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Effective field theory of bosons with finite-range interaction in a disordered environment
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We investigate the low-temperature properties of an ultracold gas made of bosonic alkali-metal atoms with
finite-range interaction under the effect of a disordered environment. The statistical characterization of the
disorder is investigated within an effective-field-theory formalism for a generic spatial dimension d . Moving
to d = 3, where all the arising divergences are properly regularized, we focus on the depletion of both the
condensate and superfluid densities. At zero temperature we obtain meaningful analytical formulas for the
condensate fraction and the superfluid fraction which take into account the interplay among scattering length,
effective range, and disorder strength.
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I. INTRODUCTION

During the last decades, great interest has been aroused by
the interplay between interactions and disorder. The investi-
gation of quantum effects in many-particle systems moving
in disordered environments goes back in time to the predic-
tion of a localized phase for free electrons in random-lattice
structures [1].

Similarly to other condensed matter issues, significant
efforts have been devoted to explore the role of a disordered
environment in the framework of ultracold atomic gases [2,3].
The main reason lies in the remarkable experimental control
over the relevant physical parameters such as densities and
interaction strengths. In order to construct a random potential
mimicking a porous medium, a viable strategy consists in
superimposing two different optical lattices [4,5]. Experimen-
tally, another possibility is provided by laser-speckle fields,
arising from the interference pattern of waves with the same
frequency but different phases and amplitudes [6–8].

In this paper we focus on disordered bosons within their
superfluid phase but in the presence of a finite-range inter-
action between the atoms. By taking into account a nonlocal
two-body potential, nonuniversal corrections to the thermo-
dynamic potential can be obtained beyond the usual mean-
field picture [9–11]. As a consequence, detachments from
universality may represent a viable approach to reveal the elu-
sive contribution of quantum fluctuations. These corrections
can also be included in a modified Gross-Pitaevskii equation
(GPE), leading to nonuniversal dynamical features [12–16].

Our analysis is carried on within the framework of the
effective field theory, where one can relate the coupling
constants of the Euclidean action functional to the measur-
able s-wave scattering parameters via the T-matrix technique
[10,17]. From a technical point of view, in order to implement
a quantum field theory in presence of a disorder (external)
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potential, different strategies are at disposal. Since we are
interested in how disorder and finite-range interactions both
contribute to modify the condensate and superfluid depletion,
we adopt a perturbative approach: the disorder is assumed to
be weak, in a similar way as quantum and thermal fluctua-
tions. Their role is then taken into account up to the one-
loop (i.e., Gaussian) level. For a zero-range interaction, it
has been shown that also a very weak disorder affects the
thermodynamic picture of a bosonic superfluid [18–20].

On the other hand, the case of strong disorder has to be
treated nonperturbatively. The most standard approaches all
rely upon the so-called replica trick, first proposed in the
context of spin glasses [21–24]. In Ref. [25], a replicated
Hartree-Fock theory managed to reproduce the phase diagram
for interacting bosons where also the localized phase is in-
cluded. However, in this paper we are going to focus only on
the weak disorder regime where the replica trick is not crucial,
since it basically reproduces the perturbative results, as shown
for dirty superconductors [26] and cold atoms [27].

The paper is organized as follows: first we review how
(weak) disorder can be included within a Euclidean functional
formulation for a system of interacting bosons in a generic
dimension d . Then we move to compute the thermodynamic
potential up to the Gaussian level in quantum and thermal
fluctuations by taking into account both the presence of an
uncorrelated quenched disorder and a finite-range interaction
between the atoms. In order to simplify the computational
burden, we focus on pointlike defects. The case d = 3 is
analyzed in more detail, and explicit results are given also for
the thermal depletion of the superfluid density.

II. MODELING THE DISORDER

In this paper, we study the interplay between disorder,
nonlocal interaction, and fluctuations in a quantum gas made
of bosonic particles. To fulfill this task, our analysis will be
carried on within the functional integration framework.

