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We consider the dynamics of a spin-1/2 particle constrained to move in an arbitrary space curve with
an external electric and magnetic field applied. With the aid of gauge theory, we successfully decouple the
tangential and normal dynamics and derive the effective Hamiltonian. A type of quantum potential called SU(2)
Zeeman interaction appears, which is induced by the electric field and couples spin and intrinsic orbital angular
momentum. Based on the Hamiltonian, we discuss the spin precession for the zero intrinsic orbital angular
momentum case and the energy splitting caused by the SU(2) Zeeman interaction for a helix as examples,
showing the combined effect of geometry and external field. The interaction may bring different approaches
to manipulate quantum states in spintronics.
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I. INTRODUCTION

The quantum dynamics in curved spacetime has interested
scientists for a long time. Based on general relativity, the
larger the curvature of spacetime, the stronger the gravita-
tional field. In addition to astronomical surveys, it seems
unlikely that we can investigate a large curvature effect in
conventional laboratories. However, in recent decades, the
technique for the synthesis of nanostructures has made great
progress [1–4], which brings large space curvature to the
laboratory.

These nanostructures with curved geometries provide a
platform for studies of the dynamics in low-dimensional
curved spaces, involving condensed matter [5–7], optics [8,9],
and magnetism [10,11]. Because the curvature radius of the
structures may reach the nanoscale, nontrivial curvature ef-
fects on quantum motion show up, which are not only im-
portant in theory but also indicate great application potential.
For example, based on the effective continuum k · p model
in curvilinear coordinates [6], it is proven that periodically
bent quantum wires at the nanoscale with Rashba spin-orbit
coupling generate topologically nontrivial insulating phases.
In optics, inspired by the Schwarzschild metric, a paraboloid
waveguide is constructed to show the curvature effect on the
phase and group velocities of wave packets [9], which is
consistent with the theoretical prediction from the effective
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paraxial equation in the curved space. It is also shown that
curvature acts as an effective magnetic field in thin magnetic
shells [10]. All of these phenomena indicate that when the
curvature radius of the structure is closed to the characteristic
length of the dynamics, geometric effects increase signifi-
cantly, and methods in flat cases fail.

To effectively show the geometric effects by theory, one
successful theoretical approach called the thin-layer proce-
dure (TLP) or confining potential approach for investigation
of the quantum mechanical properties of particles constrained
to low-dimensional curved space was introduced [12,13]. TLP
originally considers the limiting case of quantum mechan-
ics in which a particle in three-dimensional (3D) Euclidean
space is subject to a strong confining force acting in the
normal direction of a curved surface and gives the effective
two-dimensional (2D) Schrödinger equation. Interestingly, a
geometric potential depending on the intrinsic and extrinsic
curvature of the surface appears in this effective equation,
showing the geometric effect in constrained systems. Later,
this potential was demonstrated in photonic crystals [14].
Since TLP was introduced, many theoretical works have tried
to develop and generalize this approach for the application in
more situations, such as Schrödinger particle [15–17], charged
particles in an electric and magnetic field [18–20], Dirac
particles [21–23], spin-1/2 particles with the spin-orbital
interaction [24–29], and an electromagnetic field [30–32]
constrained to space curves and curved surfaces. More general
cases of an arbitrary m-dimensional manifold embedded in an
n-dimensional Euclidean space for spinless particles have also
been carried out [33–37]. It is found that induced SO(n − m)
gauge fields are expected if the normal states are degenerate.
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Therefore, compared with the 2D case, 1D effective dynamics
obtained by TLP from 3D Euclidean space shows a nontrivial
SO(2) gauge potential as an augmented effect.

The geometrically induced gauge field for 1D optical or
electronic wave guides is usually offered by the torsion when
only the scalar property is considered, coupling to the intrinsic
orbital angular momentum (IOAM) [38–40] or topological
charge [41–43], while for the motion of spin-1/2 particles
in curvilinear coordinates, spin connection acting as a non-
Abelian gauge field appears, which is generated by local
Lorentz transformation [44]. Besides the two geometrically
induced gauge fields, a magnetic field and spin-orbit inter-
action due to an electric field can also be applied to 1D
curved systems in terms of U(1) and non-Abelian gauge
fields [45–49], respectively. Considering all these effects, the
dynamics of a spin-1/2 particle constrained to a space curve in
the presence of an electric and magnetic field seems intricate.
It is our main aim here to give an effective Hamiltonian for a
full description of this situation. Decoupling from the normal
dynamics is the key step in TLP, which does not go well in
some cases, especially when external fields are applied. In
the past, the dynamics for a charged particle constrained to a
space curve in an electric and magnetic field has been viewed
as difficult to decouple.

