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Instability threshold in a large balanced magneto-optical trap
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Large clouds of cold atoms prepared in a magneto-optical trap can develop spatiotemporal instabilities when
the frequency of the trapping lasers is brought close to the atomic resonance. This system bears close similarities
with trapped plasmas, whereby effective Coulomb interactions are induced by the exchange of scattered photons
and lead to collective nonlinear dynamics of the trapped atoms. We report in this paper a detailed experimental
study of the instability threshold, and comparisons with three-dimensional simulations of the interacting, laser-
driven cloud.
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I. INTRODUCTION

The magneto-optical trap (MOT), first demonstrated in
1987 [1], is widely used nowadays. It has triggered a broad
field of research in the past decades. Following its initial
demonstration, early work explored the role of sub-Doppler
mechanisms [2] and multiple scattering of light [3]. In ad-
dition to representing essential experimental technology to
reach quantum degeneracy in ultracold gases, MOTs can
harbor in the large atom number limit a variety of interesting
nonlinear phenomena that are not yet fully understood and
bear intriguing ties to plasma [4–8] and stellar physics [9,10].
Descriptions borrowed from the fields of nonlinear dynamics
[11,12] and fluid physics [13] have been employed to investi-
gate these phenomena.

In a MOT with a large number of trapped atoms N , these
are subjected to three forces. A trapping and cooling force
is exerted by laser beams in the presence of a magnetic
field gradient. This force depends on laser and magnetic field
parameters, but not on N . Two additional, collective forces
appear when N is large enough. First, the laser beams are
attenuated inside the atom cloud due to photon scattering. This
attenuation yields a compressive correction to the trapping
force [14]. Second, the scattered photons can be rescattered
by other atoms, which gives rise to a Coulomb-like repulsive
force [3]. It is the interplay between these three forces that can
generate unstable dynamics in large MOTs.

During the last two decades, instabilities in MOTs have
been studied in various configurations [9,11,12,15,16]. In
Ref. [9] we reported an unstable behavior for a large balanced
MOT (see Sec. II) and presented a preliminary study of
its instability threshold. A simple unidimensional analytical
model allowed us to provide a rough instability criterion.
In the present work we provide a detailed analysis of the
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instability threshold using an improved experimental scheme
where the number of trapped atoms is controlled. Some of
our observations deviate from the scaling predicted by the
analytical model of Ref. [9]. We thus developed a three-
dimensional numerical simulation based on microscopic theo-
retical ingredients, whose results are in qualitative agreement
with the experiment.

The article is organized as follows. In Sec. II we describe
our experimental setup and measurement procedure. We then
review previous theoretical models of MOT instabilities in
Sec. III A, and describe our numerical approach in Sec. III B.
In Sec. IV we present our experimental results and discuss the
comparison to our numerical simulations. The implications
of our findings and ensuing perspectives for future work are
outlined in Secs. V and VI.

II. EXPERIMENTAL SETUP

Our large MOT and its characteristics have been thor-
oughly described in Ref. [17]. Here we briefly reiterate the
aspects that are most relevant to the present work.

We use six large (3.4 cm waist) trapping laser beams of
same intensity tuned close (detuning δ) to the F = 2 → F ′ = 3
transition of the 87Rb D2 line to trap and cool atoms from
an ambient vapor (see Fig. 1). These six beams, originating
from the same source coupled into single-mode optical fibers,
form three counterpropagating pairs crossing at 90◦. Because
of this balanced arrangement, the nature of the instabilities
is different from that of Refs. [11,16] where the beams were
retroreflected, such that the center-of-mass motion played a
dominant role in the nonlinear dynamics of the trapped atoms.
In our setup, the intensities of the beams in each pair are
carefully balanced, yielding in principle a centrosymmetric
situation. Note however that small defects are always present
in the spatial profiles of the beams, creating a local intensity
imbalance which can possibly affect the details of the cloud’s
dynamics.
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FIG. 1. Experimental procedure. (a) Details of the arrangement for one pair of MOT beams (1). The other two pairs [(2) and (3)] are
identical and orthogonal to the first one. The beams are delivered by polarization-maintaining single-mode optical fibers (OF) coupled to a
collimator (C). The beams intensities are balanced using a half-wave plate (λ/2) and polarizing beam splitter (PBS) assembly placed on one
arm. The PBS also allows us to collect part of the counterpropagating beam after its passage through the cloud, for optical density measurement
using a photodiode (PD). The beams are expanded to a waist of 3.4 cm using afocal telescopes (L1 + L2). Their polarization is adjusted using
quarter-wave plates (λ/4). The magnetic field gradient is provided by a pair of anti-Helmoltz coils (AHC). (b) Timing of the experiment. The
MOT is loaded for 2 s with a detuning δload, adjusted to maintain the number of atoms fixed during the measurement. The detuning is then
changed to δ for 100 ms (instability phase). An image is finally acquired with a fixed detuning δim. = −8�.

