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The traditional method for measuring Einstein-Podolsky-Rosen-type continuous-variable quantum entan-
glement relies on balanced homodyne detections, which are sensitive to vacuum quantum noise coupled in
through losses due to various factors such as detector quantum efficiency and mode mismatching between the
detected field and the local oscillator. In this paper, we propose and analyze a measurement method, which is
realized by assisting the balanced homodyne detections with a high-gain phase-sensitive parametric amplifier.
The employment of the phase-sensitive amplifier helps us to tackle the vacuum quantum noise originating from
detection losses. Moreover, because the high-gain phase-sensitive amplifier can couple two fields of different
types, the proposed scheme can be used to reveal quantum entanglement between two fields of different types
by using only one balanced homodyne detection. Furthermore, detailed analysis shows that in the multimode
case, the proposed scheme is also advantageous over the traditional method. Such a measurement method
should find wide applications in quantum information and quantum metrology involving measurement of
continuous variables.
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I. INTRODUCTION

Homodyne detection, which measures the quadrature-
phase amplitudes of light, plays a central role in continuous-
variable (CV) quantum information processing (QIP), from
characterizing the CV entanglement to fulfilling various kinds
of QIP tasks [1–12]. In particular, the measurement of CV
entanglement between two parties usually relies on the joint
measurement of two sets of balanced homodyne detectors
(BHD), in which a 50:50 beam splitter is used to superpose
the input field and a strong local oscillator (LO). However, the
measurement performed by BHD is prone to losses such as
propagation loss, less-than-unit quantum efficiency of detec-
tors, and imperfect mode matching between the input field and
LO. As a result, the observed quantum effect is smaller than
what is anticipated, and the quantum advantage of entangle-
ment is often hampered by these losses. So far, there have been
some attempts for improving upon the measurement scheme
of homodyne detection to achieve the loss tolerance through
homodyne intensity correlation measurement of the quantum
fields [13–15], but they were not widely used in quadrature
amplitude measurement. As for the original BHD, it requires
detectors with high efficiency which may not exist for some
fields such as 2-μm optical waves and THz waves. Entan-
glement between different waves such as optical and atomic
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waves may exist in atomic Raman processes [16–18]. Such
kind of entanglement cannot be revealed by BHD because of
the lack of detection scheme for atoms. So it is hard to carry
out investigations and applications of entangled fields in the
wavelengths outside the mature detection technologies.

Recent investigation [19] shows that a high-gain phase-
sensitive amplifier (PSA) can be viewed as homodyne de-
tection, in which the strong pump of PSA serves as the
LO and squeezing generated from four-wave mixing (FWM)
in fiber was successfully measured by scanning the pump
phase of PSA. The results illustrated that the noise reduction
measured with a direct intensity detection scheme by PSA
has the advantage of detection loss tolerance. Indeed, the idea
of using high-gain PSA to measure quantum noise reduction
was first adopted by Flurin et al. to overcome the huge clas-
sical electronic noise in measuring the entanglement of mi-
crowaves [20], in which the PSA formed by Josephson mixer
functions as a disentangler. The results in Refs. [19,20] show
that the inseparability of entanglement between two fields can
be characterized by directly measuring the intensity at one
output of PSA. This kind of method has two advantages. One
is that it is tolerant to detection loss and the other is that only
the measurement of one field is required. However, compared
to the traditional method of measuring entanglement with
two BHDs, the method of using PSA followed with a power
detector for measuring noise reduction has the following defi-
ciencies. First, the measured noise fluctuations of the quantum
states in Refs. [19,20] are determined by the power of PSA
output. Since the input to the PSA is quantum fields of low
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photon numbers, the gain of PSA must be very high in order to
have enough output power. The high pump power required for
achieving high gain hinders the practicality. Second, the inten-
sity directly measured at one output of PSA is the sum of noise
fluctuations for both the quadrature-phase amplitudes X̂ j and
Ŷj ( j = 1, 2) of two entangled fields, but the noise fluctuation
of the quadrature amplitudes of two entangled fields, X̂1 ∓ X̂2

and Ŷ1 ± Ŷ2, cannot be individually measured. Therefore, this
method, while it can be used to characterize the inseparability
of entanglement, is not suitable for fulfilling many QIP tasks,
such as quantum dense coding [1–4], teleportation [5–9], and
quantum enhanced precision measurement [10–12].

In this paper, we propose and analyze a method realized
by assisting the BHDs with a PSA. This method inherits the
advantages of both BHDs and high-gain PSA in measuring
CV entanglement. In addition to the aforementioned tolerance
to detection loss and one-field detection for measuring entan-
glement between two fields, the quantum correlations between
two entangled fields, such as 〈�2(X̂1 ∓ X̂2)〉 and 〈�2(Ŷ1 ±
Ŷ2)〉, are respectively and simultaneously measurable. More-
over, by studying the dependence of measurement upon the
key parameters of this scheme, we find these advantages can
be achieved by using a PSA with only moderate gain, which
makes this method more practical.

The rest of the paper is organized as follows. In Sec. II, we
briefly review the traditional method of measuring entangle-
ment by using the joint measurement of two BHDs. In Sec. III,
we introduce another type of homodyne detection realized by
a high-gain PSA followed with a detector for directly measur-
ing the intensity at one output of PSA, as done in Ref. [19]. In
Sec. IV, we propose and investigate our measurement method
realized by using PSA to assist the homodyne detection of
one BHD as well as joint measurement by two BHDs. The
simulation results obtained by varying the gain of PSA and
the loss of BHD clearly demonstrate that the performance of
this method surpasses those schemes in Secs. II and III, and
the traditional method in Sec. II is just a specific case of this
method for PSA with gain set to 1. In Sec. V, we extend
the measurement of entangled states from a single-temporal
mode model to a multitemporal mode model, when the entan-
gled state is generated from a pulse-pumped traveling-wave
parametric amplifier with broadband spectrum [21–24]. The
detailed analysis shows that this method is also advantageous
over the traditional method in multimode cases. Finally, we
conclude in Sec. VI.

II. TRADITIONAL METHOD FOR MEASURING
ENTANGLEMENT

The Einstein-Podolsky-Rosen (EPR)–type entangled state
was first put forward by Einsteinet al. in Ref. [25]. Defining
X̂ j (φ) = â je−iφ + â†

j e
iφ ( j = 1, 2) as the quadrature-phase

amplitude of field j, where â†
j and â j are the creation and an-

nihilation operators of the field. For the conjugate observables
X̂ j ≡ X̂ j (0) and Ŷj ≡ X̂ j (π/2), ( j = 1, 2), although the com-
mutation relation [X̂ j, Ŷl ] = δ j,l ( j, l = 1, 2) holds, quantum
mechanics also has the commutation relation [X̂1 − X̂2, Ŷ1 +
Ŷ2] = 0, which means that the quantum fluctuations for the
difference and sum of quadrature amplitudes, X̂− = X̂1 − X̂2
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FIG. 1. (a) Entangled state generated from a parametric amplifier
(PA). (b) The scheme of a balanced homodyne detection (BHD)
system. (c) Traditional method of entanglement verification for
Einstein-Podolsky-Rosen (EPR)–type entangled source. D1 and D2,
detectors; LO, local oscillator. The detection loss of field â1/â2 is
modeled as beam splitter (BS) of reflectivity L1/L2. v̂1/v̂2 represents
the vacuum field coupled into the detected fields.

and Ŷ+ = Ŷ1 + Ŷ2, can simultaneously approach zero. For the
sake of convenience, in this paper, we will take the most
common source of EPR state realized by a phase-insensitive
parametric amplifier (PA) as an example [26,27].

A. EPR states generated from parametric amplifiers

Figure 1(a) shows the schematic of the entanglement
source. The two input and output fields of a PA are labeled
as âin

1,2 and â1,2, respectively, and the input fields are both
in vacuum. Ideally, the input-output relations of the PA are
given by

â1 = μâin
1 + νâin†

2 , â2 = μâin
2 + νâin†

1 , (1)

where μ, ν with μ2 − ν2 = 1 are the amplitude gains of
the PA. The noise variances, X̂− and Ŷ+, are expressed as
〈�2X̂−〉, 〈�2Ŷ+〉 and are both calculated to be 2(μ − ν)2.
The corresponding shot noise limits (SNL), obtained by re-
placing the two fields â1, â2 with vacuum, are 〈�2X̂−〉SNL =
〈�2Ŷ+〉SNL = 2. Therefore, the normalized noise reduction of
the entangled source are

〈�2X̂−〉s = 〈�2X̂−〉
〈�2X̂−〉SNL

= (μ − ν)2 < 1,

〈�2Ŷ+〉s = 〈�2Ŷ+〉
〈�2Ŷ+〉SNL

= (μ − ν)2 < 1,

(2)

where subscript s denotes normalization to SNL for the en-
tangled source. The quantities 〈�2X̂−〉s, 〈�2Ŷ+〉s also rep-
resent the noise reduction relative to SNL that is measured
experimentally and is in the unit of dB in log scale. The
entanglement verification for the two fields â1 and â2 is done
through the inseparability criterion [28]:

Is ≡ 〈�2X̂−〉s + 〈�2Ŷ+〉s < 2 = ISNL
s , (3)

where ISNL
s = 2 denotes the SNL of the inseparability quantity

Is, or the limit for the unentangled classical fields. So, the in-
separability quantity Is can be considered as an entanglement
measure. As Is is smaller, the degree of entanglement between
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the two fields is higher. From Eq. (2), we have Is = 2(μ −
ν)2 < 2 for ν �= 0, satisfying the inseparability criterion in
Eq. (3). For the case of ν → ∞, we have Is → 0, which means
the two fields â1 and â2 are near perfectly correlated in the
same way as the perfect EPR correlation [25] if the gain of PA
is very high.