However, it is found in Ref. [19] that by adopting an
appropriate U(1) gauge, one can still get the effective 1D
Hamiltonian successfully. In this paper, we go further to get
the effective Hamiltonian for a spin-1/2 particle constrained
to a space curve in the presence of an electric and magnetic
field, by applying a suitable U(1) and SU(2) gauge. We show
that the IOAM in a space wire couples to both the magnetic
field and the SU(2) gauge field, which induces two types of
Zeeman coupling.

The organization of the paper is as follows: In Sec. II,
we derive the effective Hamiltonian for a spin-1/2 particle
constrained to a space curve in an electric and magnetic field.
In Sec. III, the spin orientation evolution is calculated for
the ground state in normal directions based on the effective
Hamiltonian. In Sec. IV, the energy band splitting and eigen-
states in a helix are discussed. The final section contains a
summary.

II. EFFECTIVE HAMILTONIAN FOR A SPIN-1/2
PARTICLE CONSTRAINED TO A CURVE

The appearance of the well-known geometric potential
for scalar particles indicates that low-dimensional systems
embedded in a 3D space show an extra geometric effect. As
the internal degrees of freedom of the particle increase and
external fields are applied, the extra geometric effects will
be more and more complicated. Although spin-1/2 particles
[21,24] and the effect of external electric and magnetic fields
[19] have been studies for 1D constrained system separately,
an analytical expression for the Hamiltonian including both
of them has not been derived yet, and the corresponding
geometric effects have not been fully displayed.

In this section, we follow the TLP to derive the effective
Hamiltonian for a spin-1/2 particle confined to an arbitrary
space curve C, including the effect of an external magnetic
and electric field. The effective Hamiltonian shall be valid

for describing the dynamics of various 1D semiconducting
nanostructures with an electric and magnetic field applied. To
make it clear, the analytical derivations for the case without
and with an electric and magnetic field are given in turn.

A. Without external fields

In 3D Euclidean space, the embedded curve C is parame-
terized by r(s) with s its arc length. We introduce orthogonal
curvilinear coordinates (s, q2, q3) and Frenet frame; then, the
neighborhood around the curve is described as

R(s, q2, q3) = r(s) + q2n(s) + q3b(s), (1)

where n and b are the unit normal vector and binormal vector
of C, respectively. Applying the Frenet-Serret equations, we
may write

⎛
⎜⎝

ṫ
ṅ

ḃ

⎞
⎟⎠ =

⎛
⎝

0 κ (s) 0

−κ (s) 0 τ (s)

0 −τ (s) 0

⎞
⎠

⎛
⎝

t
n
b

⎞
⎠, (2)

where t is the unit tangent vector of r(s), the dot denotes the
derivative with respect to the natural parameter s, and κ (s) and
τ (s) are the curvature and torsion of C, respectively. In this
frame, the metric tensor Gi j = ∂iR · ∂ jR, with i, j = 1, 2, 3,
explicitly reads

Gi j =
⎛
⎝(1 − κq2)2 + τ 2

(
q2

2 + q2
3

) −τq3 τq2

−τq3 1 0

τq2 0 1

⎞
⎠. (3)

At each point of the neighborhood, we can define the dreibeins
eI

i corresponding to the metric tensor Gi j = eI
i e

J
jδIJ , where δIJ

is the flat metric and the capital letters I, J denote flat-space
indices.

We choose I, J as the locally flat tangent space indices,
then the dreibeins for the Frenet frame are written as

eI
i =

⎛
⎝

1 − κq2 −q3τ q2τ

0 1 0

0 0 1

⎞
⎠. (4)

Inversely, we have

ei
I =

⎛
⎜⎝

1
1−κq2

q3τ

1−κq2

−q2τ

1−κq2

0 1 0

0 0 1

⎞
⎟⎠. (5)

In 3D curvilinear coordinates, the nonrelativistic equation
for a spin-1/2 particle in a confining potential Vc(q2, q3) with
the contribution of spin connection is

H = − 1

2m

[
1√
G

∇i(
√

GGi j∇ j )

]
+ Vc(q2, q3), (6)

where ∇i = ∂i + �i, with the connection �i = i
4ωiIJε

IJKσK ,
G = det(Gi j ). We work in units where h̄ and light speed c are
equal to unity throughout the paper. The spin connection is