The peak intensity for each beam is I = 5 mW/cm2.
The corresponding saturation parameter per beam is s =

I/Isat

1+4(δ/�)2 ≈ 0.08 for δ = −3�, assuming atoms are pumped

into the stretched Zeeman substates (Isat = 1.67 mW/cm2). �

is the natural line width of the transition ( �
2π

= 6.06 MHz). In
addition to the trapping light, all beams also contain a small
amount of “repumping” light tuned close to the F = 1 →
F ′ = 2 transition to maintain the atoms in interaction with the
trapping laser beams.

The magnetic field gradient required for atom trapping is
generated by a pair of coils in anti-Helmoltz configuration. It
is anisotropic, twice stronger along the coil’s axis than in the
transverse plane. Three pairs of Helmoltz coils are also used to
compensate for stray magnetic fields at the position of MOT
center. Because of this, the position of the cloud in the stable
regime does not vary in the course of the experiment when the
magnetic field gradient is adjusted.

In Sec. IV we will present the measured threshold detun-
ings as the magnetic field gradient is varied, while keeping the
number of trapped atoms N fixed. Since we employ a vapor-
loaded MOT where the steady-state value of N is determined
by (δ, ∇B), this requires us to use the temporal sequence of
Fig. 1(b). It is composed of three successive phases that are
continuously cycled. In the first phase, we load the MOT for a

duration of 2 s with a detuning δload. We set the value of N by
adjusting δload. We then, in the second phase, rapidly change
the detuning for 100 ms to a value δ, which determines the
dynamical regime of the MOT that we wish to probe. Finally,
in the third phase, the detuning is adjusted to δim. = −8 � for
1 ms to perform a fluorescence image acquisition.

We can image the cloud from two directions at 90◦, giving
access to projections of the atomic distribution along the three
spatial dimensions. However, in the following we will only
present data obtained with CCD 1 (see Fig. 1). Note that
the assumption that the detected fluorescence is proportional
to the column density is safe because of the large detuning
chosen for the imaging [17]. An absorption imaging scheme,
not represented in Fig. 1, allows us to determine the value
of N .

The measurement sequence of Fig. 1(b) enables us to
maintain a fixed atom number determined by δload. The 100 ms
delay between detuning step and image acquisition is neces-
sary to decorrelate the observed dynamics from the “kick”
applied to the atoms as the detuning is abruptly changed. Note
however that this delay is small compared to the loading time
constant of the MOT (≈ 2 s), which ensures that the atom
number is determined by δload and remains approximately
independent of δinst.. Since only one image is recorded for each
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sequence, by cycling over many runs (typically a hundred) we
randomly probe the dynamics.

III. PREVIOUS THEORETICAL APPROACHES AND
THREE-DIMENSIONAL NUMERICAL SIMULATIONS

A. Previous theoretical approaches

We briefly recall here the evolution of the theoretical
approaches that were employed in the past to describe the
physics of large balanced MOTs. This evolution ultimately
led to the development of the three-dimensional numerical
approach described in Sec. III B.

The model introduced in the 1990s by Wieman and co-
workers [3] was the first to describe the operation of the MOT
in the stable, multiple-scattering regime. It relies on a Doppler
description of the trapping forces which seems appropriate
for very large MOTs, although it is known that sub-Doppler
mechanisms can play an important role for alkali MOTs at
low and moderate atom numbers [2,18].