In order to properly construct the path integral for an
ensemble of identical atomic bosons with mass m, we start
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from the second-quantized Hamiltonian,

K̂ =
∫

Ld

dd r ψ̂†(r)

[
− h̄2∇2

2m
− μ − UD(r)

]
ψ̂ (r)

+ 1

2

∫
Ld

dd r dd r′ψ̂†(r)ψ̂†(r′)V (|r − r′|)ψ̂ (r′)ψ̂ (r),

(1)

where V (r) is the central two-atom interaction potential (with
r = |r|), while UD(r) is the random external potential, which
takes into account the effect of disordered environment. The
field operators in Eq. (1) respect the usual bosonic com-
mutation relation [ψ̂ (r), ψ̂†(r′)] = δ(d )(r − r′). The spatial
integration is taken over a large d-dimensional iper cubic
volume Ld ; at the end of the calculation, if interested in the
thermodynamic limit, we have to take the limit L → ∞.

Given Eq. (1) and adopting the functional integration for-
malism, we can represent the partition function of the system
as [28]

Z = e−β� =
∫

D[ψ,ψ∗] exp

{
−1

h̄
SE [ψ,ψ∗]

}
, (2)

where � is the thermodynamic potential, ψ (r, τ ) is the
coarse-grained complex field modeling the bosons, D[ψ,ψ∗]
is the measure of the functional integration over ψ (r, τ ) and
ψ∗(r, τ ), and SE [ψ,ψ∗] denotes the Euclidean (i.e., imagi-
nary time) action, defined as

SE [ψ,ψ∗] =
∫ β h̄

0
dτ

∫
Ld

dd r[ψ∗ h̄∂τψ + K (ψ,ψ∗)]. (3)

In the equation above, β = 1/(kBT ), kB being the Boltzmann
constant and T the absolute temperature.

It is good to characterize the external random potential
UD(r) from a statistical point of view. This implies that its
features can be extracted from a probability density function
(PDF), according to which single realizations of a disordered
environment are distributed. A reasonable choice for UD(r)
can be a centered (i.e., zero average) Gaussian such as the
following one:

P[UD] ∝ exp

{
−1

2

∫
dd rdd r′UD(r)�−1(r, r′)UD(r′)

}
,

(4)

with a proper normalization factor which is, however, not
important in the proceeding [28]. Indeed, we will mostly need
the correlator

〈UD(r)UD(r′)〉dis = �(r, r′), (5)

where 〈. . .〉dis has to be intended as

〈. . .〉dis =
∫

D[UD]P[UD] (. . .) . (6)

From Eq. (4) it is clear that we are assuming that the charac-
teristic timescale of UD(r) is infinitely long compared to the
other ones; we are then restricting ourselves to the (important)
case of a quenched disordered environment. Obviously, this
assumption can be relaxed and the random potential can be
taken as time- or temperature-dependent [29].

Among Gaussian-distributed random configurations, the
most simple situation is provided by potentials with null
correlation length. They all have a δ-like correlator, such as

�(r, r′) = �(r) δ(d )(r − r′) . (7)

Despite being an extremely simplifying assumption, the
equation above suits well with disorder generated by static
and pointlike bosonic impurities [29]. More complicated
disordered configurations are discussed, for instance, in
Refs. [29,30].

III. DISORDER AND FINITE-RANGE INTERACTIONS

A. The finite-range effective potential

The crucial issue now consists in a proper choice of the
two-body interaction. Since the first seminal experiments with
the alkali atoms in the degenerate regime, it appeared that reli-
able analysis and predictions can be carried on by considering
a contact interaction (i.e., zero range) V (r) = g0 δ(3)(r), where
r = |r| and g0 = ∫

dd rV (r) is the interaction strength. This
approximation leads to a universal thermodynamics, where all
the relevant equilibrium features of the system depend only on
the coupling parameter [31,32].

However, thanks to Feshbach resonances, it is possible
to explore regimes where deviations from universalities be-
come relevant [10–12,15,33]. Moreover, in Ref. [9] it was
already pointed out that some divergences in the perturbative
expansion of the thermodynamic potential of Bose gases can
be healed by involving additional features of the interaction
potential such as its characteristic range.

In order to analyze the first correction to the thermody-
namic properties of the Bose gas due to a finite-range interac-
tion, we begin by considering the following low-momentum
expansion:

Ṽ (q) = g0 + g2q2 + O(q4) , (8)

of the Fourier transform Ṽ (q) of two-body interaction poten-
tial V (r), where g0 = Ṽ (0) and g0 = (1/2)Ṽ ′′(0).