ωiIJ = e j
I

(
∂ie jJ − 
k

i jekJ
)
, (7)
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where 
k
i j are the usual Christoffel symbols. The wave func-

tion of the system �(s, q2, q3) should be normalized as∫ √
G|�|2dsdq2dq3 = 1. (8)

We assume that the confining potential Vc(q2, q3) has a
deep minimum on C in the Hamiltonian (6). We can use a
harmonic oscillator potential to represent Vc approximately
in the vicinity of C, namely, Vc(qa) ≈ m

2 ω2q2
a, with ω the

proper frequency. To manipulate the potential, we introduce
the dimensionless parameter ε and reexpress the confining
potential as Vc ≈ m

2ε2 ω
2q2

a. It is easy to find that the smaller ε,
the deeper is the minimum of Vc, and the more the dynamics
is squeezed on C. Next, in the spirit of TLP, we do the
rescaling [34] qa → √

εqa (a = 2, 3) and H → G1/4HG−1/4,
and introduce the new wave function � = G1/4�. After the
rescaling, Vc is a linear function of ε−1 approximately. Such
a rescaling makes the parameter ε appear as a natural and
dimensionless perturbative parameter in the theory. The pa-
rameter ε is assumed to be sufficiently small, so that most of
the dynamics is squeezed on a quasi-1D system.

Before performing TLP, we have to give the explicit form
of the spin connection. After some straightforward calcula-
tions, we find

�s = i

2
(−κσ3̄ − τσs̄) + O(ε1/2), �2 = �3 = 0. (9)

To be clear, the subscripts with a bar stand for the local flat
indices I, J . It turns out that only the tangential component
of the connection is nonzero, which makes the TLP easy to
perform in this case.

Substituting the metric (3) and Eqs. (9) into the Hamilto-
nian (6) and expanding the rescaled Hamiltonian in the order
of ε, we obtain

H = 1

ε
H (−1) + H (0) + O(ε1/2), (10)

where

H (−1) = − 1

2m

(
∂2

2 + ∂2
3

) + εVc(q2, q3) (11)

and

H (0) = − 1

2m
(∂s + �s − iτ L̂)2 + Vg, (12)

wherein the angular momentum operator is defined as L̂ =
−i(q2∂3 − q3∂2), and the geometric potential Vg = − κ2

8m .
H (−1)/ε is the 2D Hamiltonian for a particle confined by
the potential Vc, while Eq. (12) describes the dynamics of a
spin-1/2 particle bounded to the curve.

Equation (12) is still not the effective 1D Hamiltonian
required since the operator L̂ is composed of normal deriva-
tives. To get the availably effective Hamiltonian, we have
to consider the eigenstates of the normal Hamiltonian (11).
Because Vc is independent of s, we separate the rescaled wave
function into tangential and normal wave functions, that is,

� =
∑

β

ψβ (s)χβ (q2, q3), (13)

where the index β labels the degeneracy in the spectrum of
the normal Hamiltonian H (−1). The wave function χ (q2, q3)

is totally determined by the confinement Vc. Here we only
consider the case of a circular cross section, that is, Vc with
SO(2) symmetry. More general case of the cross section has
been discussed in Ref. [15] for the Schrödinger equation.
In this case, it is convenient to make a coordinate trans-
formation in the normal plane (q2, q3) → (r, ϕ), where r =√

(q2)2 + (q3)2, ϕ = arctan(q2/q3). Then the normal eigen-
states can be written as χ (r, ϕ)nl = 1√

2π
Rn(r)eilϕ , where Rn(r)

are normalized radial wave functions, and n and l are radial
and angular quantum numbers, respectively. In the Hilbert
space spanned by these normal eigenstates, the Hamiltonian
(12) becomes a matrix with the elements

H (0)
nln′l ′ =

∫
drdϕrχnlH

(0)χn′l ′ . (14)

It is easy to find that this matrix is diagonal, so we can write
the effective Hamiltonian as

Heff = − 1

2m

[
(∂s + �s + iτ l )2 + κ2

4

]
. (15)

From Eq. (15), we find that for a spin-1/2 particle constrained
to a space curve with a circular cross section, two geometri-
cally induced gauge fields appear in the effective Hamiltonian,
which can be separated into the spin angular momentum
(SAM) part and the IOAM part. The SAM part depends on
both the curvature and torsion of the space curve, while the
IOAM part depends only on the torsion.