Contrary to the case of small atom numbers, where the
dynamics is governed by single-atom physics and the MOT
size is determined by the temperature of the gas, in the regime
of large atom numbers the radiation pressure forces acting on
the atoms depend on the atomic density distribution and can
therefore lead to collective behavior. This occurs when the
optical density of the cloud at the trapping laser frequency
becomes non-negligible. On one hand, the trapping beams are
then attenuated while propagating through the cloud, which
produces a density dependent compression force [14]. On
the other hand, the scattered photons can be rescattered by
other atoms, resulting in a Coulomb-like repulsion force [3].
Because the absorption cross section for scattered photons σR

is different from and larger than that for laser photons σL, the
repulsion force is larger than the compression force and the
cloud expands when N is increased [3,19]. At equilibrium,
the atomic density inside the cloud is constant and only deter-
mined by the ratio σR

σL
, and does not depend on N . This results

in a characteristic R ∝ N1/3 scaling law [3,17], providing a
clear signature of this regime defined by a spatially linear
trapping force and weak attenuation of the trapping beams.

This simplified treatment of [3] was extended in [9] in
order to account for larger optical densities and to analyze
MOT instabilities that can occur for larger atom numbers. This
approach allowed us to derive a criterion for the threshold
of MOT instabilities that were observed when N exceeded a
certain critical value. In this model, which assumed a constant
density, the nonlinear dependence of the attenuated trapping
force on both position and velocity was retained. An unstable
regime was found to occur when the cloud’s radius was larger
than a critical value Rc given by

μ∇B Rc ≈ |δ|, (1)

where μ = 2π×1.4×106 s−1 G−1 for the considered rubid-
ium transition. The MOT thus becomes unstable when the
Zeeman detuning at the cloud’s edge exceeds the absolute
value of the laser detuning. In this situation, the total force
at the cloud’s edge reverses its sign, and the atomic motion
becomes driven instead of damped. For δ = −2� and ∇B =
10 G/cm, the criterion given by Eq. (1) yields Rc ≈ 9 mm.

Such a large MOT size typically requires a large atom number
N > 1010. While this simplified model provided an intuitive
picture for the emergence of the instability and the exis-
tence of an instability threshold, it did not make quantitative
predictions and was not able to describe the dynamics of the
unstable cloud.

The assumption of a constant density was relaxed in
[20,21], based on a kinetic theory that described the phase
space density of the atoms using a spatial radial symmetry
hypothesis. The numerical test-particle simulations of the
derived kinetic equations were able to confirm the simple
instability criterion given by Eq. (1). They also yielded a
generic shape for the atomic density distribution of stable
clouds under the form of truncated Gaussians. Finally, these
simulations provided insights on the mechanism of the in-
stability, and gave access to the dynamics of the cloud in
the unstable regime. However, a limitation of this approach
was the assumed spherical symmetry, effectively reducing
the dimension of the problem to 1D and preventing, e.g.,
center-of-mass motion in the dynamics of the unstable cloud.

B. Three-dimensional numerical simulations

To overcome the limitations of the previous models, we
have developed a three-dimensional (3D) numerical approach
based on a microscopic description of the light-atom inter-
action. One of the motivations to attempt simulating the full
three-dimensional dynamics of the cloud is the intrinsically
anisotropic nature of the trap due to the magnetic field gradi-
ent. The detailed description of this model will be published
elsewhere, we simply outline here its main features.

Since modeling 1011 atoms is out of reach with present
computers, we used Ns = 7×103 “superparticles,” each rep-
resenting α = N

Ns
real atoms. The mass and scattering cross

section of these superparticles are α times larger than that of
individual atoms. We checked the validity of this approach
by verifying that the outcome of the simulation becomes
independent of Ns for Ns > 5×103. What we simulate is the
dynamics of these Ns particles submitted to the three MOT
forces mentioned earlier: the trapping force, the compressive
attenuation force, and the repulsive rescattering force. The
finite temperature of the cloud is accounted for by including
a velocity diffusion term in the dynamics, which depends on
the photon scattering rate for each particle. We use a leap-frog
algorithm [22] to compute the particles dynamics.

