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Interaction-induced instability and chaos in the photoassociative stimulated Raman adiabatic
passage from atomic to molecular Bose-Einstein condensates
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We study the effect of interactions on the conversion of atomic-to-molecular Bose-Einstein condensates
via stimulated Raman adiabatic passage. Both energetic instability during avoided crossings and dynamical
instability during chaotic intervals limit adiabaticity and impose low sweep-rate boundaries on the efficiency
of the process. For the diabatic traverse of avoided crossings, we find a reciprocal power-law dependence of
the final unconverted population on sweep rate. For the traverse of chaos, we find a sharp low-rate boundary
determined by the dynamical instability parameters. The interplay of these two mechanisms determines which
instability controls the failure of molecular production. A judicious choice of sweep parameters is hence required
to restore the process efficiency.
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I. INTRODUCTION

Chemical bonding was demonstrated in several
quantum-gas and cold-atoms experiments [1–10]. Leading
schemes rely on magnetically controlled Feshbach resonances
[2,3,5,6,8,11,12] or on photoassociation via stimulated
optical Raman transitions [1,7,9]. The possibility of
hybrid Bose-Einstein condensates (BECs), described by
atom-molecule models [13–26] thus opens the way to a
new form of coherent “superchemistry” [27–30] in which
collective effects dominate reaction outcomes, as well as to
molecular quantum computation [31,32].

Of particular interest are schemes for adiabatic atom-
molecule conversion. In the Feshbach resonance case, the
paradigm is a nonlinear Landau-Zener (LZ) sweep through
resonance [33–38] involving one atomic and one molecular
mode [Fig. 1(a)]. In comparison, stimulated Raman photoas-
sociation couples three second quantized modes. Atoms are
coupled to ground-state molecules via an intermediate excited
molecular state [Fig. 1(b)]. Adiabatic photoassociation [9] can
thus be induced via either rapid adiabatic passage (RAP), i.e.,
by sweeping the frequencies of the coupling lasers through
two photon resonance, or by pulsing their intensity in a
counterintuitive Stokes-before-pump order while maintaining
two-photon resonance, a technique known as stimulated Ra-
man adiabatic passage (STIRAP) [39–50]. Since photoasso-
ciative STIRAP proceeds via the adiabatic manipulation of an
atom-molecule dark state [7] that does not project onto the
intermediate excited molecular state, its advantage over RAP
is the avoidance of spontaneous emission losses.

One aspect of atom-molecule dynamics that has been ne-
glected so far is the emergence of dynamical chaos. The two-
mode Feshbach scenario involves just one classical degree
of freedom, hence its integrability is maintained throughout
the sweep process. By contrast, photoassociative adiabatic
passage requires two classical degrees of freedom and thus
enables chaotic dynamics.

Recently we have studied the emergence of chaos and
instability due to interactions in the standard (linear coupling)
STIRAP scheme [51,52]. We have found that the process
efficiency is controlled by chaotic intervals of dynamical in-
stability, rather than by the previously known energetic insta-
bility during nonlinear avoided crossing [53]. These stochastic
intervals impose low sweep-rate boundaries on the process’
efficiency: In addition for the standard requirement that the
control parameters be changed slowly with respect to internal
characteristic frequencies, they must be varied sufficiently
quickly so as to successfully traverse the chaotic intervals
before stochastic spreading takes place.

In this paper, we revisit the process of atom-molecule
STIRAP in the presence of inter-species and intraspecies
nonlinear interaction. While the detrimental effect of non-
linear scattering terms have been numerically investigated
[44–48], the role of the ensuing instabilities and in partic-
ular the emergence of nonintegrable chaotic dynamics have
not been previously highlighted. Carrying out the stability
analysis around the followed atom-molecule dark state, we
find, similarly to Refs. [51,52], both energetic instabilities that
show up as avoided crossings in the bifurcation diagram and
intervals of chaotic dynamical instability that have no trace
in the bifurcation diagram. Unlike Refs. [51,52], where the
process efficiency was overwhelmingly limited by dynamical
instabilities, we find that depending on pulse parameters, both
avoided crossings and chaos can play a role in setting the
low sweep rate boundaries. In particular, the former lead to
a reciprocal power-law dependence of the remnant population
on the sweep rate, whereas the latter introduces a sharp low
rate boundary that can be determined from the Bogoliubov
stability parameters.