B. With an electric and magnetic field

In this section, we consider the case with an external elec-
tric field E and magnetic field B applied. The wave functions
of nonrelativistic spin-1/2 particles in an external electro-
magnetic field satisfy the Pauli equation. It has been found
[49] that the reformulation of the Pauli equation exhibits a
basic U(1)× SU(2) gauge symmetry. This symmetry can be
viewed as a fundamental property of nonrelativistic quantum
mechanics. In the reformulated theory, the U(1) gauge field
accounts for the interaction between the electromagnetic field
and electric charge, and the SU(2) gauge field accounts for the
Zeeman effect and spin-orbit coupling which determine the
dynamics of the spin. It should be noted that the SU(2) gauge
fields do not contain new physical variables, but functions
of E and B, which means the underlying interaction is still
electromagnetic. The Lie algebra corresponding to the SU(2)
group has standard mathematical representation, which con-
sists of the traceless and Hermitian 2 × 2 complex matrices.
Based on group theory, there are 22 − 1 = 3 generators for the
SU(2) group. The generators can be chosen as σx, σy, and σz,
with σ the well-known Pauli matrices. Therefore, the SU(2)
gauge field is also the function of Pauli matrices.

The nonrelativistic Hamiltonian for a spin-1/2 particle in
an electric and magnetic field is of the form [47,49,50]

H = − 1

2m

1√
G

Di(
√

GGi jDj ) − μBB · σ + eV, (16)

where e is the electric charge, μB is the Bohr magneton, the
covariant derivative Di = ∇i − ieAi + i e

4m εi jkσ
jEk , wherein

Ai is the magnetic vector potential, and the last gauge term
accounts for the spin-orbit interaction from the electric field.

053632-3



LIANG, WANG, LAI, ZHAO, ZONG, AND LIU PHYSICAL REVIEW A 101, 053632 (2020)

The second term in Eq. (16) is the usual Zeeman coupling,
and V is the scalar potential. Here we neglect the Darwin term
and higher-order corrections. Formally, the gauge field can be
divided into two parts: one is the U(1) gauge field Ai, the other
is the SU(2) gauge field �i + i e

4m εi jkσ
jEk , with �i the spin

connection from the derivative ∇i in Eq. (6). We denote that
Wi = i�i − e

4m εi jkσ
jEk . In Yang-Mills gauge field theory, the

covariant derivative is written as Dμ = ∂μ − igAi
μ

σ i

2 , with g
the coupling constant. Following Yang-Mills theory, we can
write the tangential and normal components of the gauge field
as Ws = i�s − λws j

σ j

2 and Wa = −λwa j
σ j

2 , where λ = − e
2m

and wi j = εi jkEk .
Before performing the confining potential approach, we

have to note the gauge freedom of the electromagnetic vector
potentials. Thus we need to expand the electromagnetic field
potential in the vicinity of the space curve, that is,

Ai(s,
√

εqa) = Ai(s, 0) + √
εqa∂aAi(s, qb)|qb=0 + O(ε).

(17)
Similarly, for the SU(2) gauge field, we can also expand it as

Wi(s,
√

εqa) = Wi(s, 0) + √
εqa∂aWi(s, qb)qb=0 + O(ε).

(18)
Again, we introduce the confining potential Vc and expand

the rescaled Hamiltonian up to zeroth order of ε and obtain

H = 1

ε
H (−1) + 1√

ε
H (−1/2) + H (0) + O(ε1/2), (19)

where

H (−1) = − 1

2m

(
∂2

2 + ∂2
3

) + εVc(q2, q3), (20)

H (−1/2) = i

m
(eAa + Wa)∂a, (21)

and

H (0) = − 1

2m

[
(Ds + iτ L̂)2 + κ2

4

]
+ eV

− 1

2m
[(−ieAa − iWa)2 + ∂a(−ieAa − iWa)]

+ i

m
qb∂b(eAa + Wa)∂a − μBB · σ.

(22)

Compared with the case without an external field, we find
that a term of the order of ε−1/2 appears in the expression
due to the external field applied. It seems from Eq. (21) that
this term and the terms containing derivatives with respect to
normal coordinates in Eq. (22) prevent the separation between
the tangent and normal dynamics. In the following, we seek
the appropriate gauge for the successful separation of the
dynamics.