In the following we describe the essential steps employed
in the simulations. We use a Doppler model for the various
forces, which are based on radiation pressure. To simplify the
expressions given below, we assume here that our particles
are two-level atoms. However, in the simulation we use a
more realistic 0 → 1 transition model. It is obviously much
simpler than the actual 2 → 3 transition of the D2 line
of 87Rb used in the experiment, but allows for a correct
description of the three-dimensional trapping by the MOT
including the anisotropic magnetic field gradient [23]. Since
inelastic photon scattering plays an essential role in the widely
accepted MOT description of [3], we include saturation effects
to the lowest order both in the scattering cross sections and
by including inelastic scattering. However, we neglect higher-
order effects such as discussed in [24].
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To calculate the forces acting on a particle located at
position r, we first compute the local intensity I (r) of each
of the six laser beams. This is achieved by calculating
their attenuation due to the rest of the cloud. By summing
independently the radiation pressure forces Fr p due to each
beam, we obtain the trapping plus attenuation force.

The radiation pressure exerted by one laser beam of inten-
sity I (r) on an atom located at position r is of the form

Fr p(r, v) = σL(r, v)I (r)

c
, (2)

where c is the speed of light. The scattering cross section for
a laser photon σL is

σL(r, v) = 3λ2

2π

1

1 + Itot(r)/Is + [2δeff(r, v)/�]2
, (3)

where λ is the wavelength of the atomic transition. The
presence of the other laser beams is taken into account by
the Itot(r) term in the denominator of expression (3), which
is the total local laser intensity obtained by summing the
intensities Ii(r) of each laser beam.

Considering for simplification a beam propagating in the
positive x direction, the Doppler- and Zeeman-shifted detun-
ing δeff is

δeff(x, v) = δ − k · v − μ∇Bx. (4)

The rescattering force acting on the particle at position r
is obtained by summing all binary interactions with the other
particles in the cloud. For a second particle located at position
r′, the binary interaction Fbin(r, r′) is of the form

Fbin(r, r′) = Itot(r′)σL(r′)σR(r, r′)
4πc(r′ − r)2

. (5)

The computation of the reabsorption cross-section σR is not
straightforward. It involves the convolution of two quantities:
the absorption cross section for a scattered photon with a cer-
tain frequency by the atom illuminated by the total laser field
of intensity Itot(r), and the spectrum of the light scattered by
the atom at position r′ [3,25]. Indeed, the atom is a nonlinear
scatterer for light, and the scattering process is inelastic if the
saturation parameter is not negligible compared to unity. We
compute both the scattered light spectrum and the absorption
cross section for scattered light using the approach developed
by Mollow [26,27]. Note that since we take into account the
inhomogeneous laser intensity distribution inside the cloud,
σR depends on both spatial coordinates r and r′, and thus
plays the role of a nonlocal effective charge in the Coulombian
binary interaction described by Eq. (5).

An illustration of the result of this simulation is provided
in Fig. 2, where we plot the cloud’s rms radius versus the
number of simulated atoms, in the stable regime. As can be
observed, below 107 atoms the cloud size is N independent
and its profile is Gaussian as expected in the temperature-
limited regime. For N > 108, the cloud’s radius increases as
N1/3 (dashed line), the scaling predicted by Ref. [3]. The
increase of cloud size with N is a clear signature of the
multiple-scattering regime. Within this regime, we observe
variations of the cloud’s density profile. Around 109 atoms,
the profile displays a rather flat top. At even higher atom
numbers, the top of the profiles rounds off and gets closer to a
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FIG. 2. Simulated MOT size versus N . The parameters are δ =
−5.5�, ∇B = 7.2 G/cm, and I = 5 mW/cm2. We plot the cloud’s
rms radius versus N (dots). The dashed line corresponds to the N1/3

scaling. The insets show examples of cloud density profiles which
have been spatially rescaled. The solid curves are the density profiles
while the dashed curves correspond to Gaussian fits.