By making use of the effective-field-theory techniques [9]
and of the T-matrix formulation of two-atoms collisions [17],
it is possible to define the coupling constants g0 and g2 in the
equation above in terms of measurable scattering parameters.
As discussed in detail in Ref. [11], one obtains

g0 = 4π h̄2

m
as, g2 = 2π h̄2

m
a2

s rs. (9)

It is worth recalling that this recipe can be likewise applied
in lower dimensions, namely, d = 1 and (with some technical
complications) in d = 2 [33].

As mentioned above, thanks to Feshbach resonances, one
can explore a wide range of values for the s-wave scattering
length by tuning an external magnetic fields. The effective
range expansion responsible for Eqs. (8) and (9) has to be
treated carefully close to narrow resonances or zero crossings
of as as a function of the magnetic field B. Rigorously speak-
ing, close to a narrow resonance, a multichannel effective
theory should be required, as detailed in Ref. [34], naturally
reading to finite-range effects. Other multichannel approaches
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rely upon the formation of molecular bound states in the
regime of resonant interaction [35–37].

However, it has been shown that it is possible to reduce
the multichannel scattering problem to a single-channel one
[38], at least for a broad resonance. The analysis reported
in Ref. [38] is further extended for zero-point crossings and
narrow resonances in Ref. [39], where it is also compared
with multichannel numerical outcomes. Remarkably, for the
isolated resonances in 39K and 133Cs, a very good agreement
is found, providing a very good single-channel approximation.

B. δ-correlated Gaussian disorder: perturbative analysis

At the mean-field level, the space-time translationally in-
variant ground state of the system can be described by a
constant v, namely, ψ (r, τ ) = v. For the sake of simplicity
the constant v is taken real. By inserting it in Eq. (3), the
mean-field thermodynamic potential reads

�mf(μ, v)

Ld
= −[μ + 〈UD〉dis]v

2 + 1

2
Ṽ (0) v4, (10)

where we have already considered the disorder average de-
fined in Eq. (6). However, in the following we are going to
consider the case of δ-correlated centered Gaussian disorder,
so 〈UD〉dis = 0. Equation (10) is made stationary only by
v = 0 for μ < 0, but v acquires a nonzero value for μ > 0:

v2 = μ

Ṽ (0)
. (11)

This fact obviously signals the occurring of the superfluid
transition, where a U (1) symmetry is spontaneously broken.

It is important to remark that a δ correlation does
not affect the mean-field picture of the homogeneous and

stationary ground state. Moreover, if we consider the inter-
action potential as given by Eq. (8), we immediately realize
that only g0 = Ṽ (0) appears up to this level of approximation.
As a consequence, in order to explore the role of disorder
and nonlocal interactions, one has to consider fluctuations,
both quantum and thermal, above the ground state given by
Eq. (11).

Let us then consider the following shift of the field:

ψ (r, τ ) = v + η(r, τ ), (12)

with η(r, τ ) being the complex fluctuating field.
By replacing Eq. (12) in the Euclidean action SE [ψ,ψ∗]

and retaining terms up to the quadratic (Gaussian) level in
η and η∗, the partition function defined in Eq. (2) can be
factorized in

Z[UD] 
 e−β�mf

∫
D[η, η∗]e− 1

h̄ (S(pure)
g [v,η]+S(dis)

g [v,η,UD]), (13)

where �mf is given by Eq. (10), S(pure)
g is the Euclidean

action describing the periodic imaginary-time trajectories of
the fluctuating fields η and η∗, while the disorder contribution
is encoded in S(dis)

g .