For the U(1) gauge field, we can find a gauge transforma-
tion A′

i = Ai + ∂iγ , ψ ′ = ψeieγ , where

γ = −Aa
√

εqa + 1

2
εqaqb∂aAb. (23)

Then, after the gauge transformation, the electromagnetic field
becomes

A′
s = As + O(ε1/2), (24)

A′
a = −√

ε
qb

2
Fab + O(ε), (25)

where Fab = ∂aAb − ∂bAa is the electromagnetic field tensor.
Next we focus on the SU(2) gauge field Wa. Corresponding

to the infinitesimal form of the fermion transformation ψ →
(1 + αi

σ i

2 )ψ , the transformation of the gauge field should be

wai
σ i

2 → wai
σ i

2 + 1
λ

(∂aαi
σ i

2 ) + i[αi
σ i

2 ,wa j
σ j

2 ]. Now we define
the SU(2) gauge transformation

αi
σ i

2
= − λ

√
εqawai

σ i

2
+ λ

2
εqaqb∂a

(
wbi

σ i

2

)
. (26)

Applying this gauge transformation, we find the gauge field
becomes

W ′
a = −1

2

√
εqbFabi

σ i

2
, (27)

where we define the SU(2) field strength as

Fabi
σ i

2
= ∂a

(
wbi

σ i

2

)
− ∂b

(
wai

σ i

2

)
− 2iλ

[
wa j

σ j

2
,wbk

σ k

2

]
.

(28)

As in the case of Eq. (24), for the tangential component Ws, we
can also obtain W ′

s = Ws + O(ε1/2) after the corresponding
transformation. Hence, after the gauge transformations that
we adopt, the tangential components of the gauge field remain
unchanged.

Substituting Eq. (25) and Eq. (27) into the expansion (19),
it is found the ε−1/2 order term vanishes and

H (0) = − 1

2m

[
(Ds + iτ L̂)2 + κ2

4

]
+ eV

+ λ

(
F abLab + F ab

i

σ i

2
Lab

)
− μBB · σ,

(29)

where Lab = −i(qa∂b − qb∂a).
To obtain the effective Hamiltonian for the tangential dy-

namics, we still do the same procedure as the process from
Eq. (13) to Eq. (15). Note that the field strength F ab and
F ab

i
σ i

2 can be explicitly expressed into expressions of the
external electric and magnetic field. The final form of the
effective Hamiltonian for spin-1/2 particles constrained to
a space curve in the presence of an electric and magnetic
field is

Heff = − 1

2m

[
(Ds + iτ l )2 + κ2

4

]
+ eV + Hz, (30)

where

Hz = −μBB · σ + 2λBsl + 2λFsol (31)

and

Fso = (∇⊥ · E⊥)
σs

2
−

(σ⊥
2

· ∇⊥
)

Es + λ(E · σ)Es, (32)

wherein ⊥ stands for coordinates (q2, q3) in the normal plane
of the curve, and Bs = B · t is the tangential component
of the magnetic field. We can find that Hz contains three
parts. The first one is the usual Zeeman coupling term com-
posed of the magnetic field and spin angular momentum.
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The second one is an induced Zeeman interaction between
the tangential magnetic field and IOAM. The third one is a
type of Zeeman interaction discovered in this paper, which
is a coupling between IOAM and the SU(2) field strength,
and we refer to it as the SU(2) Zeeman interaction. The
necessary conditions of this interaction are l �= 0 and the
nonzero gradient of the electric field. Because of the Zeeman
interaction, the spin and intrinsic orbital angular momentum
no longer evolve independently. Equation (30) is the key result
of the present paper, and the following discussions are based
on this effective Hamiltonian.

III. SPIN PRECESSION FOR l = 0

In this section, we study the spatial behavior of spin
precession for moving particles constrained to a space curve
in the case of l = 0. To distinguish the effects of geometry and
an external electric field, we still consider the case without and
with an electric field in turn. No magnetic field is applied in
this section.

A. Without external fields

Without external fields, the effective Hamiltonian (15)
differs from the 1D free-electron Hamiltonian Hf = − 1

2m ∂2
s

only by a spin connection �s as a gauge field and a geometric
potential Vg. Therefore, by constructing a unitary transforma-
tion operator U = e− ∫

�sds, we obtain U †HeffU = Hf + Vg.
Correspondingly, if ψ is the eigenwave function of Heff, ψ f =
U †ψ is the eigenstate of Hf + Vg, retaining the spin state. This
means the precession of the electrons can be described by the
unitary transformation U . Considering the explicit form of �s,
we can always write the unitary transformation as