B. Traditional method for entanglement measurement

Traditionally, the EPR entangled state is characterized by
the joint measurement of two balanced homodyne detectors
[BHD, Fig. 1(b)]. As shown in Fig. 1(c), the quadrature-
phase amplitudes of the two entangled fields are respectively
measured by BHD1 and BHD2. Each BHD consists of a
50:50 beam splitter (BS), two detectors (D1 and D2), and
a subtracter followed with an electronic amplifier. The BS
is used to superpose a strong local oscillator (LO) with a
weak signal input field â. The noise variance of the difference
between the photocurrents of D1 and D2, usually analyzed by
a spectrum analyzer, is expressed as

〈�2 îBHD〉 = q2|αL|2〈�2X̂ (φ)〉, (4)

where q is the gain of electronic amplifier and |αL| is the
amplitude of the LO. When the phase φ takes 0 and π/2
by changing the phase of LO, the photocurrent operator îBHD

corresponds to measurement of quadrature amplitudes X̂ and
Ŷ , respectively.

The joint measurement of two fields [see Fig. 1(c)] is
performed by using an electronic combiner. The subtraction
and addition operation of the photocurrents of two BHDs give

î− = î1 − kî2 ∝ X̂1 − kX̂2,

î+ = î1 + kî2 ∝ Ŷ1 + kŶ2,
(5)

when the phase φ of each BHD is locked at 0 and π/2,
respectively, where k is the adjustable gain for optimizing the
measurement. Similar to Eq. (2), the normalized variances of
î− and î+ to the vacuum input for k = 1 are

〈�2 î−〉Nor = 〈�2X̂−〉s = (μ − ν)2,
(6)

〈�2 î+〉Nor = 〈�2Ŷ+〉s = (μ − ν)2.

Hence, the joint measurement of two BHDs gives the noise
reduction quantities 〈�2X̂−〉s and 〈�2Ŷ+〉s of the EPR source
expressed in Eq. (2) as well as the inseparability quantity Is.

C. Challenges of the traditional measurement method

From Eqs. (4) and (6), one sees that the role of strong LO
in BHD is to increase the photocurrents of photodetectors and
to effectively amplify a weak input signal field to a level that is
otherwise buried in the classical noise such as detector’s dark
current, thermal electronic noise of current amplifiers, and
ambient background light. However, the BHD cannot do much
against vacuum noise coupled in through losses that inevitably
exist in a real system, including less-than-unit quantum effi-
ciency, imperfect propagation, and mode mismatching.

We can model the detection loss of BHD1 and BHD2 as
BSs with reflectivity L1 and L2 [see Fig. 1(a)], respectively.
The operators of the fields propagating though the BSs are
given by â′

1,2 = √
1 − L1,2â1,2 + √

L1,2v̂1,2, where v̂1,2 are the

vacuum fields coupled into the detected fields through the
BS’s unused ports. For the sake of simplicity, we assume
the detection losses of two BHDs are equal, i.e., L1 = L2 =
LD. When the operators â1,2 in Eq. (1) are replaced with â′

1,2,
after some algebra, the noise variance for difference and sum
of quadrature amplitude of EPR state is then expressed as

〈�2X̂ ′
−〉 = 〈�2Ŷ ′

+〉 = 2(1 − LD)(μ − ν)2 + 2LD, (7)

and the measured inseparability is

I ′ = 2(1 − LD)(μ − ν)2 + 2LD. (8)

Under the perfect detection efficiency LD = 0, we have I ′ =
2(μ − ν)2, which has the same value as Is in Eq. (3). Other-
wise, the measured inseparability of the EPR source is I ′ >

2(μ − ν)2. So the entanglement is very fragile and vulnerable
to losses, and the measured degree of entanglement will be
degraded due to the existence of detection loss.

In addition to the loss-induced degradation on the mea-
sured entangled degree, there are other problems. First, the
requirement of the availability of two BHDs with higher
detection efficiency for measuring two different fields restricts
the measurement technique to a certain extent. It is a chal-
lenge to measure entanglement between two fields of different
types, if any one of them does not have the capability of BHD.
For example, efficient detectors for 2-μm optical field are
not available yet. For hybrid entanglement between light and
atom, the BHD technique is not available for atomic wave (see
Sec. IV D for more). Second, X̂− and Ŷ+ cannot be measured
simultaneously, that is, LO phases must be changed from 0
to π/2 for two sets of measurement in order to respectively
obtain the noise fluctuations of X̂− and Ŷ+, from which the
inseparability quantity Is can be deduced. Third, it is difficult
to measure the broadband entanglement generated by a single-
pass PA, whose noise reduction is in principle the same for
the entire frequency band [22–24,29,30]. Since the response
bandwidth of BHD is limited by the fixed value of product
between the gain of electronic amplifier and gain bandwidth
[see Fig. 1(b)], higher gain of amplifier is correlated to nar-
rower gain bandwidth. Fourth, for multimode entangled state
generated by pulse pumped PA, noise contributed by the mode
mismatching between LOs and detected fields might be much
larger than the vacuum noise due to the thermal nature of
individual field of entanglement and phase asynchronization
for different modes (see Sec. V B for more), which makes
measured degree of pulsed entanglement smaller than what
is anticipated [21,31].

III. HOMODYNE DETECTION REALIZED BY THE
COMBINATION OF HIGH-GAIN PSA

AND A POWER DETECTOR

The function of homodyne detection can also be realized
by a high-gain PSA, whose strong pump serves as local oscil-
lator [19,20]. Generally speaking, the PSA can be classified
into two types. One is the degenerate PSA, in which the
modes of the two inputs and outputs are the same; the other
is nondegenerate PSA, in which the modes of two inputs
and outputs are different. In this section, we will analyze
the performance of such a type of homodyne detector in
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FIG. 2. The scheme of measuring the noise fluctuation of input
field by using a degenerate high-gain phase-sensitive amplifier (PSA)
followed by a power detector.

measuring noise reduction of optical fields when the PSAs are
degenerate and nondegenerate, respectively.

A. Degenerate phase-sensitive amplifier for measuring the noise
fluctuation of an optical field

Figure 2 shows the schematic diagram of measuring the
noise fluctuation of input field â with a degenerate PSA.
The output of PSA is directly measured by a power detector.
The strong pump and weak input field are coherently com-
bined via the nonlinear interaction in PSA. The relationship
between the input and output fields of PSA is

âout = Gâ + geiϕ â†, (9)

where â and âout respectively represent the input and output
fields, G, g with G2 − g2 = 1 are the amplitude gains of PSA
and are mainly determined by the pump power, and ϕ is the
difference of phases between the pump and input fields. The
intensity operator of the output field âout is

Îout = âout†âout

= G2â†â + g2ââ† + Ggeiϕ â†â† + Gge−iϕ ââ. (10)

The detector measures the average of the output intensity.
If the input is in squeezed vacuum state [19], the average
intensity at the output of PSA is written as

〈Îout〉 = (G + g)2

4
〈�2X̂ 2(ϕ)〉

+ (G − g)2

4

〈
�2X̂ 2

(
ϕ + π

2

)〉
− 1

2
. (11)

Equation (11) shows the intensity is related to the noise of
quadrature amplitude of input field. When the gain of PSA is
very high (G ∼ g � 1) and the first term dominates, we then
have the approximation

〈Îout〉 ≈ g2〈�2X̂ (ϕ)〉. (12)

Equation (12) clearly illustrates that the noise of the quadra-
ture amplitude of input field 〈�2X̂ (ϕ)〉 is amplified by the
gain of PSA, and the phase difference ϕ can be changed
by changing the phase of pump. We note that traditional
homodyne measurement gives directly the qradrature-phase
amplitude X̂ (φ) while here from Eq. (4), one sees the average
intensity of 〈Îout〉 is proportional to the variance of X̂ (ϕ),
which is similar to the output of a spectral analyzer used
in traditional homodyne measurement. Moreover, unlike the
traditional homodyne measurement, the role of LO is replaced
by the pump and the beam splitter is replaced by a PSA. The
signal enhancement factor of the strong LO is equivalent to

â
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PSA ii I

p

FIG. 3. Measuring the inseparability of two fields by using a
nondegenerate high-gain phase-sensitive amplifier (PSA) followed
by a power detector.

the gain of the PSA due to the pump. For example, for the
χ (2) crystal-based PSA, we have ϕ = φp − 2φin, where φp

and φin are the phases of pump and input fields, respectively.
The noises of two conjugated amplitudes of input, 〈�2X̂ 〉 and
〈�2Ŷ 〉, can be obtained by setting the phase ϕ at 0 and π ,
at which the PSA is operated at the amplification and deam-
plification conditions, respectively. In order to characterize
whether the noise is lower than vacuum, we need compare
the noise of input field with the corresponding SNL,

Iout
SNL = g2, (13)

which is obtained by replacing the input field of PSA with
vacuum. If the normalized intensity 〈Îout〉/Iout

SNL is lower than
1, the noise of input field 〈�2X̂ (ϕ)〉 is squeezed [19].