Within our perturbative scheme, S(pure)
g reads the same

expression for a system not subject to an external disordered
environment. In the Fourier space, this implies that

S(pure)
g = h̄

2

∑
q,ωn

�†(q, ωn)M(q, ωn, v)�(q, ωn) , (14)

with the spinor �†(q, ωn) = [η̃∗(q, ωn), η̃(−q,−ωn)], and

M(q, ωn, v) = β

(
−ih̄ωn + h̄2q2

2m − μ + g0v
2 + v2(g0 + g2q2) v2(g0 + g2q2)

v2(g0 + g2q2) ih̄ωn + h̄2q2

2m − μ + g0v
2 + v2(g0 + g2q2)

)
(15)

is the inverse of the Gaussian propagator. In this framework,
the discrete frequencies labeled by n ∈ Z are the usual Mat-
subara ones, defined as ωn = 2πn/(β h̄) [28].

On the other hand, the disorder contribution S(dis)
g can be

written as [40]

S(dis)
g = −v

∫ β h̄

0
dτ

∫
dd r UD(r)(1, 1) ·

(
η(r, t )
η∗(r, t )

)
. (16)

Since Eq. (13) has, by construction, a Gaussian structure, the
functional integration over η and η∗ can be performed exactly,
reading, in Fourier space [27],

Z[UD] 
 e−β�mf exp

{
−1

2

∑
q,ωn

ln[det M(q, ωn)]

}

× exp

{
1

2

∑
q

|ŨD(q)|2(v, v)M−1(q, 0)

(
v

v

)}
,

(17)

where ŨD(q) is the Fourier transform of the random potential
UD(r). Let us remark that, in the equation above, the propaga-
tor M is computed at ωn = 0, so there is no dependency on the
temperature in the disorder contribution. As stated in Sec. II,
this is due to the assumption of a quenched disorder, whose
characteristic features are frozen compared to other (quantum
and thermally) fluctuating quantities.

The pure contribution of Gaussian fluctuations leads us to

�(pure)
g (μ, v) = 1

2β

∑
q,ωn

ln
[
β2

(
h̄2ω2

n + E2
q

)]
, (18)

with

E2
q =

[
h̄2q2

2m
− μ + g0v

2 + v2Ṽ (q)

]2

− v4Ṽ 2(q) (19)

being the elementary excitation spectrum over the uniform
ground state. By performing the Matsubara summation in
Eq. (18) we can identify the quantum and thermal contribution
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to �
(pure)
g :

�(pure)
g = 1

2

∑
q

Eq + 1

β

∑
q

ln(1 − e−βEq ). (20)

Clearly, �
(pure)
g is independent from UD(r), so Eq. (20) is left

untouched by the (functional) disorder average introduced in
Eq. (6), i.e., 〈�(pure)

g 〉dis = �
(pure)
g . Obviously, this is not true

for the disorder term. Indeed, if we take the logarithm of the
second line of Eq. (13) we get the corresponding

�(dis)
g = −v2

2

∑
q

|ŨD(q)|2(1, 1) · M−1(q, 0)

(
1
1

)
. (21)

Under the assumption of a Gaussian distribution disorder,
〈�(dis)

g 〉
dis

can be easily computed by using Eq. (5), which
gives∫

D[UD]P[UD]|UD(q)|2 = 〈|ŨD(q)|2〉dis = �̃(q) , (22)

where �̃(q) is the Fourier transform of the δ-correlated disor-
der field �(r). In this way we obtain

〈
�(dis)

g

〉
dis

= −v2

2

∑
q

�̃(q) (1, 1) · M−1(q, 0)

(
1
1

)
. (23)

The inverse of Eq. (15) is immediate to compute, such that, at
the continuum limit

∑
q → Ld

∫
dd q/(2π )d ,〈

�(dis)
g

〉
dis

Ld
= −v2

∫
dd q

(2π )d

�̃(q)
h̄2q2

2m + 2v2g2 q2 − μ + 3g0v2
.

(24)

In the following section we derive analytical and numerical
results for the disorder contribution to the thermodynamic
potential provided Eq. (24) as a starting point.

IV. POINTLIKE DEFECTS

A. Disorder contributions in d dimensions

In order to proceed with our calculation, it is necessary to
specify the spatial behavior (or, equivalently, the dependence
on q) of the disorder correlator �(r). For pointlike defects,
Eq. (7) is further simplified, assuming

�̃(q) = � , (25)

where � is a real constant. As mentioned earlier, despite
this simple assumption, the system, in its superfluid phase, is
nevertheless crucially affected by the presence of a disordered
external environment.