U = e
iσ·hφ

2 , (33)

where φ =
√

φ2
c + φ2

t with φc = ∫
κds and φt = ∫

τds, and
h = (−τ/φ, 0,−κ/φ)T is a unit vector in the Frenet coordi-
nates. By using the formula

exp

(
iσ · hφ

2

)
= cos(φ/2) + iσ · h sin(φ/2), (34)

we can directly calculate the spin orientation,

〈σ〉 = 〈ψ f |U †σU |ψ f 〉. (35)

Further, the spatial derivatives of the expectation value of the
spin components are obtained as

∂s〈σ〉 = 〈[�s, σ]〉 + 〈∂sσ〉. (36)

We emphasize here that the spin connection is dreibein de-
pendent. If one chooses the local flat tangent space coordi-
nates, the spin connection is the form in Eq. (9), and ∂sσ =
(∂sei

I )σ I = O(ε1/2). Therefore, the commutator 〈[�s, σ]〉 ac-
counts for the precession. One can also choose the frame
where the spin connection vanishes [51], and the final results
are equivalent. Hence the spatial derivative of the spin orien-
tation expectation has a matrix form,⎛

⎝
∂s〈σs〉
∂s〈σ2〉
∂s〈σ3〉

⎞
⎠ =

⎛
⎝

0 κ 0

−κ 0 τ

0 −τ 0

⎞
⎠

⎛
⎝

〈σs〉
〈σ2〉
〈σ3〉

⎞
⎠, (37)

FIG. 1. (a) Schematic diagram of a helix. The parameter values
are r0 = 1, d = 0.5. Here the length unit is arbitrary. (b) Evolution
of the spin orientation on the Bloch sphere for a spin-1/2 particle
constrained to the helix.

or a compact form,

∂s〈σ〉 = φh × 〈σ〉. (38)

From Eq. (38), we can see that h is, in fact, the instantaneous
axis of rotation for spin orientation. Comparing Eq. (37) with
Eq. (2), we find that they have a similar form. However, it
should be note that in Eq. (2), the elements on the left side
are derivatives of vectors, and in Eq. (37), they are derivatives
of spin orientation expectation components. Therefore, the
rotation of spin orientation may be different from the rotation
of the vector in the Frenet frame.

To make it clear, we assume the space curve C is a helix
[see Fig. 1(a)], which can be described in Cartesian coordi-
nates as

x = r0 cos θ, y = r0 sin θ, z = dθ. (39)

It is easy to obtain the curvature κ = r0

r2
0 +d2 , the torsion τ =

d
r2

0 +d2 , and the arc length s =
√

r2
0 + d2θ . We would like to

exhibit the variation of the expectation value of the spin
orientation in Cartesian coordinates, which would give an
intuitional picture in a laboratory frame. In Cartesian coor-
dinates, the spin gauge potential is simply written as �s =
− i

2
√

r2
0 +d2

σz, since the axis of rotation h is found to be −ez.

Then, we get the evolution of the spin orientation for a moving
spin-1/2 particle constrained to a helix, which is shown in
Fig. 1(b). It is found that moving along a helix leads to a spin
orientation rotation in the opposite direction with respect to
the rotation of the helix frame.

B. With a radial electric field

Now, for simplicity, we apply a uniform radial electric field
Er to the helix [see Fig. 2(a)]. In this case, Ws = i�s + λ

2 σ3E0,
with E0 the intensity of Er at r = r0. Since we assume the
applied radial electric field is inward in the x-y plane and
uniform along the z direction, E0 is negative [see Fig. 2(b);
the positive direction is outward]. The corresponding unitary
transformation in this case should be U ′ = ei

∫
Wsds. We write
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FIG. 2. (a) Schematic picture of the applied radial electric field in
the x-y plane. The parameter values are r0 = lE , d = 0.5lE with the
length unit lE = 1/2λE0. (b) The independence of the electric field
on z. (c) Evolution of spin orientation 〈σ〉 and axis of rotation h′ on
the Bloch sphere in the laboratory frame.

the unitary transformation as U ′ = e
iσ·h′φ′

2 , with

h′ =
(−τ

φ′ , 0,
−κ − λE0

φ′

)T

, (40)

and φ′ =
√

φ′2
c + φ2

t , where φ′
c = ∫

κ + λE0ds. The vector h′

is the instantaneous axis of rotation in the case that a radial
electric field is applied. The variation of spin orientation in
this case is shown in Fig. 2(c) for the length range 0 < θ <

2π , with the initial orientation along the x direction. One
readily notes that the axis of rotation is no longer fixed, but
rotates with the particle moving. Because of the rotation of
axis h′, the orientation of spin evolves to be more complex
than the case without an external field. In addition, another
difference caused by the external electric field is the extra
rotation phase in φ′

c. This is why we find that the spin returns
to its original orientation at a certain position θ0 with θ0 < 2π ,
showing the property of Rashba spin-orbit interaction. The
spin precession in this case indicates that the curvature is
tantamount to provide an effective electric field.