The paper is arranged as follows. In Sec. II we present
the atom-molecule STIRAP model. In Sec. III we work out
the adiabatic stationary point (SP) solutions and in Sec. IV
present numerical simulations of slow but finite sweep-rate
dynamics, demonstrating the low sweep-rate boundaries on
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FIG. 1. Schematics of atom-molecule BEC coupling: (a) Fesh-
bach resonance, (b) photoassociation.

efficient molecular BEC production. Energetic and dynamical
instabilities are determined in Sec. V using the Bogoliubov
perturbative formalism. Poincaré sections are used in Sec. VI
to associate intervals of dynamical instability with chaotic
quasistatic dynamics. Using this information, the numerical
results and their dependence on the sweep rate are explained
in Sec. VII. The typical magnitude of interparticle interactions
and their relevance to realistic experiments is discussed in
Sec. VIII. Conclusions are presented in Sec. IX.

II. PHOTOASSOCIATIVE STIRAP

We consider the photoassociation scheme schematically
illustrated in Fig. 1(b). An atomic BEC is converted into a
ground-state molecular BEC, via a STIRAP sequence in a
� configuration involving an excited molecular mode. The
STIRAP sequence proceeds via the usual counterintuitive
Stokes-before-pump pulse sequence [40] while maintaining
two-photon resonance, thus guiding an atom-molecule dark
state from mode “a” to mode “g” without significant pro-
jection onto mode “b” throughout the process. Under the
assumption that photoassociation is fast with respect to mo-
tional timescales, the pertinent Hamiltonian is given by the
three-mode parametric Bose-Hubbard model [43,44],

Ĥ = �b̂†b̂ − �1(t )

2
√

N
(ââb̂† + H.c.) − �2(t )

2
(b̂†ĝ + H.c.)

+ 1

2

(
Uaan̂2

a + Ubbn̂2
b + Uggn̂2

g

) + Uagn̂an̂g, (1)

where â, b̂, and ĝ are bosonic annihilation operators for
particles in the corresponding modes, n̂α = α̂†α̂ are mode
populations, �1,2 are the “pump” atom-molecule (a–b) and
“Stokes” molecule-molecule (b–g) couplings, respectively,
and � is the one-photon detuning. The intraspecies inter-
action strengths are denoted by Uaa, Ubb, and Ugg, while
the atom-molecule scattering strength is Uag. Atom-molecule
interaction involving excited molecules is neglected for
the purpose of determining breakdown points, as the in-
termediate mode’s population in an ideal STIRAP scenario
remains small throughout the photoassociation process. To
implement STIRAP, the couplings are taken to be Gaussian
pulses �1,2(t ) = Kexp [ − (x − x1,2)2] in a “counterintuitive”

sequence (x1 > x2) with x = t/τ where τ is the pulse width.
Throughout the paper peak times are x1 = 4 and x2 = 2.33.

In the classical mean-field limit, obtained as N → ∞ at
fixed UαβN, the field operators are replaced by c numbers.
Rescaling the amplitudes as a → a/

√
N , b → b/

√
N , g →

g/
√

N , and time as t → Kt , the classical Hamiltonian reads

Hx = δ|b|2 − 1
2 [�̄1(x)(a∗2b + a2b∗) + �̄2(x)(b∗g + g∗b)]

+ 1
2 [uaa|a|4 + ubb|b|4 + ugg|g|4] + uag|a|2|g|2, (2)

where the dimensionless parameters are δ = �/K , �̄1,2(x) =
�1,2(x)/K and uαβ = UαβN/K . Below we employ interac-
tion parameter ratios that are roughly consistent with those
of rubidium (87Rb), such that ubb = ugg = uaa/2, and uag =
1.25uaa [45,46]. The atom-atom interaction is taken to be
uaa = 0.2c, where c corresponds to the relative strength of
interaction with respect to the linear laser coupling between
modes. An additional motional constant is provided by total
number conservation, |a|2 + 2|b|2 + 2|g|2 = 1.