Although the noise of input field is amplified by the gain
factor g2, in practice, the gain of PSA cannot be infinitely
large. To observe the output intensity of PSA, it is necessary
to pass the photocurrent of detector through an electronic
amplifier, whose output is expressed as

〈îPSA〉 = q2〈Îout〉 = q2g2〈�2X̂ (ϕ)〉, (14)

where q2 is the gain of electrical amplifier. The comparison
between Eqs. (14) and (4) shows that the parametric gain
provided by strong pump of PSA functions as the LO of this
kind of homodyne detection [19].

It is worth emphasizing that the approximation of Eq. (14)
only holds when the gain PSA is very high. This is because
in Eq. (11), g should be large enough to ensure the first
term dominates and the other terms are negligibly small. It
is easy to make the second term small but it is not trivial
to ensure the third term (originated from the commutation
relation [âout†, âout] = 1) is negligible. For example, for the
squeezed state input with 〈�2X̂ (ϕ)〉 = 0.25, the second term
is more than a hundred times smaller than the first term when
g > 3. However, to make the third term 50 times smaller than
the first term, g > 10 is required.

B. Nondegenerate phase-sensitive amplifier for measuring the
inseparability of two optical fields

Figure 3 shows the scheme for measuring the noise cor-
relation between two fields by using a nondegenerate PSA,
followed by a power detector. The modes of the two input
fields of PSA, â1, â2, are nondegenerate, and the relation
between the inputs and outputs of the PSA is

âout
1 = Gâ1 + eiϕgâ†

2,

âout
2 = Gâ2 + eiϕgâ†

1,
(15)
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where âout
1 and âout

2 are the two output fields, and ϕ is the
difference between the pump phase and the sum of two input
fields’ phase [32]. Comparing Eq. (15) with Eqs. (9) and (5),
one sees that the gain amplitude G, g of the nondegenerate
PSA not only amplifies the two inputs but also coherently

combines â1(â2) and â†
2(â†

1 ), which is similar to the joint
measurement of combining X̂1 and X̂2 with g/G equivalent to
k in Eq. (5). So, it is reasonable to expect that one output of
nondegenerate PSA can be used to characterize the entangle-
ment between fields â1 and â2.

At one output of PA, says âout
1 , the intensity operator is

Îout
1 = âout†

1 âout
1 = G2â†

1â1 + g2â2â†
2 + Ggeiϕ â2â1 + Gge−iϕ â†

1â†
2. (16)

The photocurrent of a power detector measures the average intensity of the field, 〈Îout
1 〉, and can be written as

〈îPSA〉 = q2
〈
Îout
1

〉 = q2

(
(G + g)2

16

{
〈�2[X̂1(ϕ) + X̂2(ϕ)]〉 +

〈
�2

[
X̂1

(
ϕ + π

2

)
− X̂2

(
ϕ + π

2

)]〉}

+ (G − g)2

16

{
〈�2[X̂1(ϕ) − X̂2(ϕ)]〉 +

〈
�2

[
X̂1

(
ϕ + π

2

)
+ X̂2

(
ϕ + π

2

)]〉}
− 1

2

)
(17)

if there is no coherent component at each input to PSA or
〈X̂1(ϕ)〉 = 0 = 〈X̂2(ϕ)〉, where q2 is the gain of electronic
amplifier. Similar to Eq. (11), when the gain of PSA is very
high, the contribution of the first term in brace dominates and
Eq. (17) can be approximated as

〈îPSA〉 = q2
〈
Îout
1

〉

≈ q2 (G + g)2

16

[
〈�2X̂+(ϕ)〉 +

〈
�2X̂−

(
ϕ + π

2

)〉]
.

(18)

To better understand Eq. (18), let us take the χ (2)-crystal-
based nondegenerate PSA as an example. The phase differ-
ence is then ϕ = φp − φ1 − φ2, where φp is the phase of pump
and φ1 and φ2 are the phases of two input fields. In the case of
ϕ = π , PSA is operating at deamplification condition. Using
the pump phase as a reference, we have φ1 = φ2 = −π

2 , and
the intensity of the photocurrent is written as

〈îPSA〉 = q2
〈
Îout
1

〉 = q2 (G + g)2

16
[〈�2X̂−〉 + 〈�2Ŷ+〉]. (19)

Normalizing 〈îPSA〉 with the corresponding SNL obtained
by placing two inputs at vacuum, 〈îPSA〉SNL = q2〈Îout

1 〉SNL =
q2g2, we find the ratio

〈îPSA〉
〈îPSA〉SNL

= Is. (20)

The results indicate the intensity measured at one output of
PSA can be used to characterize the inseparability of EPR
source. On the other hand, when ϕ = 0, i.e., the PSA operates
at the amplification condition. If the fields to be measured
are an entangled state generated from a PA described by
Eq. (2), the combination of the PA there and the PSA here
with ϕ = 0 is equivalent to a PA with an overall gain of
Gμ − gν and Gν − gμ, which together generates an entangled
state but with noise correlations of 〈�2X̂ out

− 〉 = 〈�2Ŷ out
+ 〉 =

(G − g)2(μ − ν)2 [33].
Note that the intensity 〈Îout

2 〉 measured at the other output
field âout

2 is similar to 〈Îout
1 〉 in Eq. (18). So the intensity

measured at each output of PSA can be used to characterize

the inseparability of the EPR source. Moreover, our analysis
shows the nondegenerate PSA followed with a power detector
can be used to characterize the inseparability of entanglement
as long as the phase of PSA is properly locked and the gain of
PSA is high enough, while the requirement of disentangling
entanglement by PSA [20] is not necessary.

C. Pros and cons of this type of homodyne detection

Homodyne detections realized by PSA in Figs. 2 and 3
have the advantage of detection loss tolerance in measuring
the noise reduction of the squeezed state and in checking
the inseparability criterion. For example, for the PSA with
g → ∞, when the detection loss exists and is modeled as LD,
the output intensity is decreased to 〈Îout ′〉 = (1 − LD)〈Îout〉,
and the corresponding SNL is also decreased to 〈Îout ′〉SNL =
(1 − LD)〈Îout

1 〉SNL. Hence, the normalized result of 〈Îout ′〉
〈Îout ′〉SNL

=
〈Îout

1 〉
〈Îout

1 〉SNL
is irrelevant to LD. Moreover, unlike the traditional

method which requires two BHDs and two sets of measure-
ments, the inseparability of entanglement between two fields
can be deduced from the intensity measured at only one output
of nondegenerate PSA (see Fig. 3) and by only one mea-
surement. This feature brings convenience in characterizing
entanglement between two fields of different types.

However, there are bottlenecks which limit the practical
application of this type of homodyne detections. First, the
gain of PSA must be extremely high. Otherwise, the approx-
imations in Eqs. (12) and (19) are not valid. In general, the
achievable gain of PSA is mainly determined by the available
pump power. The PSA with power gain higher than 20 dB
(g > 10), at which this type of homodyne are experimentally
demonstrated in Refs. [19,20], is usually difficult to realize.
Second, the noise fluctuations of X̂− = X̂1 − X̂2 and Ŷ+ =
Ŷ1 + Ŷ2 of two entangled fields, which are the key in fulfill-
ing the QIP tasks, such as quantum teleportation, quantum
swapping, and quantum enhanced precision measurement,
cannot be measured separately since the power detector in
Figs. 2 and 3 lacks the ability to resolve phase information
of detected fields. Third, the measurable bandwidth of the
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FIG. 4. Entanglement measured by assisting the traditional joint
measurement of two balanced homodyne detection (BHD) with a
nondegenerate phase-sensitive amplifier (PSA). The detection loss
of each homodyne detection is modeled as a BS with reflectivity LD.
v̂1/v̂2 represents the vacuum field coupled into the detected fields.

quantum correlation of entanglement is relatively narrow.
Although the coherent combination of two entangled field
realized by the nonlinear coupling in PSA is much faster than
that in traditional method (see Fig. 1), which is realized by
taking the difference and sum of the photocurrents out of two
BHDs with an electronic combiner, the response bandwidth
of the power detector in Fig. 3 is usually very narrow for the
following reason. From Eqs. (14) and (4), one sees that the
optical amplification provided by the LO (|αL|2) in BHD can
be much higher than that (g2) by the strong pump of PSA.
So the gain of the electronic amplifier q2 in Figs. 2 and 3
is usually much higher than that in Fig. 1(b), which severely
limits the detection bandwidth due to gain-bandwidth relation
of electronic amplifiers.