Gaussian. In all instances, however, the wings of the profiles
in the multiple-scattering regime are decaying faster than a
Gaussian. Overall, the observed evolution is consistent with
our previous observations [17], and also with the theoretical
predictions of Ref. [20]. It should be noted that the simulated
clouds are systematically larger than those observed in the
experiment, roughly by a factor 2. We discuss the implications
of this observation in Sec. V.

The numerical simulations not only reproduce the behavior
of a stable MOT in the multiple scattering regime, but also
and most importantly they yield an unstable behavior for
parameters close to those used in the experiments. The onset
of the instability as observed in the simulations is illustrated
in Fig. 3. We observe a sharp transition between stable and
unstable behaviors when the control parameter, here is the
laser detuning, is varied. We plot the temporal evolution of
the rms radius of the cloud both below (δ = −3�) and above
(δ = −2.8�) threshold. The initial transient (first 50 ms) is
due to the slight mismatch in size and shape between the
Gaussian atomic distribution used as a starting point for the
simulation, and the final distribution. In the unstable regime,
we generally observe another transient before the onset of
oscillations, whose duration depends on the distance from
threshold. In Fig. 3 this duration is roughly 0.4 s.

IV. EXPERIMENTAL RESULTS AND COMPARISON
WITH SIMULATIONS

A. Experimental determination of instability threshold

To determine the instability threshold, we monitor the
evolution of the cloud’s spatial density distribution during the
dynamics. As discussed in Sec. II, only one image is recorded
during each experimental cycle described in Fig. 1(b), which
corresponds to a random probing of the dynamics of the
cloud. We thus record a given set of typically 50 images,
and then compare the images two by two. This is done
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FIG. 3. Instability of simulated MOT. We plot the cloud’s rms
radius versus time, in the stable regime (δ = −3.0�, thin curve) and
in the unstable regime (δ = −2.8�, bold curve). The parameters are:
N = 1.5×1010, ∇B = 3 G/cm, and I = 5 mW/cm2.

by subtracting the two images, and spatially integrating the
squared difference image. After normalization, this operation
yields the “cloud fluctuation” of Fig. 4, a number whose value
is zero if the two images are identical, and one if there is no
overlap between the two density distributions (corresponding
to a maximal deformation). The operation is repeated for
many pairs of images and the corresponding fluctuations are
averaged.

Figure 4 illustrates the behavior of the cloud fluctuation
as δ is varied over the whole experimental range −4� � δ �
−0.8�, for the three values of ∇B. As can be seen, crossing

FIG. 4. Determination of instability threshold. We plot the cloud
fluctuation (see text) versus detuning for three values of mag-
netic field gradient: (1) ∇B = 12 G/cm (open circles), (2) ∇B =
4.8 G/cm (dots), and (3) ∇B = 1.2 G/cm (stars). An extrapolation
of the observed growth rate (dotted lines) allows us to determine the
threshold detuning (arrows). The insets show examples of fluores-
cence images for a stable and an unstable cloud.
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FIG. 5. Threshold detuning (absolute value) versus atom num-
ber. The dots are experimental data for a magnetic field gradient
∇B = 7.2 G/cm and a beam intensity I = 5 mW/cm2. The circles
are the simulation result for the same parameters. The squares corre-
spond to the prediction of the model of Ref. [9] using experimentally
measured cloud sizes (see text). The dotted lines correspond to linear
fits of the log-log data.

the threshold results in an abrupt increase of the fluctuation.
The position of the threshold can be estimated by fitting the
initial growth by a linear function and extrapolating to the
value below threshold.

B. Threshold detuning versus atom number

In this section we study the impact of N on the instability
threshold. To this end we vary the number of trapped atoms by
adjusting the diameter of the MOT beams using diaphragms.
This provides an efficient way of tuning N without affecting
the other MOT parameters, as demonstrated in [17].

The experimental variation of δth with N is reported in
Fig. 5 (dots), in log-log scale. Very roughly, we observe
that |δth| increases by � when N increases by one order
of magnitude. A linear fit of the data in the log-log plot
yields a slope of 0.17 (dotted line). The result of the nu-
merical simulations described in Sec. III B is reported in
circles. It shows a similar scaling, but with an offset of
approximately �.

