglement sudden death in
quenched averaged entanglement for uniform disordered couplings
in the double JC model. The considerations are the same as in Fig. 17,
except that the disorders are uniform, with s and r being standard
deviations of δA and δB, respectively. The analysis is carried out for
0 � s, r � 1.

FIG. 19. Disorder strengths vs initial entanglement for entangle-
ment sudden death against discrete quenched disordered couplings in
the double JC model. The considerations are the same as in Fig. 17,
except that the disorders are discrete, with s and r being standard
deviations of δA and δB, respectively. We have considered values of s
and r in the range [0,1].

A. In the presence of Ising interaction

If an Ising interaction term is present, then the modified
Hamiltonian in the clean case will be

H′ = H + Jzh̄
(
σ A

z ⊗ σ B
z

)
(34)

where H is given by Eq. (19). We choose GA = GB = g. Jz

is proportional to the Ising coupling strength between the
two atoms. The initial state for the case where sudden death
of entanglement is present is represented by |ϕ0〉, given in
Eq. (28). After an evolution governed by H′ we get the
evolved state as

|ϕ′
t 〉 = a1|1A1B0a0b〉 + a2|0A0B1a1b〉 + a3|1A0B0a1b〉

+ a4|1A0B0a1b〉 + a5|0A0B0a0b〉 (35)

where the coefficients a1, a2, a3, a4, and a5 are evaluated
for two cases: (i) Jz = 0.1g and (ii) Jz = g. The atom-atom

FIG. 20. Median-based quenched averaged entanglement for
Cauchy-Lorentz disordered couplings in the double JC model with
respect to entanglement sudden death. The considerations are the
same as in Fig. 17, except that the disorders are Cauchy-Lorentz,
with s and r being semi-interquartile ranges of δA and δB, respec-
tively. Also, the quenched averaging is performed by considering the
median instead of the mean. The semi-interquartile ranges are taken
in [0,1].
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FIG. 21. Entanglement sudden death in the presence of the atom-
atom coupling term. All considerations are the same as in Fig. 7.
Only, in this case, GA = GB = g in both the diagrams, and Jz 	= 0. We
have chosen Jz = 0.1g in diagram (a) and Jz = g in diagram (b). The
profiles are significantly different from the sudden death in Fig 12(b),
that corresponded to Jz = 0. The sudden death of entanglement is
delayed here, and also split, depending on the value of Jz. See text
for description.

entanglements for these two cases are depicted in Fig. 21,
where we have again considered concurrence as a measure of
entanglement. The corresponding plot for Jz = 0 is presented
in Fig. 12(b). We find that a small Jz, viz., Jz = 0.1g, results in
a splitting of the first region of ESD for Jz = 0. For later times,
the introduction of Jz can even remove an ESD of Jz = 0. For
larger Jz, even the onset of ESD can be delayed in time with
respect to the Jz = 0 case. In both the cases, the profiles are
semiperiodic.

We now investigate the behavior of sudden death of
entanglement with atom-atom coupling in the presence of
Gaussian quenched disorder in the atom-photon couplings.

FIG. 22. Entanglement sudden death of atom-atom entanglement
of the double Jaynes-Cummings model in the presence of the Ising
interaction term for Jz = 0.1g. All considerations are the same as
in Fig. 13, expect that Jz 	= 0 here. Compare with Figs. 13, 21(a),
and 23. See text for a description on the response of ESD to the
insertion of the Jz coupling. In particular, the saturation value of
entanglement is approximately between 0.23 and 0.27, while in
Fig. 13 the saturation value of entanglement is ≈0.207.

FIG. 23. Entanglement sudden death of atom-atom entanglement
of the double Jaynes-Cummings model in the presence of the Ising
interaction term for Jz = g. All considerations are the same as in
Fig. 13, except for the value of Jz. In the first diagram atom-atom
entanglement is not yet saturated for the time span considered
although the oscillations are dying out, and the saturation value of
entanglement is ≈0.35 for diagrams (b) and (c).

As before, we consider quenched disordered atom-photon
coupling strengths so that in the clean Hamiltonian GA is
replaced by g(1 + δA) and GB is replaced by g(1 + δB). δA

and δB are chosen independently from Gaussian distributions
for a large numbers of realizations, from which we get the
quenched averaged entanglement as a function of time. In
Figs. 22 and 23, the evolution of atom-atom entanglement
in the presence of the Ising interaction term is exhibited for
two values of Jz. We can see that for the larger value of Jz

sudden death of entanglement is wiped out for smaller values
of disorder strength than in the low Jz case. However the
saturation value of entanglement is attained at longer times
for larger Jz.