IV. OUR METHOD FOR MEASURING EPR
ENTANGLEMENT WITH NONDEGENERATE

PSA-ASSISTED BALANCED HOMODYNE DETECTORS

Having reviewed two kinds of homodyne detection and
their application in characterizing EPR entanglement, we
study another method for measuring the entanglement by
combining a nondegenerate PSA with balanced homodyne
detections. During the measurement, two entangled fields are
coupled into the PSA to reduce the influence of detection
loss before extracting the phase information of the detected
fields with BHDs. This method inherits the advantages of the
measurement methods in Secs. II and III. In this section, we
will first analyze two approaches of our method. One is to
perform joint measurement by using two BHDs placed at each
output of PSA. The other is to characterize the entanglement
by using only one BHD at one output of PSA. Then we will
study and compare the optimum operation condition for each
approach by simulating the measurement results when the key
parameters, such as gain of PSA and detection loss, are varied.
At the end of this section, we will analyze the advantages and
disadvantages of this method.

A. Joint measurement performed by placing two BHDs at two
outputs of PSA

Figure 4 shows the approach by placing two BHDs at two
outputs of a PSA and performing joint measurement. Two
entangled fields â1 and â2 are coupled into the nondegenerate
PSA with amplitude gain G, g, and the outputs âout

1 and âout
2 of

PSA are respectively measured by two BHDs. For simplicity,
from here on, we focus on the measured quadrature compo-
nents and drop the amplification term of each BHD provided
by local and electronic amplifier, i.e., |αL|2 = 1 and q2 = 1.
The relationship between the inputs and outputs of a PSA is
same as in Eq. (15). When PSA is operating at deamplification
condition (ϕ = π ), the input-output relation is

âout
1 = Gâ1 − gâ†

2,
(21)

âout
2 = Gâ2 − gâ†

1.

When the LO phases of BHD1 and BHD2 are fixed at 0 or
π/2, the difference or sum of photocurrents of BHD1 and
BHD2 measure the quantities X̂ out

− ≡ X̂ out
1 − λX̂ out

2 and Ŷ out
+ ≡

Ŷ out
1 + λŶ out

2 , where λ is the electronic gain of the current
out of BHD2 to optimize the measurement results. Hence,
the noise variances of joint measurement are related to the
correlation of two entangled fields, X̂− and Ŷ+, through the
relation

〈�2X̂ out
− 〉 = (G + λg)2

〈
�2

(
X̂1 − g + λG

G + λg
X̂2

)〉
,

(22)

〈�2Ŷ out
+ 〉 = (G + λg)2

〈
�2

(
Ŷ1 + g + λG

G + λg
Ŷ2

)〉
.

The corresponding SNL for PSA-assisted joint measurement
can be obtained by sending vacuum into both input ports of
PSA. Hence, the SNL of the measurement scheme in Fig. 4 is
expressed as

〈�2X̂ out
− 〉SNL = 〈�2Ŷ out

+ 〉SNL = (G + λg)2 + (g + λG)2.

(23)

Normalizing Eq. (22) with the SNLs, we have

〈
�2X̂ out

− 〉Nor =
〈
�2X̂ out

−
〉

〈�2X̂ out− 〉SNL
= (G + λg)2

(G + λg)2 + (g + λG)2

×
〈
�2

(
X̂1 − g + λG

G + λg
X̂2

)〉

〈�2Ŷ out
+ 〉Nor =

〈
�2Ŷ out

+
〉

〈�2Ŷ out+ 〉SNL
= (G + λg)2

(G + λg)2 + (g + λG)2

×
〈
�2

(
Ŷ1 + g + λG

G + λg
Ŷ2

)〉
, (24)

and the inseparability

IJM
amp = 〈�2X̂ out

− 〉Nor + 〈�2Ŷ out
+ 〉Nor . (25)

where the superscript JM stands for joint measurement. For
the case of λ = 1 ( g+λG

G+λg = 1), we have the noise reduction
due to entanglement correlation,

〈�2X̂ out
− 〉Nor = 〈�2X̂−〉s = (μ − ν)2,

〈�2Ŷ out
+ 〉Nor = 〈�2Ŷ+〉s = (μ − ν)2,

(26)

and the inseparability in Eq. (25) reach the minimum Is

[see Eq. (3)] for arbitrary value of g. So the optimum re-
sults of Eqs. (24) and (25) are always the same as those
measured by the traditional method under perfect detection
efficiency. Moreover, the analysis indicates traditional method

053801-6



MEASURING CONTINUOUS-VARIABLE QUANTUM … PHYSICAL REVIEW A 101, 053801 (2020)

Measurement

â
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FIG. 5. Entanglement measurement performed by placing one
balanced homodyne detection (BHD) at one output of nondegener-
ate phase-sensitive amplifier (PSA). The detection loss of BHD is
modeled as a BS with reflectivity LD.

in Sec. II B is just a special case of PSA-assisted joint
measurement with the gain of PSA set to 1 (G = 1). This
PSA-assisted scheme provides a parametric gain of g > 0 for
amplifying the noise correlation of entangled fields and shot
noise level of the measurement with the factor (G + λg)2. So,
it is straightforward to predict that the ability of detection
loss tolerance for measurement scheme in Fig. 4 improves
with the increase of g. The detailed information of how the
measurement results depend on the gain of PSA and loss of
detection will be given in Sec. IV C.

B. Homodyne detection performed at one output of the PSA

Similar to the situation in Secs. III B and III C, that is, that
the intensity directly measured at one output of nondegenerate
PSA can be used to characterize the inseparability of entan-
glement, let us examine what will come out if we replace the
power detector in Fig. 3 with a BHD, as shown in Fig. 5.

Again, we assume the nondegenerate PSA in Fig. 5 is
working at the deamplification condition for measuring the
entanglement produced from the scheme in Fig. 1(a). Ac-
cording to the relationship between the inputs and outputs in
Eq. (21), the variances of quadrature amplitudes X̂ out

1 or Ŷ out
1

at one output field, say, âout
1 , are related to the correlation of

the source, X̂− and Ŷ+, through the relation:
〈
�2X̂ out

1

〉 = G2
〈
�2

(
X̂1 − g

G
X̂2

)〉
,

(27)〈
�2Ŷ out

1

〉 = G2
〈
�2

(
Ŷ1 + g

G
Ŷ2

)〉
,

which are obtained by locking the LO of BHD at 0 and
π/2, respectively, indicating that the noise variances of
〈�2(X̂1 − g

G X̂2)〉 and 〈�2(Ŷ1 + g
GŶ2)〉 are amplified with the

factor G2. On the other hand, the corresponding SNLs can
be obtained by sending vacuum into both input ports of PSA.
Hence, the SNLs of the measurement scheme are given by〈

�2X̂ out
1

〉
SNL = 〈

�2Ŷ out
1

〉
SNL = G2 + g2. (28)

Normalizing Eq. (27) with the SNLs in Eq. (28), we have

〈
�2X̂ out

1

〉
Nor =

〈
�2X̂ out

1

〉
〈
�2X̂ out

1

〉
SNL

= G2

G2 + g2

〈
�2

(
X̂1 − g

G
X̂2

)〉
,

(29)〈
�2Ŷ out

1

〉
Nor =

〈
�2Ŷ out

1

〉
〈�2Ŷ out

1 〉SNL
= G2

G2 + g2

〈
�2

(
Ŷ1 + g

G
Ŷ2

)〉
,

and the inseparability

I (1)
amp = 〈

�2X̂ out
1

〉
Nor

+ 〈
�2Ŷ out

1

〉
Nor

, (30)

where the superscript “(1)” denotes the output field of âout
1 .