III. STATIONARY POINTS AND BIFURCATION
DIAGRAMS

The adiabatic stationary points (SPs) sT = (as, bs, gs), of
the classical dynamics at any fixed value of the control pa-
rameter x, are obtained by extremizing Hx − (μx/K )(|a|2 +
2|b|2 + 2|g|2), where μx denotes the chemical potential at x,
thus obtaining the time-independent equations,

[H1(s) + H2(s)]s = μs, (3)

where

H1(s) =

⎛
⎜⎝

0 −�̄1a∗ 0

− �̄1
2 a δ − �̄2

2

0 − �̄2
2 0

⎞
⎟⎠, (4)

H2(s) =

⎛
⎜⎝

uaa|a|2 + uag|g|2 0 0

0 ubb|b|2 0

0 0 ugg|g|2 + uag|a|2

⎞
⎟⎠,

(5)

and

μ =

⎛
⎜⎝

μ/K 0 0

0 2μ/K 0

0 0 2μ/K

⎞
⎟⎠. (6)

The energy of each stationary solution is then evaluated
as ESP(x) = Hx(s(x)). It should be noted that unlike linear
STIRAP, one typically obtains more than three SPs, up to a
maximum of eight.

Plotting ESP for all stationary solutions as a function of x,
we obtain the bifurcation diagrams shown in the top panels
of Figs. 2–4 for various strengths of the interaction. The
corresponding as, gs, and bs populations of the stationary
solutions are presented in the lower panels of the same figures.

IV. SLOW-SWEEP DYNAMICS

Starting with the noninteracting case (Fig. 2) one still ob-
tains a proliferation of SPs due to the nonlinear atom-molecule
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FIG. 2. Atom-molecule STIRAP dynamics in the absence of
interaction (c = 0): (a) stationary point energies; (b) stationary point
atomic population; (c) stationary point target molecular population;
(d) stationary point intermediate molecular state population. Mark-
ers distinguish between different SPs and associate the projections
with a given adiabatic energy curve. The followed (dark-state)
SP is marked by a solid thick black line. Circles mark the ob-
served successful conversion dynamics at a rate of ẋ = 6.6 × 10−5.
There is no deterioration of conversion efficiency at slower sweep
rates.

coupling. However, one adiabatic solution, marked by bold
lines in Fig. 2, is an atom-molecule dark state, transforming
from an all-atomic state |a|2 = 1 at x = 0 to an all-molecular
state |g|2 = 1 at x → ∞, while maintaining |b|2 = 0 for all x.
Plotting the population dynamics, during a numerical simula-
tion with a finite-time sweep at ẋ = 6.6 × 10−5 (circle mark-
ers in Fig. 2), the system successfully follows the adiabatic
ground state, eventually producing a molecular condensate
with near-unit efficiency. This result is representative for all
sweep rates below the standard adiabatic threshold Kτ � 1,
hence there is no low rate boundary on the photoassociative
STIRAP efficiency. The situation is quite different in the
presence of even a relatively moderate (c = 0.1) interaction
(see Fig. 3).

FIG. 3. Atom-molecule STIRAP dynamics for c = 0.1. The
same convention as in Fig. 2 is used to present the SP solutions.
However, the dynamics at a rate of ẋ = 6.6 × 10−4 (blue circles),
ẋ = 6.6 × 10−6 (dashed magenta line), and ẋ = 3.3 × 10−7 (yellow
dotted line) demonstrate that interaction leads to the failure of
atom-to-molecule conversion at slow sweep rates. The failure onset
points at different slow sweep rates match the chaotic interval (cyan-
shaded band) and the x2 avoided crossing (vertical dash-dotted line),
determined from the stability analysis in Sec. V.