In order to highlight this feature, given Eq. (25), let us
recast Eq. (24) as〈

�(dis)
g

〉
dis

Ld
= − � v2

λ(v2, g2)

∫
dd q

(2π )d

1
h̄2q2

2m + 3g0v2−μ

λ(v2,g2 )

, (26)

where, in analogy with the notation used in Ref. [11], we have
defined

λ(v2, g2) = 1 + 4mg2

h̄2 v2. (27)

At this point, it is immediate to realize that the disorder
contribution 〈�(dis)

g 〉
dis

/Ld diverges for d � 2. However, it
has been extensively shown (see [10,32,41,42] for technical
details) that (finite) meaningful information may be extracted
by means of the so-called dimensional regularization.

The key point of this method consists in performing the
integration in Eq. (26) in a generic complex dimension dε =
d − ε, with values of ε ∈ C for which the result is convergent.
The last step requires an analytical continuation back to the
physical dimension we are interested in, i.e., one to consider
a proper limit procedure such that ε → 0. Within this regular-
ization framework, the following result holds:

I (d ) =
∫

dd q
(2π )d

1

q2 + M2
= �(1 − d/2)

2dπd/2
Md−2, (28)

�(z) being the Euler’s � function. As a consequence, Eq. (26)
reads

〈
�(dis)

g

〉
dis

Ld
= −�(1 − d/2)

(2π )d/2

(
m

h̄2

)d/2
� v2(3g0 v2 − μ)d/2−1

λd/2(v2, g2)
.

(29)

Moving from Eq. (29), a simple derivative leads us to the
disorder contribution to the total density as a function of the
condensed one. More technically,

n(dis)
g (n0) = − 1

Ld

∂

∂μ

〈
�

(0)
dis (v, μ)

〉
dis

∣∣∣∣μ = g0n0

v2 = n0

= �(2 − d/2)

4πd/2

(
m

h̄2

)d/2
� gd/2−2

0 nd/2−1
0

λd/2(n0, g2)
. (30)

It is fundamental to note that following a perturbative scheme,
we have identified v2 as given in Eq. (11) with the density n0

of condensed atoms. Thus, our approach provides an implicit
expression for the condensate density of the system. Since
the pure and the disorder contributions to the thermodynamic
potential are additive, as evident from Eqs. (13) and (20), the
same occurs for the contributions to the total number density,
i.e.,

n = n0 + n(0)
g (n) + n(T )

g (n) + n(dis)
g (n). (31)

Let us also point out that within a perturbative approach
for the weakly interacting system, it is possible to approxi-
mate n0 ≈ in the fluctuation corrections n(0)

g (n), n(T )
g (n), and

n(dis)
g (n). Thus, in the following we are going to approximate

n0 with n in the perturbatively computed fluctuation contri-
butions. In Eq. (31), n(0)

g and n(T )
g are computed similarly to

Eq. (30): first, one has to extract the regularized Gaussian
corrections from Eq. (20), then derive them with respect to
the chemical potential.

In Ref. [33], an extensive analysis addressed this topic for
the pure system. Being interested in the role played by the
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FIG. 1. Condensate fraction n0/n at zero temperature as a function of the dimensionless gas parameter na3
s for increasing disorder strength

�. The three panels correspond to different values of the ratio rs/as between the effective range rs and the scattering length as. In the legend, �
is expressed in units of E 2

B/n, with EB = h̄2n2/3/m. The curves are obtained from Eqs. (32) and (33), which provide a reliable thermodynamic
picture of the system within the range of diluteness (i.e., the values of na3

s ) chosen for the horizontal axis.

disorder, we report here only the final result, i.e.,

n(0)
g (n) = 1

4πd/2�(d/2)

(
m

h̄2

)d/2 (g0n)d/2

λ(d−1)/2(n, g2)

[
2

1 + 2m
h̄2 g2n

λ(n, g2)
B

(
d + 1

2
,−d

2

)
+ B

(
d − 1

2
,

2 − d

2

)]
,

n(T )
g (n) =

∫
dd q

(2π )d

h̄2q2

2m

(
1 + 2m

h̄2 g2n
) + g0n√

h̄2q2

2m

[
λ(n, g2) h̄2q2

2m + 2g0n
]
(

1

eβEq (n) − 1

)
, (32)

with B(x, y) the Euler β function, which can be rewritten, after
analytic continuation, in terms of the Euler gamma function
�(x) as follows: B(x, y) = �(x)�(y)/�(x + y). Eq(n) is the
spectrum of collective excitations given by Eq. (19), with
n0 ≈ n.