When the gain of PSA is very high, i.e., g/G → 1 (or g →
∞), for the EPR source in Fig. 1(a), we have the noise
reduction 〈

�2X̂ out
1

〉
Nor = 〈�2X̂−〉s = (μ − ν)2,〈

�2Ŷ out
1

〉
Nor = 〈�2Ŷ+〉s = (μ − ν)2,

(31)

and inseparability I (1)
amp → 2(μ − ν)2, which are exactly the

same as the fluctuations in Eq. (2) and inseparability Is in
Eq. (3). Note that if the BHD is placed at the output of
âout

2 , the results are similar to those measured at âout
1 output,

except respectively replacing g and G in Eq. (29) with G
and g. So, when g/G → 1 (or g → ∞), similar to Eq. (31),
we have 〈�2X̂ out

2 〉Nor = 〈�2X̂−〉s = (μ − ν)2, 〈�2Ŷ out
2 〉Nor =

〈�2Ŷ+〉s = (μ − ν)2. Hence, we can measure 〈�2X̂−〉s at out-
put âout

1 and in the same time 〈�2Ŷ+〉s at output âout
2 , obtaining

the inseparability quantity Is with one set of measurement.
It is worth noting that the coherent combination of two

entangled fields realized by nondegenerate PSA is different
from that realized by subtracting or adding up the photocur-
rents of two BHDs, which is a linear combination of the
quadrature amplitudes of X̂1(φ) and X̂2(φ). From Eq. (21),
one sees that PSA can coherently combine one input field
with the conjugate of the other input field. So, in contrast to
the traditional method, in which the measurement results of
noise variance highly depend on LO phase of each BHD [9],
the noise variance of quadrature amplitude measured by the
BHD at one output of PSA is irrelevant to LO phase [34]. For
example, for the entangled state produced by the source in
Fig. 1(a), we have the normalized noise fluctuation

〈
�2X̂ out

1 (φ)
〉
Nor = (μG − νg)2 + (μg − νG)2

(G2 + g2)
, (32)

where φ is the LO phase of BHD. Equation (32) clearly
indicates that the variance of quadrature amplitude at arbitrary
angle φ, 〈X̂ out

1 (φ)〉Nor , depends on the gains of both the entan-
gled source and PSA but does not vary with the LO phase of
BHD. This is because of the destructive quantum interference
effect in PSA [35]. However, to extract information carried
by the entangled fields, correctly locking the phase is still
the key to measure the encoded information. For example,
when one field of the entangled source is encoded with the
information of both weak amplitude and phase modulations,
we need to decode the information by respectively measuring
the quadrature amplitudes X̂ out

1 and Ŷ out
2 with the LO phase

locked at 0 and π/2 [34]. Notice that X̂ out
1 and Ŷ out

2 are
measured at different output ports and can be done in the same
time, thus achieving simultaneous measurement of amplitude
and phase [34,36].

Unlike Eqs. (24) and (25), whose optimum values are irrel-
evant to the gain of PSA, Eqs. (29)–(32) show that the opti-
mized measurement of entanglement requires the condition of
g → ∞. In practice, it is impossible to achieve g → ∞ since
the pump power of PSA cannot be infinitely high. In order
to understand how the gain of PSA affects the performance
of the scheme in Fig. 5, we analyze the gain dependence
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FIG. 6. The value of 〈�2X̂ out
1 (φ)〉Nor measured by one balanced

homodyne detection vs the gain amplitude g of PSA when the noise
reduction of entangled source is fixed at different levels. The dashed
lines labeled as (I), (II), and (III) represent the noise reduction of the
source 〈�2X̂−〉s = 〈�2Ŷ+〉s at the levels of 0.554, 0.321, and 0.056,
which can be viewed as the result achievable with perfect detection.
The solid curves labeled as (i), (ii), and (iii) represent the measured
results for the cases of (I), (II), and (III), respectively. The solid black
line denotes the shot noise levels (SNL).

of measurement results by taking the entangled source in
Fig. 1(a) as an example. Since 〈�2X̂ out

1 〉Nor = 〈�2Ŷ out
1 〉Nor =

〈�2X̂ out
1 (φ)〉Nor , we will calculate 〈�2X̂ out

1 (φ)〉Nor as a func-
tion of g when the noise correlation 〈�2X̂−〉s (or 〈�2Ŷ+〉s)
of two entangled fields directly out of the source is fixed
at different levels, as shown in Fig. 6. In the calculation,
the given values 〈�2X̂−〉s of EPR source or the result with
perfect detection are 0.554, 0.321, and 0.056 [dashed lines (I),
(II), and (III) in Fig. 6], which correspond to the squeezing
degrees of 2.6, 4.9, and 12.5 dB, respectively. Although the
noise of a real entanglement source is determined by the PA
with certain amounts of gain and internal loss, for the sake of
brevity, we neglect the internal loss and obtain the noise of
entangled fields by substituting the gain values of source ν =
0.3, 0.6, 2 into Eq. (2). The value 〈�2X̂ out

1 (φ)〉Nor measured
with the PSA-assisted scheme is obtained by substituting
the different gain values of PSA and PA into Eq. (32). In
Fig. 6, the solid curves labeled as (i), (ii), and (iii) represent
the measured value 〈�2X̂ out

1 (φ)〉Nor for the EPR source with
ideal results labeled as (I), (II), and (III), respectively. It is
clear that in each case, the deviation between the measured
value 〈�2X̂ out

1 (φ)〉Nor and ideally measurable value 〈�2X̂−〉s

(dashed line) decreases with the increase of g. When g is low,
the value of 〈�2X̂ out

1 (φ)〉Nor is higher than the SNL of 1. In
particular, when g = 0, we have X̂ out

1 = X̂1. In this case, the
value of 〈�2X̂ out

1 (φ)〉Nor is always higher than the normalized
SNL of 1 and increases with the gain of the source because
each individual field (X̂1) of the entangled source is in a
thermal state. When g is higher than a certain level, the value
of 〈�2X̂ out

1 (φ)〉Nor starts to become lower than 1. In each case,
when g is greater than 3, which corresponds to PSA having a
power gain of G2 = 10, 〈�2X̂ out

1 〉Nor becomes very close to
the noise reduction of the source 〈�2X̂−〉s. In real experiment,
it is easy to achieve the gain level of G2 = 10. Therefore,
comparing with the scheme in Sec. III, the requirement to the
gain of PSA is greatly relaxed by conducting measurement
with the combination of PSA and BHD.

C. Influence of detection loss upon the performance of this
measurement method

Having explained the working principle of this method,
we are ready to analyze the influence of detection loss. Let
us first investigate the performance of PSA-assisted joint
measurement scheme in Fig. 4. For the sake of convenience,
we assume that the electronic gain is λ = 1 and the detection
losses of the two BHDs are both LD. With the presence of
detection losses, the joint measurement quantities in Eq. (25)
is modified to

〈�2X̂ out
−

′〉 = 〈
�2

(
X̂ out

1
′ − X̂ out

2
′)〉

= (1 − LD)
〈
�2

(
X̂ out

1 − X̂ out
2

)〉 + 2LD,

〈�2Ŷ out
+

′〉 = 〈
�2

(
Ŷ out

1
′ + Ŷ out

2
′)〉

= (1 − LD)
〈
�2

(
Ŷ out

1 + Ŷ out
2

)〉 + 2LD, (33)

and the corresponding SNL is

〈�2X̂ out
−

′〉SNL = 〈�2Ŷ out
+

′〉SNL = 2(1 − LD)(G + g)2 + 2LD.

(34)

It is straightforward to show that the second term of detection
loss 2LD in Eqs. (33) and (34) can be dropped if the gain of
PSA g is large. When the gain of PSA satisfies the condition

(1 − LD)(G + g)2 � 1, (35)

the noise reduction and inseparability measured by joint mea-
surement are modified to

〈�2X̂ out
−

′〉Nor = 〈�2X̂−〉s = (μ − ν)2,

〈�2Ŷ out
+

′〉Nor = 〈�2Ŷ+〉s = (μ − ν)2,

IJM
amp

′ = Is,

(36)

which means we can measure entanglement with results im-
mune to detection loss as long as the gain of PSA is high
enough. For example, for the entangled fields generated by
the source in Fig. 1(a), the measured noise reduction and
inseparability can be written as

〈�2X̂ out
−

′〉Nor = 〈�2Ŷ out
+

′〉Nor

= (1 − LD)(G + g)2(μ − ν)2 + LD

(1 − LD)(G + g)2 + LD
, (37)

IJM
amp

′ = 2(1 − LD)(G + g)2(μ − ν)2 + 2LD

(1 − LD)(G + g)2 + LD
. (38)

When (1 − LD)(G + g)2 � 1 holds, the measured values
〈�2X̂ out

−
′〉Nor = 〈�2Ŷ out

+
′〉Nor and IJM

amp
′ approach to (μ − ν)2

and 2(μ − ν)2, which are the same as 〈�2X̂−〉s = 〈�2Ŷ+〉s

and Is directly out of the source [see Eqs. (2) and (3)].
To better illustrate influence of detection loss on the

scheme in Fig. 4, we simulate the results IJM
amp

′ when the gain of
PSA is fixed at different levels. The calculation is carried out
by using Eq. (38), in which the inseparability of the source
Is = 0.112 is obtained by setting ν = 2. Figure 7(a) plots
IJM
amp