While the atom-molecule dark state is still present, we
observe a surprising slow sweep deterioration of the trans-
fer efficiency, similar to the results of Refs. [51,52]. The
fastest sweep shown (ẋ = 6.6 × 10−4, blue circles) guaran-
tees successful conversion. However, at a slower rate (ẋ =
6.6 × 10−6, dashed magenta line) the population dynamics
deviates from the followed adiabatic state towards the end of
the process. At an even slower rate (ẋ = 3.3 × 10−7, yellow
dotted line) the breakdown point is shifted to a much earlier
stage.

The dynamics in the presence of stronger interaction (c =
0.5) is presented in Fig. 4. Here there are three distinct
breakdown points obtained at different sweep rates. the fastest
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FIG. 4. Atom-molecule STIRAP dynamics for c = 0.5. SP solu-
tions are shown using the same convention as in Fig. 2. Dynamics
at rates of ẋ = 3.3 × 10−2 (blue circles) gives near 100% conversion
efficiency. Slower sweep rates of ẋ = 3.3 × 10−3 (dashed magenta
line), ẋ = 3.3 × 10−5 (bold black dots) and ẋ = 6.6 × 10−9 (light
yellow dots) show failure at the chaotic interval (shaded cyan band)
or at either one of the avoided crossings at x1,2 (vertical dash-dotted
lines).

sweep has close to 100% efficiency, but slower sweeps fail at
either of the marked vertical lines or at the shaded interval
between them. Below we show that the vertical lines in
Fig. 3 and Fig. 4 correspond to avoided crossings in the
bifurcation diagram, indicating an energetic instability, while
the shaded regions mark intervals of dynamical instability due
to chaotic dynamics around the SP. Since each such insta-
bility could be traversed using a sufficiently fast sweep, and
since the threshold rates differ for different instabilities, we
obtain that different instabilities manifest at different sweep
rates.

We note that for larger values of c, the interaction cannot
be treated as a perturbation of the photoassociative STIRAP
dynamics and an atom-molecule dark state is no longer avail-

able, altogether precluding the possibility of efficient atom-
molecule transfer, regardless of pulse duration.

V. STABILITY ANALYSIS

In order to characterize the effect of interactions on the
stability of the followed SP during photoassociative STIRAP,
we carry out Bogoliubov stability analysis [54,55] around
it. Perturbing the state vector about the SP solution, so that
s(t ) ⇒ sSP + δs(t ), transforming δs(t ) ≡ ue−iωt − v∗eiωt and
linearizing the resulting dynamical equations, we obtain the
Bogoliubov equations for the quasiparticle modes {u, v} and
their characteristic frequencies ω,

[μ + ω − H(sSP ) + A(sSP )]u + [H3(sSP ) − B(sSP )]v = 0,

(7)

[μ − ω − H(sSP ) + A(sSP )]v + [H3(sSP ) − B(sSP )]u = 0,

(8)

where H = H1 + H2 + H3 with the definitions

H3(sSP ) =

⎛
⎜⎝

uaaa2
SP 0 uagaSPgSP

0 ubbb2
SP 0

uagaSPgSP 0 uggg2
SP

⎞
⎟⎠, (9)

A(sSP ) =

⎛
⎜⎝

0 0 0
�̄1
2 aSP 0 0

0 0 0

⎞
⎟⎠, (10)

B(sSP ) =

⎛
⎜⎝

�̄1bSP 0 0

0 0 0

0 0 0

⎞
⎟⎠. (11)

The photoassociation atom-molecule system has three
classical degrees of freedom (e.g. the amplitudes

√
na,b,g and

phases ϕa,b,g serving as canonical action-angle coordinates).
Total number conservation thus implies there would be one
zero Bogoliubov mode and two nontrivial modes. When the
frequencies are real, their sign determines the energetic stabil-
ity of the SP. By contrast, an imaginary Bogoliubov frequency
indicates the dynamical instability of the motion within the
SP’s energy surface. While energetic minima and maxima
are always dynamically stable, energetic saddle points can be
either dynamically elliptical or dynamically hyperbolic.