V. ANALYTICAL AND NUMERICAL RESULTS
IN THREE DIMENSIONS

We now consider the common situation of bosons moving
in three spatial dimensions, i.e., d = 3. In this case, during the
calculation of �(v, μ), only power divergences arise. Within
the dimensional regularization scheme, they are set to zero

and no explicit renormalization is required [32]; this holds for
both the pure and disorder terms.

A. Condensate density

By taking the limit d → 3 in Eqs. (30) and (32), at zero
temperature one gets
n0

n
= 1 − 32

3
√

π

√
na3

s

1 + 8π
(
na3

s

)( rs
as

)
[

1 + 4π
(
na3

s

)( rs
as

)
1 + 8π

(
na3

s

)( rs
as

) − 3

4

]

− 1

(4π )3/2

�
(

m2

h̄4n1/3

)
[
1 + 8π

(
na3

s

)( rs
as

)]3/2(
na3

s

)1/6 . (33)
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FIG. 2. The superfluid fraction ns/n as a function of the dimensionless gas parameter na3
s for different combinations of � and the ratio

rs/as. As in Fig. 1, the disorder strength � is expressed in units of E 2
B/n with EB = h̄2n2/3/m, and rs/as is the ratio between the effective range

rs and the scattering length as. The curves have been obtained from Eq. (37).

In Fig. 1 we report the behavior of the condensate fraction
n0/n at T = 0 as a function of the gas parameter na3

s for dif-
ferent values of the effective range and increasing the disorder
correlator �. We immediately realize that the weight of the
finite-range corrections is enhanced at higher densities (for a
given s-wave scattering length). Indeed, from the middle and
the right panel of Fig. 1 one can observe that depending on the
sign of the ratio rs/as, the condensate is depleted slower (for
rs/as > 0) or faster (when the ratio is negative). Moreover,
the disorder contribution, depending on rs/as, is relevant also
at very low values of na3

s , where the particles seem to be
much more sensitive to the presence of a disordered external
potential. As clearly shown by the dotted red curve and the
dashed-dotted blue curve in the panels of Fig. 1, the joint
presence of disorder and finite-range corrections modifies the
condensate depletion of the system.

Despite that the corrections reported in Fig. 1 are tiny in
magnitude, calculations in the pure case [10–12] show that the
finite-range (Gaussian) contribution to �(μ, v) removes an
artificial thermodynamic instability and consequently expands
the applicability range of a Gaussian theory. More precisely,
by using Eq. (11) with Ṽ (0) → g0 (i.e., rs → 0), one can
express the thermodynamic potential as a function of the
chemical potential μ. By recalling that P(μ) = −�(μ)/L3

and that the uniform configuration is stable for ∂2
μP(μ) > 0,

one realizes that the uniform configuration is unstable above
a critical value of the chemical potential corresponding to
(nas)3

c 
 0.004. In Ref. [11], analytical results for a Bose
gas made of hard spheres (where rs/as = 2/3) are compared
to the corresponding path-integral ground-state Monte Carlo
(MC) simulation [43], finding very good agreement between
theoretical predictions and numerical outcomes.

Moreover, already in Ref. [12], a modified version of the
GPE, including corrections due to Gaussian fluctuations and
finite-range interactions, was found to reproduce numerical
simulations based on diffusion MC methods reasonably well
compared to its zero-range counterpart. Obviously, refined
MC simulations are able to explore the behavior of (bosonic)
quantum gases well beyond the range of validity of the
Gaussian (i.e., Bogoliubov) approach, at a more dense regime
and with higher values of the disorder strengths [44].