The geometric effect in spin precession is closely related
to the Berry’s phase. In the case above, there is a twofold
degeneracy in the system, which means the Berry phase factor
should be generalized to an 2 × 2 matrix according to the
theory of Wilczek and Zee [52]. We can write the matrix as
U (s) = P exp[i

∫
Au(λ(s))dλu], where P is the path-ordering

operator, λ is the set of parameters, and Au = 〈ψμ|i∂u|ψν〉
(μ, ν are the degeneration indices and u is the parameter
space index) is the connection acting as a non-Abelian gauge
field. Based on the analysis above, if s is chosen as the
parameter, the connection Au is just the Ws. Alternatively, we
can choose the spherical coordinates (ϑ, θ ), which correspond
to the sphere in Fig. 2, as the parameters. Then the Berry
connections are Aϑ = iU ′†∂ϑU ′ and Aθ = iU ′†∂θU ′. However,
unlike the Abelian case, the phase change for the degenerated
system cannot be shown by the solid angle subtended by
the circuit in parameter space because no analog of Stokes’
theorem exists for the non-Abelian case [53].

FIG. 3. Energy splitting in a helix as a function of total length
for l = ±1 with (a) only the electric field and (b) both the electric
and magnetic field (μBBz = δE) applied. The unit δE = |λ(∂rEr )|r=r0

and R = √
r2

0 + d2. The parameter values are r0 = lE , d = 0.5lE .
(c) Ballistic conductance at the vicinity of the threshold energy Eth,
in the case of ∂rEr = 0 (dashed line) and ∂rEr �= 0 (solid line).
(d) The expectation values of intrinsic orbital angular momentum
L−

1 = L+
2 (solid line) and L+

1 = L−
2 (dashed line) for the basis of the

eigenvectors.

IV. ENERGY SPLITTING AND EIGENSTATES

In this section, we consider the effective dynamics in a
helix for l = ±1 and mainly pay attention to the induced
SU(2) Zeeman interaction. To ensure such a coupling term
plays a role, we apply the helix of a radial electric field
whose radial gradient is nonzero. In the following, we do a
perturbation calculation on the energy levels in the helix for
l = ±1.

The unperturbed Hamiltonian is H0 = − 1
2m (Ds + iτ l )2 −

κ2

8m + eV . We assume that the induced SU(2) Zeeman coupling
and the magnetic field are sufficiently weak that they can be
treated as a perturbation. In this case, according to Eq. (30),
the perturbation is written as H ′ = λ(∂rEr )r=r0σsl + 2λBsl −
μBB · σ.

First, we assume B = 0. Since κ and V are constant for the
helix, it is easy to solve the eigenequation H0|st , l〉 = E0|st , l〉,
and find the eigenvalue E0 = 1

2m (k2 − κ2/4) + eV , and the de-
generate eigenstates with the form |st , l〉 = eikseilϕei

∫
Wsds|st 〉,

where st = +,− with the definition |+〉 = (1, 0)T and |−〉 =
(0, 1)T . From degenerate perturbation theory, we obtain

∑
s′

t ,l ′
[H ′

s′
t l ′,st l − (E − E0)δs′

t l ′,st l ]ast l = 0, (41)

with E the eigenvalue of H0 + H ′, and ast l the zeroth-order
coefficients used to expand the perturbed states in terms of
|st , l〉. Equation (41) yields eigenvalues E± = E0 ± �E/2,
which are shown in Fig. 3(a) as functions of the total length
s0. It is shown that the energy gap �E varies with s0 initially,
and later tends to a definite value. The initial dependence
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on the total length is caused by the spin precession that we
present in the above section. This energy gap can be utilized
to demonstrate the SU(2) Zeeman interaction experimentally.
When the gradient of the electric field (∂rEr ) is zero, with
the increasing of total energy, the conductance of the helical
wire shows a steplike structure at the threshold energy Eth for
l = ±1 [see the dashed line in Fig. 3(c)], while if we increase
the value of (∂rEr )|r=r0 , a new plateau will appear in the
conductance curve (the solid line) and the width of the plateau
�E will become wider since it is proportional to the gradient
of the electric field. The energy splitting caused by the SU(2)
Zeeman coupling reduces the degeneracy of the system from
4 to 2. The remaining degeneracy is due to the property
of the SU(2) Zeeman interaction that its actions on |st , l〉
and | − st ,−l〉 are the same. The associated eigenvectors
are therefore still not determined completely because of the
remaining degeneracy. However, we can write the bases of
eigenvector for the energy E+ as