The real and imaginary parts of the resulting Bogoliubov
frequencies for the interaction strengths of Figs. 2–4 are
plotted as a function of x in Fig. 5. For the noninteracting
case [c = 0; see Figs. 5(a) and 5(d)] the followed SP remains
a dynamically stable energetic saddle point (ω1 < 0, ω2 > 0,
Im[ω1,2] = 0) throughout the process. By contrast, for c =
0.1 [Figs. 5(b) and 5(e)] there is a transition from an energy
saddle (ω1 < 0, ω2 > 0) to an energy minimum (ω1,2 > 0)
precisely at the point x = x2 where we have observed the
late breakdown for the ẋ = 6.6 × 10−6 sweep in Fig. 3. This
transition shows up as an avoided crossing in the bifurcation
diagram. Moreover, a brief interval of dynamical instability
(Im[ω1,2] 	= 0) precisely matches the onset of breakdown at
the slowest sweep rate ẋ = 3.3 × 10−7 in the same figure. This
interval has no trace in the bifurcation diagram that reflects
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FIG. 5. Characteristic Bogoliubov frequencies {ωq}q=0,1,2 around
the followed SP. The real and imaginary parts of the frequencies are
plotted, respectively, for c = 0 (a, d), c = 0.1 (b, e), and c = 0.5 (c,
f). Note the x axis in panels (e) and (f) is chosen to zoom on the re-
gion of dynamical instability, where Im(ω) 	= 0. The corresponding
dynamical instability intervals are marked by shaded cyan regions
in panels (b) and (c). The dotted (dashed) parts of Re[ω] mark the
x range where the followed SP is a maximum (minimum) of the
energy landscape, while solid lines mark the region where the SP
is an energetic saddle point. Energetic stability is lost (regained) at
the avoided crossing point x1 (x2), marked by vertical blue lines in
panels (b) and (c):

only the structure of the energy landscape rather than the
dynamics within each energy surface.

Similarly, for the strongest interaction c = 0.5 case
[Figs. 5(c) and 5(f)], we can correlate the observed breakdown
of photoassociative STIRAP in Fig. 4 at different sweep rates,
with various energetic and dynamical instabilities. Here the
followed SP starts out as an energy maximum (ω1,2 < 0),
becomes a saddle (ω1 < 0, ω2 > 0) at x = x1 and then a
minimum (ω1,2 > 0) at x = x2. The avoided crossings at the
x1,2 transition points explain the observed breakdown at the
ẋ = 6.6 × 10−9 and ẋ = 3.3 × 10−3 sweeps of Fig. 4, respec-
tively. Additionally, the breakdown at the intermediate rate of
ẋ = 3.3 × 10−5 in Fig. 4 corresponds to a broad interval of
strong dynamical instability.

VI. POINCARÉ SECTIONS

In order to explore the origin of the dynamical instabil-
ities in Figs. 5(e) and 5(f), we study the structure of the
pertinent energy surfaces containing the followed SP, using
Poincaré sections. Eliminating one degree of freedom due to
number conservation, the phase-space of the atom-molecule
system is four-dimensional (e.g., spanned by two population
imbalances and two relative phases between modes). Fixed

(a)

0 1 2
-1

0

1

2n
b

-2
n

g

(d)

0 1 2
-1

0

1

(b)

0 1 2
-1

0

1

(e)

0 1 2
(

b
-

g
)/

-1

0

1
(f)

0 1 2
-1

0

1

(c)