B. Superfluid density

The interplay between disorder and nonlocal interactions
can be effectively understood by analyzing the depletion of
the superfluid density. According to the Landau phenomeno-
logical description [45], in the presence of a superflow, the
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total density of the system can be split into

n = ns + n(pure)
n (n) + n(dis)

n (n) , (34)

with ns the superfluid density and nn = n(pure)
n + n(dis)

n the
normal one. The depletion of the superfluid is usually driven
by the thermal activation of the collective excitations. For
instance, in d = 3 dissipation can occur via density waves
(i.e., phonons). As detailed in Refs. [29,46], the original
intuition of Landau and Khalatnikov can be adapted to a
field-theory analysis, reading the well-known formula

n(pure)
n (n, T ) = β

4d

∫
dd q

(2π )d

(
h̄2q2

m

)
eβEq

(eβEq − 1)2
, (35)

with Eq given, again, by Eq. (19) with n0 ≈ n.
However, it is known that the presence of disorder adds

another source of depletion, also at T = 0. For static pointlike
defects, this disorder contribution has a peculiar simple form
[27,46], i.e.,

n(dis)
n (n) = 4

d
n(dis)

g (n), (36)

where ndis(n) has been computed in Eq. (30). Thus, if n is
known, Eqs. (34)–(36) provide an easy way to extract the
superfluid fraction of the system. In the case d = 3 one finds

ns

n
= 1 − 1

6π3/2

�
(

m2

h̄4n1/3

)
[
1 + 8π

(
na3

s

)( rs
as

)]3/2(
na3

s

)1/6 . (37)

In Fig. 2 we report the behavior of ns/n, according to
the equation above, as a function of the gas parameter na3

s .
In the left panel of Fig. 2 we include the results in absence
of a finite-range interaction in order to better understand the
case of rs �= 0. Indeed, for a positive value of the ratio rs/as

(middle panel), the superfluid fraction does not seem to be
significantly affected. On the contrary, for a negative value
of the effective range rs, the left panel of Fig. 2 shows that
the behavior of ns/n is no longer monotonous within the
range of values we have considered for na3

s . This an example
of the interplay between between disorder and finite-range
interactions, both affecting a relevant transport quantity such
as the superfluid fraction of the system.

For the sake of completeness, we notice that from Eq. (37)
one can also deduce the critical disorder strength

�c = 6π3/2 h̄4n1/3

m2

[
1 + 8π

(
na3

s

)( rs

as

)]3/2(
na3

s

)1/6
, (38)

above which the superfluidity is destroyed despite the absence
of thermal excitations. The formula shows that the effective
range rs induces a nonlinear shift on �c.

VI. CONCLUSIONS

We have considered a bosonic system with a finite-range
two-body interaction placed in a disordered environment. We
have investigated the superfluid phase of this system and,
according to our perturbative field-theoretical analysis valid
in any spatial dimension d , we have computed explicitly,
Eqs. (33) and (37), the modified depletion of the condensate
and superfluid density in the three-dimensional case. Our
results show that disorder and nonlocal interactions simul-
taneously modify the contribution of quantum and thermal
fluctuations, leading to nonuniversal corrections. These the-
oretical predictions become very important when the s-wave
effective range rs of the interatomic potential is of the same
order (or larger) with respect to the s-wave scattering length
as. This regime can be achieve by approaching a zero-point
crossing of the scattering where the effective range (otherwise
constant and ∼10a0, with a0 the Bohr’s radius) may vary and
change its sign. It has been pointed out [39] that in this regime,
a single-channel approximation [38] provides quite reliable
results.

In lower spatial dimensions quantum and thermal fluctua-
tions are strongly enhanced and a proper characterization of
their contribution is mandatory, also in terms of interaction
parameters. Moreover, the resulting thermodynamic picture
may serve as a starting point to build an effective Gross-
Pitaevskii-like equation in the spirit of the local-density ap-
proximation. This has been done, for instance, with strongly
magnetic atoms [47,48], binary mixtures [49], or spin-orbit
coupling [50]. However, all these papers do not consider a
disordered environment, which crucially alters the superfluid
dynamics of condensed systems. The physical picture be-
comes more rich if we allow the possibility of a localized
phase, but first we need to understand the interplay between
disorder and nonlocal interaction in the fluctuations contribu-
tion, which may help] (or not) in driving the system towards
the superfluid-to-localized transition.
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