′ as a function of detection loss when the gain of PSA
is respectively fixed at g = 0, 2, 3, 5. We note that the case
of g = 0 is equivalent to the traditional method in Fig. 1, and
best estimation of inseparability is obtained under the ideal
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FIG. 7. (a) Jointly measured inseparability IJM
amp

′ as a function the
detection loss LD when the gain amplitude g of PSA in Fig. 4 is fixed
at g = 0, 2, 3, 5, respectively. (b) Inseparability I (1)

amp
′ measured by the

individual BHD as a function of LD when the gain amplitude g of
PSA in Fig. 5 is fixed at g = 2, 3, 5, respectively. In the calculation,
the inseparability of the source is Is = 0.112. The dashed line (g = 0)
corresponds to the results of traditional method, and the black solid
line represents the best estimation of inseparability obtained under
the ideal detection condition of LD = 0.

detection condition of LD = 0. It is clear that for the case of
LD = 0, the measured inseparability IJM

amp
′ always equal to Is

and is irrelevant to gain of PSA. When g is fixed, the general
trend of IJM

amp
′ is to increase with LD; however, the rising slope

decreases with the increase g. In this case, the rising slope of
IJM
amp

′ versus LD is the highest. When LD increases from 0 to

0.6, IJM
amp

′ increases from 0.112 to 1.2. Whereas for the case of
g = 5, corresponding to PSA with power gain of about 26,
the rising slope of IJM

amp
′ is very low. Even if the detection

loss is 0.6, we still have IJM
amp

′ = 0.13, which is only slightly
higher than that obtained with perfect detection. The results
indicate the role of PSA in Fig. 4 is to mitigate the influence
of detection loss on entanglement measurement.

Let us now analyze the scheme of measuring entanglement
at only one output of PSA with one BHD when the nonideal
efficiency of BHD is taken into account. In this case, Eq. (27),
which describes the noise levels measured at âout

1 output of
PSA-assisted scheme, has the modified form:

〈
�2X̂ out

1
′〉 = (1 − LD)

〈
�2X̂ out

1

〉 + LD

= (1 − LD)G2
〈
�2

(
X̂1 − g

G
X̂2

)〉
+ LD,

〈
�2Ŷ out

1
′〉 = (1 − LD)

〈
�2Ŷ out

1

〉 + LD

= (1 − LD)G2
〈
�2

(
Ŷ1 + g

G
Ŷ2

)〉
+ LD. (39)

Normalizing Eq. (39) with the corresponding shot noise level
of 〈�2X̂ out

1
′〉SNL = 〈�2Ŷ out

1
′〉SNL = (1 − LD)(G2 + g2) + LD,

Eqs. (29) and (30) are modified as

〈
�2X̂ out

1
′〉

Nor = (1 − LD)G2〈�2X̂−〉 + LD

(1 − LD)(G2 + g2) + LD
,

〈
�2Ŷ out

1
′〉

Nor = (1 − LD)G2〈�2Ŷ+〉 + LD

(1 − LD)(G2 + g2) + LD
,

I (1)
amp

′ = (1 − LD)G2[〈�2X̂−〉 + 〈�2Ŷ+〉] + 2LD

(1 − LD)(G2 + g2) + LD
.

(40)

When the relation

(1 − LD)G2 � 1 (41)

holds, the second term of loss LD in both numerator and
denominator of Eq. (40) can be dropped. In this case, we have

〈
�2X̂ out

1
′〉

Nor
≈ 〈�2X̂−〉s,〈

�2Ŷ out
1

′〉
Nor ≈ 〈�2Ŷ+〉s, (42)

I (1)
amp

′ ≈ Is.

Since the measurement obtained by placing the BHD at each
output of high gain PSA is the same, the expressions in
Eq. (42) indicate that when the gain of PSA is large enough,
we can measure the entanglement of EPR source with the
measurement results immune to detection loss. Taking the
entangled source in Fig. 1(a) as an example, Eq. (40) can be
rewritten as
〈
�2X̂ out

1
′〉

Nor = 〈
�2Ŷ out

1
′〉

Nor

= (1 − LD)[(μG − νg)2 + (μg − νG)2] + LD

(1 − LD)(G2 + g2) + LD
,

I (1)
amp

′ = 2(1 − LD)[(μG−νg)2+(μg−νG)2]+2LD

(1 − LD)(G2 + g2) + LD
.

(43)

When (1 − LD)G2 � 1 holds, the measured inseparability
I (1)
amp

′ approaches to 2(μ − ν)2, which is the ideal measurement
result of Is [see Eq. (3)].

We have shown in Sec. IV B that measuring entanglement
with one BHD only works for the PSA with high gain, so we
will only analyze the influence of loss on the measurement
when the gain g of the PSA in Fig. 5 is relatively high. We
carry out the calculation by using Eq. (38), in which the
entangled source with Is = 0.112 is the same as in Fig. 7(a).
Figure 7(b) shows I (1)

amp
′ as a function of detection loss when

the gain of PSA is respectively fixed at g = 2, 3, 5. One sees
that in each case, I (1)

amp
′ slightly increases with LD. Moreover,

the rising slope of I (1)
amp

′ decreases with the increase of g. Note

that even if the detection efficiency if perfect (LD = 0), I (1)
amp

′

slightly deviates from the thick solid line, representing the
deviation between I (1)

amp
′ and Is decreases with the increase of

g. The results indicate that in order to measure entanglement
with only one BHD, the gain of PSA in Fig. 5 should be
high enough even if the detection efficiency is high. Moreover,
comparing Fig. 7(b) with Fig. 7(a), we find that if the gain of
PSA is the same, the deviation between IJM

amp
′ and Is is always

smaller than that between I (1)
amp

′ and Is. So, the loss tolerance
feature for the approach in Fig. 4 is better than that in Fig. 5.
In the treatment of losses in this paper, we have not considered
the internal loss of the parametric amplifier. This type of loss
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is complicated and has some detrimental effects that cannot
be overcome by the current scheme [35].

D. Pros and cons of our measurement method

The results in Fig. 7 clearly shows that compared to the
traditional method [see the curve for g = 0 (or G = 1) in
Fig. 7(a)], both approaches of this method have the advantage
of detection loss tolerance. If the measurement results are ob-
tained from the approach of joint measurement of two BHDs,
the ability of loss tolerance increases with g, and this method
is always better than the traditional one as long as the gain of
PSA is bigger than 1. If only one output of PSA is measured
by a BHD, the advantage of our method can be realized
only when the gain (or pump power) of PSA is high. Hence,
the scheme with only one BHD in Fig. 5 seems to be less
attractive. However, an interesting feature for the approach
in Fig. 5 is that only one BHD is required, which should be
useful for characterizing or measuring entanglement between
two different types of waves where one of the waves is hard to
measure. For example, for the hybrid entanglement between
atom and light, it is impossible to use the traditional method
because BHD of atomic wave is not available, but we can use
an atomic Raman amplifier, which is essentially a parametric
amplifier for light and atomic excitation waves [16–18], to
combine these two different types of waves. The quantum
correlation between atom and light can then be characterized
by only performing homodyne detection on the optical field.

If we are able to perform BHD at both output ports, we can
then measure X̂− at one port and Ŷ+ at the other, achieving
simultaneous measurement of X̂− and Ŷ+ and obtaining Is

with one set of measurement. This is somewhat similar to the
method discussed in Sec. III and is thus more advantageous
than the traditional method discussed in Sec. II. Of course, our
method can measure X̂− and Ŷ+ separately, which is also more
advantageous than the method discussed in Sec. III, where
measurement of X̂− and Ŷ+ cannot be separated in the output.

Furthermore, even if we only have one output port with
BHD capability (e.g., atomic Raman amplifier), because the
PSA’s output is tolerant to vacuum noise at high gain, we can
split this output into two by a beam splitter without worrying
about the vacuum noise introduced through the unused port of
the beam splitter and perform separate BHD to obtain X̂− and
Ŷ+ independently at the same time.

Another potential advantage provided by this method is
that the response bandwidth of detection can be greatly im-
proved. On the one hand, the coherent combination of two
entangled fields realized by the nonlinear coupling in high
gain PSA is much fast than that the electronic combiner
used in traditional method. On the other hand, the noises of
entangled state measured by this method have experienced
two kinds of amplification. In addition to the amplification
provided by the LO of BHD, the noises are amplified by PSA
with high gain. As shown in Eqs. (13), (23), and (28), the
SNL of the our measurement method is lifted by the high-gain
PSA. Therefore, we achieve by an optical method the goal of
effectively amplifying a weak input signal to a level that is
otherwise buried in the classical noise such as detector’s dark
current so that thermal electronic noise of current amplifiers

and gain of electronic amplifier can be relaxed, which will
result in an increased gain bandwidth in measurement.