B. In the presence of anisotropic XY spin-exchange interaction

We next consider the case where interaction between the
two atoms is the spin-exchange interaction governed by the
anisotropic XY Hamiltonian. The double Jaynes-Cummings
Hamiltonian with this interaction term is

H′′ = H + h̄
(
Jxσ

A
x ⊗ σ B

x + Jyσ
A
y ⊗ σ B

y

)
, (36)

 0

 0.5

 1

 0  1  2  3  4  5  6  7  8  9  10
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X

Y

gt/π

FIG. 24. Entanglement sudden death in the double Jaynes-
Cummings model in the presence of anisotropic XY spin-exchange
interactions. We choose γ = 0.5. All considerations are the same as
in Fig. 21, except that there is an XY interaction term between the
atoms.
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FIG. 25. Atom-atom entanglement in the presence of the
anisotropic XY spin-exchange interaction term. All considerations
are the same as in Fig. 22, except that the atom-atom interaction
is now an XY one with J = 0.1g and γ = 0.5. As in all previous
cases, the vanishing of sudden death of entanglement depends on the
strengths of the disorder parameters. The large-time saturation value
of entanglement for diagram (a) is ≈0.13, while for diagram (b) and
(c) it is ≈0.17.

where H is given by Eq. (19). Jx and Jy are the cou-
pling constants in x and y directions, and Jx = J (1 + γ ),
Jy = J (1 − γ ), where γ is a constant. In this case we have
made an assumption to attain numerical tractability, as the
effective basis of the Hamiltonian has an infinite number of
elements. As the system is closed, the total energy of the
system is conserved. Here we have taken a maximum of
two excitations in the cavity states. This assumption reduces
the elements of the effective basis of the Hamiltonian. The
elements of this basis are |1A1B0a0b〉, |0A1B1a0b〉, |1A0B0a1b〉,
|1A1B1a0b〉, |0A1B0a1b〉, |0A0B1a1b〉, |0A0B0a2b〉, |0A0B2a0b〉,
and |0A0B0a0b〉. The initial state of the evolution is taken to be
|ϕ0〉, as given by Eq. (28), and then the evolved state at time t
is given by

|ϕ′′
t 〉 = b1|1A1B0a0b〉 + b2|0A1B1a0b〉 + b3|1A0B0a1b〉

+ b4|1A1B1a0b〉 + b5|0A1B0a1b〉 + b6|0A0B1a1b〉
+ b7|0A0B0a2b〉 + b8|0A0B2a0b〉 + b9|0A0B0a0b〉.

(37)

It is the introduction of the spin-exchange interaction term
in the Hamiltonian that leads to the possibility of higher
excitations in the cavities. We have, however, truncated the
actual Hilbert space into an effective Hilbert space which has
at most two excitations in the cavity modes. It is plausible
that this assumption is only valid when the relative strength of
the spin-exchange interaction is small, i.e., when J/g is small.
As an example, we analyze the case when J/g = 0.1. The
nature of atom-atom entanglement in the absence of disorder
is exhibited in Fig. 24. We will now consider quenched
disordered atom-photon couplings in the presence of the small

spin-exchange interaction. The disorders are applied for the
atom-photon couplings, and are the same as for the
Hamiltonian H of Eq. (34) in the preceding subsection. The
disorders are again Gaussian distributed. The quenched aver-
aged atom-atom entanglement, as quantified by concurrence,
is plotted in the diagrams in Fig. 25, for different strengths
of the disorders. The behaviors are broadly similar to those
obtained for the Ising interaction between the atoms. Compare
with the diagrams in Fig. 22.

X. CONCLUSION

We have been concerned in this paper with the effects
of archetypal forms of quenched disorder in atom-cavity
coupling constants on the population inversion and the entan-
glement of single and double Jaynes-Cummings models. We
have considered Gaussian as well as non-Gaussian models of
disorder, and the system characteristics were investigated in
their quenched averaged versions. The non-Gaussian distri-
butions examined are uniform, discrete, and Cauchy-Lorentz
ones. The analysis for the Cauchy-Lorentz distributed disor-
der necessitated the consideration of median-based quenched
averages, which we have introduced, before its examination.

We began with the Jaynes-Cummings model of a single
two-level system and a single mode of an electromagnetic
field, for which we analyzed the response to disorder in
atom-cavity interaction of the population inversion as well
as the atom-photon entanglement. We found that Gaussian
disorder strongly suppresses the collapse and revival phe-
nomenon of population inversion, while for non-Gaussian
disorder the suppression is milder. For the atom-photon en-
tanglement, we found in particular that the same can have
nontrivial oscillations even when the population inversion has
been suppressed.

For the double Jaynes-Cummings model, we focused our
attention on the atom-atom entanglement, and its response to
quenched disorder in the atom-cavity interactions. There are
certain classes of entangled initial atom-atom states that lead
to the phenomenon of entanglement sudden death in the clean
double Jaynes-Cummings model. We looked at the effect of
quenched disorder in atom-atom entanglement in the cases
when the phenomenon is present as well as those in which
the same is absent. In particular, we provided the minimal
values of the disorder strengths that, for a given initial en-
tanglement in the atom-atom quantum state, will wipe out the
possibility of entanglement sudden death. We also investigate
the response of atom-atom entanglement of a double Jaynes-
Cummings model in the presence of an additional atom-atom
coupling term, with the latter being modeled, separately, by
Ising and XY interactions.
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