0 1 2
-1

0

1

FIG. 6. Poincaré sections in the {na[SP], ESP} plane for the non-
interacting system at (a, d) x = 2.6667, (b, e) x = 3.2667, and (c,
f) x = 3.6667. In the upper row, the magenta dots correspond to
the evolution of a small cloud of classical points prepared around
the all-atoms SP at x = 0, under time-dependent Hamiltonian until
the stated x values and then under the frozen Hamiltonian H (x) for
a long time. The second row shows the quasistatic evolution of the
semiclassical cloud prepared at SP(x) under the fixed Hamiltonian
H (x). Thus, the top row corresponds to the accumulated effects of
instabilities up to the stated x, while the bottom row highlights the
instantaneous stability or instability at the stated value of x. For
the noninteracting system, there are no instabilities and hence no
distinguishable difference between the rows.

energy surfaces E = ESP are thus three-dimensional. For the
finite interaction c 	= 0 cases, we choose the dynamical co-
ordinates to be nb, na − 2ng, and 2φa − φg. Poincaré sections
are obtained by plotting a point in the {na − 2ng, 2φa − φg}
plane each time a trajectory hits the followed SP value of
nb, i.e., nb(x) = |bSP(x)|2. For the noninteracting (c = 0) case,
we have nb[SP] = 0 for all x and our conjugate variables are
2nb − 2ng and φb − φg for the surface {ESP, na[SP]}.

In Fig. 6 we plot representative Poincaré sections through-
out photoassociative STIRAP in the absence of interaction.
Over these sections, we overlay the semiclassical propagation
of an initially localized Gaussian cloud of classical points.
In the top row, we plot the free evolution up to the speci-
fied value of x, under the slowly varying Hamiltonian, thus
showing the accumulated spreading during the propagation.
In contrast, the bottom row shows the propagation under
the frozen instantaneous Hamiltonian at the specified x, thus
highlighting the precise values of x where the followed SP
becomes unstable. Interestingly the energy shell of the fol-
lowed SP contains chaotic regions even without interaction,
due to the nonlinearity of the a-b atom-molecule coupling.
However, consistently with its stability analysis, the followed
SP avoids these stochastic regions throughout its evolution
and consequently remains localized. Since no instability is
encountered, there is no discernible difference between the
varying-x and fixed-x dynamics.

The Poincaré sections in the presence of c = 0.1 interac-
tions are presented in Fig. 7. The dynamical instability at
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FIG. 7. Poincaré sections for c = 0.1 in the {nb[SP], ESP} plane,
taken at (a, d) x = 2.8333, (b, e) x = 2.8667, (c, f) x = 2.9. Top
(bottom) row is accumulated (instantaneous) evolution, as in Fig. 6.
A brief chaotic interval where the semiclassical cloud stochastically
spreads along a chaotic strip (b, e), matches the x values for which
dynamical instability is seen in Fig. 5(e). While the instantaneous
dynamics after this interval returns to stability (f), the spreading that
took place within it cannot be reversed (c).

x = 2.8667 (see Fig. 5) corresponds to the spreading of the
semiclassical cloud over a narrow chaotic strip [Fig. 7(b)],
resulting in the observed breakdown of the slowest sweep
dynamics (yellow dotted line) in Fig. 3. Comparing panels
Figs. 7(c) and 7(f), we see that in agreement with Fig. 5(e), the
SP at x = 2.9 returns to dynamical stability, but the accumu-
lated effect of spreading during the preceding chaotic interval

cannot be undone. More pronounced stochastic spreading is
observed during the broader chaotic interval for c = 0.5, as
shown in Fig. 8.

VII. DEPENDENCE OF CONVERSION EFFICIENCY ON
SWEEP RATE

As noted in Sec. IV, the outcome of photoassociative
STIRAP depends strongly on the sweep rate, with unexpected
deterioration of the process efficiency for longer pulse du-
rations. This dependence now becomes clear, since at the
limit of an infinitely slow sweep the system is not able to
traverse the avoided crossings at x1 and x2 and is also subject
to stochastic motion during the chaotic interval between them.
In order to recover the photoassociation efficiency, the process
has to be carried out sufficiently quickly so that the avoided
crossings are traversed diabatically and the chaotic interval is
crossed before stochastic spreading takes place.