Despite these advantages, it is worth noting that this
method can overcome the problem of only detection loss. For
the losses occurred inside the entangled source of PA and
in coupling the entangled source into the PSA, on the other
hand, the usage of PSA is not useful because these losses have
negative effects on the entangled degree, which is equivalent
to the detection loss for the traditional method [see Eq. (8) in
Sec. II C]. Therefore, it is crucial to ensure that the coupling
efficiency between the entangled source and PSA is as high as
possible.

V. MEASUREMENT OF MULTIMODE
ENTANGLED STATES

In previous sections, each field of the entangled source is
viewed as in single mode. In practice, we always have to deal
with systems in multiple modes. Particularly, for the entangled
source generated in pulse-excited system, each field of the
source is composed of multiple-frequency components. In this
section, we will extend the models of entangled sources and
measurement schemes from single-mode case to multimode
case. After briefly describing the process of measuring multi-
mode entanglement by using the traditional method depicted
in Fig. 1, we will analyze the performance of our method
and show its advantages in measuring multitemporal mode
entangled states.

A. Entanglement generated from pulse pumped
parametric amplifier

If the entangled source in Fig. 1(a) is realized by pumping
the PA with a train of short laser pulses, the two output
fields will be of multimode nature [21]. However, no matter
how complicated the system is, a parametric amplifier, when
treated as a linear device, can always be viewed as superposi-
tion of its eigenmodes, which do not change after the ampli-
fier. Assuming the nonlinear medium of parametric amplifier
is in waveguide structure and only supports a single spatial
mode, there exists an independent set of pairwise temporal
modes {Â j, B̂ j} ( j = 1, 2, ...) for the entangled fields, and the
input-output relation can be expressed as [31,37]

Â j = μ j Â
in
j + ν j B̂

in†
j ,

(44)
B̂ j = μ j B̂

in
j + ν j Â

in†
j ,

where

Â†
j ≡

∫
dω1φ j (ω1)â†

1(ω1),

(45)

B̂†
j ≡

∫
dω2ψ j (ω2)â†

2(ω2)

define the creation operators of two entangled fields â1

and â2, and μ j , ν j with μ2
j − ν2

j = 1 (μ1 � μ2 � μ3 . . . )
are the gain coefficient for jth mode. The complex func-
tions φ j (ω1) and ψ j (ω2) satisfying the orthonormal rela-
tions,

∫
dω1φ

∗
i (ω1)φ j (ω1) = δi j = ∫

dω2ψ
∗
i (ω2)ψ j (ω2), rep-

resent the spectrum of two entangled fields in the jth-order
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temporal modes f j (τ ) = ∫
dω1φ j (ω1)e−iω1τ and h j (τ ) =∫

dω2ψ j (ω2)e−iω2τ .
The noise variances for the difference and sum of quadra-

ture amplitude of jth mode are

〈�2X̂−〉 j = 〈�2(X̂1 j − X̂2 j )〉 = 2(μ j − ν j )
2,

〈�2Ŷ+〉 j = 〈�2(Ŷ1 j + Ŷ2 j )〉 = 2(μ j − ν j )
2,

(46)

where X̂ j = Â j + Â†
j , Ŷj = −i(Â j − Â†

j ) are the quadrature-
phase amplitudes for the jth modes. The corresponding SNL
for each mode

〈�2X̂−〉 j−SNL = 〈�2Ŷ+〉 j−SNL = 2 (47)

can be obtained by placing the output fields â1, â2 in vacuum.
For the two entangled fields in jth mode pair, φ j (ω1) and

ψ j (ω2), the normalized noise variances and inseparability of
the source are written as

〈�2X̂−〉 j−s = 〈�2X̂−〉 j

〈�2X̂−〉 j−SNL
= (μ j − ν j )

2,

〈�2Ŷ+〉 j−s = 〈�2Ŷ+〉 j

〈�2Ŷ+〉 j−SNL
= (μ j − ν j )

2, (48)

and I j−s = 〈�2X̂−〉 j−s + 〈�2Ŷ+〉 j−s = 2(μ j − ν j )
2, (49)

where subscript j − s indicates the contribution from the jth
mode of the EPR source.

B. Measuring pulsed entanglement with the traditional method

When the correlation between two pulsed fields is mea-
sured by the traditional method in Fig. 1, the fields of LOs for
two BHDs, ALO(t ), BLO(t ), should be in pulsed form as well.
If the two LOs are transform-limited pulses, we have

ALO(t ) = Eeiφ0
1√
2π

∫
dω1ALO(ω1)e−iω1t ,

BLO(t ) = Eeiψ0
1√
2π

∫
dω2BLO(ω2)e−iω2t ,

(50)

where the frequency components ALO(ω1), BLO(ω2) sat-
isfy the normalization condition

∫
dω1|ALO(ω1)|2 = 1 and∫

dω2|BLO(ω2)|2 = 1, φ0, ψ0 are the global phases of the
two LOs, and E denotes amplitude of each LO. When the
amplitude of each LO is much stronger than the detected
fields, i.e., E � 1, the output currents of two BHDs are
given by

î1 =
∫

dt[A∗
LO(t )Ê1(t ) + H.c.],

î2 =
∫

dt[B∗
LO(t )Ê2(t ) + H.c.],

(51)

where Ê1,2(t ) = 1√
2π

∫
dωâ1,2(ω)e−iωt are the field operators

for the detected fields.

With the orthogonal modes defined in Eq. (45), the LO
fields can be decomposed as

ALO(ω) =
∑

j

ξ jφ j (ω),

BLO(ω) =
∑

j

ζ jψ j (ω),
(52)

where

ξ j ≡ |ξ j |eiθ j =
∫

dωALO(ω)φ∗
j (ω),

(53)

ζ j ≡ |ζ j |eiθ ′
j =

∫
dωBLO(ω)ψ∗

j (ω)

with
∑

j |ξ j |2 = 1 = ∑
j |ζ j |2 are the complex coefficients

characterizing the mode matching. θ j, θ
′
j are the LO phases for

measuring the two entangled fields in jth mode. Accordingly,
the output currents in Eq. (51) can be rewritten as

î1 = E
∑

j

|ξ j |X̂1 j (θ j + φ0),

î2 = E
∑

j

|ζ j |X̂2 j (θ
′
j + ψ0),

(54)

where X̂1 j (θ j ) ≡ Â je−iθ j + Â†
j e

iθ j , X̂2 j (θ ′
j ) ≡ B̂ je

−iθ ′
j + B̂†

j e
iθ ′

j

are the quadrature-phase amplitudes for the jth mode. To
obtain the quantum correlation between the quadrature ampli-
tudes of two fields, we measure variance in current difference
and sum

〈�2(î1 ∓ î2)〉 = E2
∑

j

〈�2[|ξ j |X̂1 j (θ j + φ0)

∓ |ζ j |X̂2 j (θ
′
j + ψ0)]〉. (55)

It is well known that the entanglement degree, reflected
by the inseparability, is defined through a definite quadrature-
phase amplitude and its orthogonal component of two fields,
and the measurement output depends on different quadrature-
phase angles. So we set the LO phases at two sets of or-
thogonal angles: φ0, ψ0 and φ0 + π/2, ψ0 − π/2. We then
investigate how to minimize the calculated inseparability by
changing φ0, ψ0.

For the entangled fields described in Eq. (44), we calculate
the inseparability from the traditional method through the
quantity in Eq. (55) and the definition of inseparability in
Eq. (3) leads to

Imulti = 1

2

∑
j

I j (56)

with I j≡〈�2[|ξ j |X̂1 j (θ j+φ0) − |ζ j |X̂2 j (θ ′
j + ψ0)]〉 + 〈�2[|ξ j |

X̂1 j (θ j + φ0 + π/2) − |ζ j |X̂2 j (θ ′
j + ψ0 − π/2)]〉. Note that

for the single-mode case, we have ξ j = δ j, j0 = ζ j and we can
recover the expression for inseparability in Eq. (3). For the
multimode entangled source described by Eq. (44), we find

I j = 2|μ jξ j − ν jζ
∗
j e−i(φ0+ψ0 )|2 + 2|ν jξ j − μ jζ

∗
j e−i(φ0+ψ0 )|2

= 2
(
μ2

j + ν2
j

)
(|ξ j |2 + |ζ j |2) − 8μ jν j |ξ j ||ζ j | cos �θ j

(57)
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with �θ j ≡ θ j + θ ′
j + φ0 + ψ0. If the LOs match one specific

pair of modes of the entangled fields, labeled as j0th mode,
we have ξ j = δ j j0 = ζ j and Imulti = 2(μ j0 − ν j0 )2. This is the
same as the single mode case discussed earlier. Otherwise, we
need to sum up all terms given in Eq. (57). Although θ j and
θ ′

j vary with j, the sum θ j + θ ′
j usually inherits the phase of

the pump and changes little with j. So we can always choose
φ0 + ψ0 so that �θ j = 0 for all j. In this case, the phases
of different modes are synchronized and the inseparability
obtained from homodyne detection is

Imulti =
∑

j

[(μ j |ξ j | − ν j |ζ j |)2 + (ν j |ξ j | − μ j |ζ j |)2], (58)

which can be viewed as an averaged value of inseparability of
each mode pair.