We also show the prediction of the model of Ref. [9]
(squares), as given by Eq. (1). This equation establishes a
link between ∇B, δ, and the critical radius Rc, but does not
provide an expression for the cloud size as a function of N .
Thus we use the cloud sizes measured in the experiment to
compute δth using Eq. (1). However, the model of [9] assumes
a constant density while the experimental profiles are closer to
Gaussians. We thus have to choose a definition of Rc to use in
Eq. (1). In Fig. 5 we used Rc = 2σ , where σ is the measured
rms cloud size in the plane of the magnetic field gradient coils.
Since we find a scaling σ ∝ N0.36, the prediction Eq. (1) is
definitely different from both the experimental observation
and the result of the numerical simulations. This is a clear
indication that the model used in [9] cannot quantitatively
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FIG. 6. Threshold detuning versus magnetic field gradient at
fixed atom number. The experimental data (including several runs)
is shown as dots, with a linear fit (solid line). The parameters are
N = 1.5×1010 and I = 5 mW/cm2. The circles correspond to the
numerical simulation result.

describe the dependence of the instability threshold on the
atom number.

C. Threshold detuning versus magnetic field gradient
at fixed atom number

We now present measurements of the threshold detuning
δth as ∇B is varied, using the procedure described in Sec. II
to maintain a fixed number of trapped atoms N = 1.5×1010.
The results of different experimental runs are shown as dots
in Fig. 6, together with a linear fit taking into account all
the data (solid line). The threshold detuning is seen to in-
crease (in absolute value) linearly with ∇B, with a slope
≈ 0.14� (G/cm).

We compare the experimental data to the result of the
numerical simulations (circles) using the experimental param-
eters. Once again we observe that the slopes of both exper-
imental and simulated curves are very similar. This agree-
ment is a good indication that our numerical model captures
efficiently the main ingredient involved in the determination
of the instability threshold. We note again that the simulated
thresholds are systematically larger (in absolute value) than
the experimental ones by approximately �.

V. DISCUSSION

The new experimental data reported in this work need to
be compared to our earlier results of [9]. They are obtained
in conditions that are both better controlled (threshold at

constant N) and more extended (threshold as a function of
N), and thus put more stringent constraints on the models
they are being compared to. In particular, the simple analytical
model of [9], which seemed in reasonable agreement with the
early experimental data, is now clearly unable to reproduce the
scaling observed when the atom number is varied. Although
we have no reason to question the physical picture of the
instability mechanism that it conveys, it is too simplified
to reproduce even qualitatively the experimentally observed
behavior.

This is not the case for the numerical simulations, which
are in good qualitative agreement with both experiments at
fixed N and as a function of N . This indicates that our
improved model catches the important ingredients determin-
ing the behavior of the MOT instability threshold. We plan
in the future to investigate which of these ingredients are
determinant in describing the correct MOT behavior.

The constant offset of about one � in the threshold detun-
ing between experiment and numerics is probably linked to
the larger cloud sizes found in the simulations. The origin of
this mismatch is not at present clearly identified, but it is not
surprising considering the large number of simplifications still
included in the model. The most prominent is the simplified
atomic structure, possibly yielding a different effective Zee-
man shift in the MOT.

VI. CONCLUSION

We presented in this paper a detailed experimental and
numerical study of the instability threshold for a balanced,
six-independent beams magneto-optical trap containing large
numbers of cold atoms. Using an improved experimental
scheme, we were able to study the impact of the atom number
on the threshold. We also measured the (δ, ∇B) unstable
boundary while maintaining this atom number fixed. These
experimental results were compared to a three-dimensional
numerical simulation of the MOT based on a microscopic
description. We obtain a good qualitative agreement, despite
some unavoidable simplifications in the description of the
MOT physics. The scaling of the threshold with atom number,
for both experiment and simulations, is clearly different from
that given by the analytical approach of [9]. Our numerical
model also allows us to go beyond the approach of [20], which
was assuming a central symmetry. In particular we now can
and do observe center-of-mass as well as radial oscillations.
This approach will be useful in the future to investigate the
atom cloud dynamics in the unstable regime.
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