In Fig. 9 we plot the atom-to-molecule conversion effi-
ciency P = ng(∞) and the remnant unconverted population
1 − 2P as a function of the sweep rate ẋ for various value
of the interaction strengths c. In the absence of interactions
(c = 0, black solid line) there is no low sweep rate boundary.
Interestingly, the remnant population at the slow sweep limit
decreases as a power law 1 − 2P ∝ (ẋ)1/3 rather than accord-
ing to the exponential LZ prescription. This post-LZ behavior
is related to the nonlinear atom-pairing term, as detailed in
previous studies of interaction-free atom-molecule conversion
[33–36]. For weak interaction, the avoided crossing appears
at x2, but the system remains dynamically stable throughout
the process, i.e., there is no interval of chaotic quasistatic
motion. Since the avoided crossing has to be crossed dia-
batically to achieve high conversion efficiency, we obtain an
reciprocal power-law dependence with the remnant popula-

FIG. 8. Poincaré sections for c = 0.5 in the {nb[SP], ESP} plane, taken at (a, e) x = 3.2, (b, f) x = 3.2667, (c, g) x = 3.45, and (d, h)
x = 3.9. Upper (lower) row is accumulated (instantaneous) evolution, as in Fig. 6 and Fig 7. The dynamical instability in the Bogoliubov
analysis [see Fig. 5(f)] precisely matches the range of x where the followed SP is embedded in the chaotic sea.
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FIG. 9. Sweep rate dependence of the conversion efficiency
P ≡ ng(∞) for c = 0, 0.04, 0.06, 0.07, 0.08, and 0.1 (self-evident in
panel a, bottom to top lines in panel b), describing the transition from
x2-dominated breakdown to chaos-induced failure: (a) Efficiency
plot in a ẋ-c-P layout, with the cyan plane marking the interaction
strength cchaos at which chaotic intervals emerge; (b) log-log plot of
the remnant population 1 − 2P at the same sweep rates, with dash-
dotted lines marking 1 − 2P ∝ ẋ1/3 and 1 − 2P ∝ ẋ−1/2 power-law
dependence. The noninteracting system (black solid line) exhibits an
ẋ1/3 power-law decrease of the remnant population as the sweep rate
decreases, hence no low sweep-rate boundary. For 0 < c < cchaos the
power law is inverted to ẋ−1/2 due to the need to quickly traverse
the avoided crossing at x2. At higher interaction strengths c > cchaos,
the traverse through chaotic intervals results in jagged regions.
The sharp chaos-controlled low sweep rate boundary (dashed ver-
tical lines in both panels) becomes more restrictive as c increases,
eventually taking over the more moderate x2-controlled power-law
degradation.

tion increasing as 1 − 2P ∝ (ẋ)−1/2 with slower sweeps. At
stronger interaction, intervals of dynamical instability appear
as described in Sec. V. The low sweep rate boundary for
traversing these chaotic intervals is obtained from the Bogoli-
ubov analysis, as

ẋ >
ξ

ts
, (12)

where ξ is the width of the instability interval (the x range
where Im(ω) 	= 0) and ts ≡ 1/ max[Im(ω)] is the character-
istic spreading time. These boundaries are marked in Fig. 9
and coincide precisely with the breakdown of the power-law
dependence and the appearance of jagged disordered features
in the efficiency curves. With stronger and broader chaotic
intervals at higher values of c, the sweep rate required for
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FIG. 10. The final conversion yield P is plotted versus the sweep
rate ẋ for interaction strength values of (a) c = 0.1, (b) c = 0.2,
(c) c = 0.5. To isolate the effect of chaos from that of the avoided
crossing at x2, we plot both the final efficiency at the end of the full
sweep (black, ×) and the efficiency just before x2 (brown, ◦). Vertical
lines mark the point where P crosses the 96% threshold. Dash-dotted
lines mark the low rate boundaries, whereas dotted green lines mark
the standard high rate boundary. Thus, region (1) in (a) corresponds
to chaos-controlled failure, region (2) is the power-law degradation
regime controlled by the avoided crossing at x2, region (3) marks
the operational high efficiency regime between sweep-rate bound-
aries, and region (4) corresponds nonadiabatic dynamics where the
sweep is no longer slow with respect to the system’s characteristic
frequencies.