|ψ+
1 〉 = a+

o |+,−1〉 + a+
e |+,+1〉, (42)

|ψ+
2 〉 = a+

o |−,+1〉 + a+
e |−,−1〉, (43)

and the bases for the energy E− as

|ψ−
1 〉 = a−

o |+,−1〉 + a−
e |+,+1〉, (44)

|ψ−
2 〉 = a−

o |−,+1〉 + a−
e |−,−1〉, (45)

where a±
o and a±

e can be determined from Eq. (41). To show
the effect of the SU(2) Zeeman interaction on the states, we
give the expectation of the intrinsic angular momentum for
each eigenstate basis in Fig. 3(d), namely, L±

μ = 〈ψ±
μ |L̂|ψ±

μ 〉,
with μ = 1, 2 the degeneration index. It shows that L±

μ oscil-
late with the total length and the amplitudes tend to reduce
with s0 increasing. Because of the degeneracy, we can find
the relation L±

1 = L∓
2 . When the total energy is in the range

between Eth − �E/2 and Eth + �E/2, the channels |ψ−
1 〉 and

|ψ−
2 〉 are open. In this case, if we drive purely spin-polarized

particles into the system, the IOAM polarization may be
expected.

The discussion above is for the case without an external
magnetic field. Unlike the SU(2) Zeeman interaction induced
by the radial electric field with nonzero gradient, Zeeman
coupling for spin and IOAM due to a magnetic field could
relieve the degenerate energy levels completely. In Fig. 3(b),
we add the effect of a magnetic field Bz and plot the energy
splitting against the total length. Comparing Figs. 3(a) and
3(b), it is obvious that the magnetic field relieves the partially
degenerate energy levels in Fig. 3(a) and also breaks the
symmetry of the energy levels about E = E0.

V. CONCLUSION

To conclude, we have performed a thin-layer procedure
to derive the effective Hamiltonian for a spin-1/2 particle
constrained to a space curve in the presence of an electric and
magnetic field. The difficulty on separation of the dynamics in
the tangential and normal direction is overcome by a suitable
choice of gauges. The final result shows that a quantum
potential induced by the external electric field appears in
the effective dynamics, which couples the spin and intrinsic
orbital angular momentum, and can be described as the SU(2)
Zeeman interaction. Based on the effective Hamiltonian, we
have shown the spin precession in a helix without and with
a radial electric field applied, in the case of zero intrinsic
orbital angular momentum. It shows that the curvature can
perform the role of an electric field, and the radial electric field
rotates the instantaneous axis of rotation for the expectation
of spin orientation. For the first-excited modes l = ±1, the
energy splitting due to the SU(2) Zeeman interaction in a helix
has been discussed. The SU(2) Zeeman interaction relieves
the degeneracy partially and does not break the time-reversal
symmetry, showing a different effect from the magnetic field.

Our derivation gives a full description of the nonrelativistic
dynamics in a quasi-1D system including spin and an external
electric and magnetic field. The theoretical results are appli-
cable to various semiconducting nanowires when the electron
rest mass and the Landé factor are replaced by their effective
counterparts. The discovery of the SU(2) Zeeman interaction
implies that in addition to the electric field intensity, the
gradient of the electric field could be important for the ma-
nipulation of the nanowire system when the nonzero IOAM is
considered. Experimentally, the dielectrophoresis [54], which
is a powerful tool for generating high electric field gradients
at nanoscale, may provide the environment required for the
demonstration of this Zeeman interaction. Although we use
the example of helical wires to show the energy splitting, a
similar effect happens in quantum rings, which are easier to
be realized experimentally. In the electric field, due to the
Aharonov-Casher effect [55], the conductance of a quantum
ring exhibits uniform oscillations as a function of the spin-
orbit interaction strength. With the SU(2) Zeeman interaction
added, the Berry phases of the system will be changed, which
are associated with the energy band, spin, and intrinsic orbital
angular momentum. Accordingly, the conductance signature
will be changed. We expect the interaction to be demonstrated
in such nanometer devices.
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