However, due to dispersion and birefringence in the non-
linear medium for parametric amplifier, the sum θ j + θ ′

j may
change with j and it is thus impossible to have �θ j = 0 for all
j, leading to asynchronized phases for different modes. This
effect is detrimental for traditional method of inseparability
measurement because I j cannot reach minimum value at the
same φ0 + ψ0: While I j is minimum for some j, it is higher
for other j, leading to higher Imulti than what is expected from
the optimum value in Eq. (58).

In addition to the asynchronized phase problem, the mode
shapes of the LOs are also critical in BHD for pulsed case.
For the pulsed pump with Gaussian-shaped spectrum, the gain
coefficient of the fundamental mode ν j with j = 1 is the
highest [38]. If we can perfectly match the modes of LOs
with the two entangled fields in fundamental modes, we will
be able to obtain the lowest value of inseparability coefficient,
I1, i.e., I1 � Imulti. However, the method of precisely knowing
the temporal-mode profile has not been available yet, so it
is difficult to directly measure I1 by properly shaping the
spectrum of LOs. When the mode-matching coefficients for
the two entangled fields ξ j and ζ j are significantly different
from each other, the measured value of Imulti may become
higher than 2 due to the thermal nature of individual fields.
For example, assuming the entangled source is a superposition
of two pairs of temporal modes, if the mode-matching coef-
ficients between the detected fields and local oscillators are
|ξ1| = 0, |ξ2| = 1 and |ζ1| = 1, |ζ2| = 0, the measured value
of Imulti = μ2

1 + μ2
2 + ν2

1 + ν2
2 is higher than 2, and the insep-

arability criterion cannot be obtained. So the entanglement
degree of pulsed entangled source measured by traditional
method is always smaller than what is anticipated. Next, we
will analyze the performance of our method with PSA in
measuring pulsed entanglement.

C. Measurement using the PSA-assisted balanced
homodyne detections

To clearly illustrate the advantage of our method in a
multimode case, we first take the PSA-assisted scheme in
Fig. 5 as an example. Assuming the PSA has the same
spectrum property as the entangled source but has a different
set of gains, Gj, g j , that is, they have the same mode structure
{φ j, ψ j}. This is the case if the two parametric amplifiers are
from the same nonlinear process. From mode decomposition
of the pulse-pumped parametric proess [31,37], we know that

Gj = cosh(r jG′), g j = sinh(r jG′) with r1 > r2 > ... as the
mode number and

∑
r2

j = 1, where G′ is the gain parameter
related to the pump power. The input-output relation for the
PSA is similar to Eq. (44) but with μ j, ν j replaced by the
PSA’s gain parameters Gj,−g j . Here, we choose −g j to
describe the PSA in deamplification.

Assuming the PSA gain is large (Gj ≈ g j � 1), we find
the measured fluctuations of the quadrature-phase amplitudes
of each mode at two outputs of the amplifier can be respec-
tively written as〈

�2X̂ out
1 j (θ j + φ0)

〉 = 2|ξ j |2G2
j (μ j − ν j )

2,

(59)〈
�2X̂ out

2 j (θ ′
j + ψ0)

〉 = 2|ζ j |2G2
j (μ j − ν j )

2.

The SNL measured at âout
1 is 〈�2X̂ out

1 j (θ j + φ0)〉SNL =
2

∑
j |ξ j |2G2

j , so the normalized values 〈�2X̂ out
1 j 〉Nor and

〈�2Ŷ out
1 j 〉Nor are

〈
�2X̂ out

1 j

〉
Nor = 〈

�2Ŷ out
1 j

〉
Nor =

∑
j |ξ j |2G2

j (μ j − ν j )2∑
j |ξ j |2G2

j

. (60)

As a result, the inseparability measured from output port
âout

1 is

Imulti
amp = 2

∑
j |ξ j |2G2

j (μ j − ν j )2∑
j |ξ j |2G2

j

. (61)

Note that the expression above does not show the asynchro-
nized phase problem: All modes reaches the minimum value
together. For the output âout

2 of PSA, the measured insepara-
bility is similar as Eq. (61) but replacing ξ j with ζ j . Since r1 >

r2 > ..., we have G1 = cosh(r1G′) � cosh(r2G′) = G2 �
G3... For G′ → ∞, Eq. (61) can be approximated as

Imulti
amp ≈ 2|ξ1|2G2

1(μ1 − ν1)2

|ξ1|2G2
1

= 2(μ1 − ν1)2. (62)

Similarly, for the PSA-assisted joint measurement in Fig. 4,
the inseparability is

Imulti
amp−JM = 2

∑
j (|ξ j | + |ζ j |)2G2

j (μ j − ν j )2∑
j (|ξ j | + |ζ j |)2G2

j

(63)

for PSA with large gain. Since r1 > r2 > ..., Eq. (63) can be
approximated as

Iamp−JM
multi ≈ 2(|ξ1| + |ζ1|)2G2

1(μ1 − ν1)2

|(|ξ1| + |ζ1|)2G2
1

= 2(μ1 − ν1)2

(64)

for G′ → ∞. Comparing Eqs. (62) and (64) with
Eqs. (61), (63), and (58), one sees that the high-gain PSA can
select out the mode pair with j = 1 from the entangled fields.
Only j = 1 modes contribute to the measurement results
as if it were the single temporal mode case. By properly
setting the LO phases of BHDs, the variances 〈�2X̂−〉1−s,
〈�2Ŷ+〉1−s and inseparability I1−s can be measured, and the
results are immune to detection loss [39]. Therefore, the
high-gain PSA-assisted BHD is better than the traditional
BHD method [39]. So, this measurement method is more
advantageous than the traditional method in the multimode
case. If there is mode mismatching between PSA and
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entangled source PA, then the degree of mode mismatching
can be viewed as the coupling loss between them, whose
effect on the measurement is similar to that discussed in the
end of Sec. IV D.

VI. SUMMARY AND DISCUSSION

In summary, we have investigated a method of de-
tecting continuous variable entanglement by using phase-
sensitive amplifier-assisted balanced homodyne detections.
This method is robust in a number of unflavored situations
such as the imperfect detection process of quantum states,
namely nonunit quantum efficiency detectors and mode mis-
match between the detected multimode fields and the local
oscillators. Additionally, this method allows us to measure
quantum entanglement even when one of the fields is not
experimentally accessible, which effectively simplifies the
experimental resources required by the traditional balanced
homodyne measurement. A slight variation of the method also
can measure X̂− and Ŷ+ at the same time, making it possible
to measure phase and amplitude simultaneously. Moreover, it
has the potential to tremendously increase the bandwidth in
measuring the quantum correlation. This method is applicable
to many relevant problems in quantum optics.

This method for measuring quantum entanglement should
also be beneficial in areas such as quantum information
and quantum metrology, where entangled quantum states
are used for performance enhancement. Although we have
only discussed the noise measurement, it works equally well
when the input fields are encoded with modulation signals.
Indeed, the underlying physics in the experiments of using
SU(1,1) nonlinear interferometer for quantum metrology is
that the advantage of entangled sources is maintained for the
enhancement of the signal-to-noise ratio even in the pres-
ence of losses at detection [31,37,40]. This is the same as
our method.

In this paper, we have studied this measurement method
by taking two entangled fields having positive correlation
between X̂1 and X̂2 and negative correlation between Ŷ1 and Ŷ2

as an example. In addition, we assume the correlation between
two entangled fields is symmetric. We believe this method
is suitable for measuring various kind of entanglement. For
example, another type of entanglement with negative correla-
tion between X̂1 and X̂2 and positive correlation between Ŷ1

and Ŷ2 [3] can also be measured by our method, but the PSA
needs to be operated at the amplification condition, at which
the noise variance at each output of PSA is proportional to
product between the PSA gain G2 and the variances of op-
erators X̂1 + X̂2 (or Ŷ1 − Ŷ2). Moreover, for the entanglement
with asymmetric correlation between two fields, X̂1 ∓ kX̂2 and
Ŷ1 ± kŶ2 (k �= 1), which can be generated from the entangled
source with unbalanced internal losses in two fields, we can
optimize the joint measurement by properly changing the
electronic gain to adjust the photocurrent level out of one
BHD. If only one BHD is placed at one output of PSA, the
optimized measurement can be obtained by properly changing
the gain of PSA.

Finally, it is worth pointing out that although this method
of assisting BHD with high-gain PSA is useful in measuring
the noise reduction and inseparability of entanglement, the
PSA, which functions as a homodyne detection for realizing
the measurement, it cannot be viewed as a tool for quantum
state transformation. This is because the noise variances for
the difference and sum of the quadrature amplitudes of the
PSA output fields are not lower than vacuum noise, especially
for the PSA with high gain, as illustrated by Eq. (22).
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