their successful traverse increases, until it overtakes the weak
power-law decay due to the x2 avoided crossing and the
efficiency becomes chaos-controlled. Due to its narrow width
and small gap, the avoided crossing at x1, appearing for c >

0.1 can only damage the efficiency at much lower values of
ẋ. Thus, like the avoided “horn” crossings in Refs. [51–53],
it never controls the low sweep rate boundary. Its effect
is significant only for much higher values of c where the
adiabatic path from atoms to molecules no longer exists.

The interplay of the two breakdown mechanisms related
to the adiabatic following of the avoided crossing at x2 and
to the stochastic spreading during the chaotic dynamical
instability interval is illustrated in Fig. 10, where we plot
efficiency versus rate curves at stronger (c > 0.1) interaction.
The final efficiency (black, ×) involves both effects, but we
can separate out the chaos-only degradation, if we stop the
process just before x2 (brown, ◦). As also seen in Fig. 9,
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for c = 0.1 [Fig. 10(a)] chaos is manifest only at slower
sweep rates [region (1) in Fig. 10(a)] where there is already
significant efficiency deterioration due to the x2 crossing.
For this interaction strength, it is still the power-law regime
[region (2) in Fig. 10(a)] that sets the low sweep rate boundary.
However, at stronger interaction strengths [Figs. 10(b) and
10(c)] the power-law region shrinks and the final efficiency is
purely determined by chaos, as evident from the nearly prefect
overlap of the pre-x2 and post-x2 efficiency curves.

VIII. RELEVANCE TO EXPERIMENTS

Before closing, we evaluate the typical magnitude c of
interparticle interaction with respect to atom-molecule and
molecule-molecule transition rates, for realistic experimen-
tal parameters. Following Refs. [45,46], the magnitude of
c in a typical 87Rb setup at a low number density of ρ =
4.3 × 1012 cm−3 is approximately 0.005, increasing by an
order of magnitude for every two orders of magnitude in
ρ. Thus we expect c ≈ 0.05 for the realistic density of ρ =
4.3 × 1014 cm−3. Consequently, considering the results of
Fig. 9, and as already have been observed in Refs. [45,46],
interactions will substantially alter the outcome of the atom-
molecule STIRAP process under realistic experimental con-
ditions. Noting that the exact value of c can also be tuned by
variation of laser parameters such as intensity and detuning,
the relevance of interaction-induced effects should be assessed
on a case-by-case basis.

IX. CONCLUSION

We have studied the mechanisms degrading the effi-
ciency of atomic-to-molecular BEC conversion via STIRAP
in the presence of interparticle interactions. Our findings
highlight the significance of energetic instability, dynam-
ical instability, and chaos in such processes. In particu-
lar, we find that both avoided crossings in the bifurcation
diagram and chaotic intervals where the adiabatically fol-
lowed atom-molecule dark state becomes dynamically un-
stable without leaving a trace in the bifurcation diagram
can play a role in setting molecular outcomes and introduce
low sweep-rate boundaries for efficient conversion. In the
absence of interparticle interaction, we retrieve the known
result of post-Landau-Zener power-law decrease of the rem-
nant population as the sweep rate decreases [33–36]. In the
presence of interactions, in regimes where the conversion
efficiency is controlled by an avoided crossing, we find
an intriguing inverse power-law dependence of the efficiency
on the sweep rate. When chaos limits the conversion, we
obtain nonmonotonic disordered degradation as the sweep
slows down, due to stochastic spreading over the entire energy
shell that contains the followed SP.
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