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Bogoliubov excitations in the quasiperiodic kicked rotor: Stability of a kicked condensate and the
quasi–insulator-to-metal transition
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We study the dynamics of a Bose-Einstein condensate in the quasiperiodic kicked rotor described by a Gross-
Pitaevskii equation confined in a toroidal trap. As the interactions are increased, Bogoliubov excitations appear
and deplete the condensate; we characterize this instability by considering the population of the first Bogoliubov
mode, and we show that it does not prevent, for small enough interaction strengths, the observation of the
quasi–insulator-to-metal transition that replaces the Anderson transition of the noninteracting case. However, the
predicted subdiffusion in momentum space is not observed in the stable region within experimentally accessible
times. For higher interaction strengths, the condensate may be strongly depleted before this dynamical regimes
set in.
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I. INTRODUCTION

Ultracold atoms are clean, controllable, and flexible sys-
tems whose dynamics can be modeled from first princi-
ples. Interacting ultracold bosons are often well described by
a mean-field approximation leading to the Gross-Pitaevskii
equation (GPE) [1,2], which is useful in many situations of
experimental interest: superfluidity and vortex formation [3],
chaotic behavior [4–7], soliton propagation [8], etc. Ultracold-
atom systems are thus increasingly used to realize simple
models that are inaccessible experimentally in other areas of
physics [9].

Ultracold gases in a disordered optical potential have been
used as an emulator for the Anderson model [10], allowing the
direct observation of the Anderson localization in one [11,12]
and in three dimensions [13–15]. The quantum kicked rotor
(QKR), obtained by placing cold atoms in a pulsed standing
wave, is also a (less obvious) quantum simulator for Anderson
physics [16,17]: It displays dynamical localization, a suppres-
sion of chaotic diffusion in momentum space, recognized as
being equivalent to Anderson localization [16]. Recent studies
suggest that interactions (treated in the frame of the GPE)
lead to a progressive destruction of the dynamical localiza-
tion, which is replaced by a subdiffusive regime [18–21],
in analogy with what is numerically observed for the one-
dimensional (1D) Anderson model with bosonic mean-field
interactions itself [22–26], experimentally observed in the
ultracold-atom implementation of the interacting Anderson
model [27].

Applying standing-wave pulses (kicks) to a Bose-Einstein
condensate (BEC) may lead to a dynamical instability that
transfers atoms from the condensed to the noncondensed
fraction, a phenomenon that is not described by the GPE.
The most common correction to the GPE in this context
is the Bogoliubov–de Gennes (BdG) approach [28,29]. The
BdG theory considers “excitations”–described as independent

bosonic quasiparticles–of the Bose gas, and thus it indicates
how (and how much) it differs from a perfectly condensed gas.
It has been applied both to the description of the dynamical
instability in the periodic kicked rotor [30–32] and to the
study of a one-dimensional weakly interacting BEC [33,34]
in a disordered potential. In the latter case, it was found that
the quasiparticles may also display Anderson localization. In-
terestingly, a modified version of the QKR, the quasiperiodic
kicked rotor (QPKR), emulates, in the absence of interactions,
the dynamics of a 3D Anderson-like model, and displays the
Anderson metal-insulator transition [35,36]. With this system,
a rather complete theoretical and experimental study of this
transition has been performed [37–40]. In the present work,
we use the Bogoliubov approach to the QPKR to study the
stability of the condensate and to assess the possibility of
the observation of the “quasi–insulator-metal transition” that
replaces Anderson localization in the presence of interactions,
the localized state being replaced by a subdiffusive one [21].
We show that for weak enough interactions, the condensate
remains metastable for experimentally relevant times, and that
the Bogoliubov quasiparticles also display a phase transition.
This shows that the transition can be observed for a low
enough nonlinearity, so that the instability timescale is much
larger than the duration of the experiment, paving the way for
its experimental observation with the quasiperiodic quantum
kicked rotor in the presence of interactions.

II. DYNAMICS OF BOGOLIUBOV EXCITATIONS

A kicked rotor is realized by submitting ultracold atoms
to short kicks of a standing wave at times separated by
a constant interval T1. If such kicks have a constant
amplitude, one obtains the standard (periodic) kicked
rotor, which exhibits dynamical localization [17,41],
i.e., localization in momentum space. If the amplitude
of the kicks is modulated with a quasiperiodic function
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F (t ) = 1 + ε cos (ω2t + ϕ2) cos (ω3t + ϕ3), where ω2T1,
ω3T1, and k- ≡ 4h̄k2

LT1/M (the reduced Planck constant) are
incommensurable (kL is the wave vector of the standing wave
and M is the mass of the atoms), the QPKR is obtained
[35,36]. In the absence of particle-particle interactions,
the QPKR Hamiltonian, in conventional normalized units
[41,42], is

H (t ) = p2

2
+ KF (t ) cos x

∑
n∈N

δ(t − n), (1)

where K is proportional to the average standing-wave inten-
sity. In such units, the time interval between kicks is T1 = 1,
and lengths are measured in units of (2kL )−1. Throughout
this work, we take ω2 = 2π

√
5, ω3 = 2π

√
13, and k- = 2.89

corresponding to typical experimental values [37–39]. In the
absence of interactions, the QPKR displays, for low values of
K and ε, dynamical localization in momentum space at long
times (i.e., 〈p2〉 ∼ const); for K � 1, ε ≈ 1 one observes a
diffusive regime 〈p2〉 ∼ t , and in between there is a critical
region that displays a subdiffusive behavior 〈p2〉 ∼ t2/3 [42].
In the presence of weak interactions modeled as a mean-field
nonlinear potential, the critical and the diffusive regimes are
not affected, whereas the localized regime is replaced by
a subdiffusive one 〈p2〉 ∼ tα , with α ∼ 0.4 [21,43]. In the
following, we consider low enough interaction strengths and
short enough times so that this change of behavior is not
significant; we shall thus use the term “quasilocalized” (or
“quasi–insulator”) to characterize this phase.

We use in the present work a model that is slightly different
from the experimentally realized QPKR: The wave function
φ(x, t ) obeys periodic boundary conditions over one spatial
period of the optical potential: φ(L, t ) = φ(0, t ), where L =
2π is the system size, and normalization

∫ L
0 |φ(x, t )|2dx =

1. Because of this boundary condition, the spectrum of the
momentum operator p = ik-∂/∂x is discrete: nk-, with n an
integer, so that the momentum space wave function φ̃(p) is
given by the Fourier series:

φ(x) = 1√
2π

∑
n∈Z

einxφ̃(nk-). (2)

In this model, there is no spatial dilution of the boson
gas, and the average nonlinear potential, which is proportional
to the atom density, does not vary with time. This is not
the case in the usual experimental realization of the QPKR,
where the atom cloud diffuses with time in momentum space
(so that, even in the presence of dynamical localization,
it is still undergoing spatial dilution), causing a significant
diminution of the spatial density; once the system is diluted,
the nonlinearity does not play any important role. Our model
is thus expected to catch more clearly the physics in the
presence of the nonlinearity. Such a model can be realized
experimentally by using a tightly confined toroidal trap [44]
formed by Laguerre-Gauss (LG) modes in which atoms are
confined in the radial direction but are free to rotate. The
azimuthal dependence of such modes can be used to create
a sinusoidal intensity modulation along the torus, analogous
to a standing wave [45], in the present case, formed by a
superposition of LG01 and LG0−1 modes. Note that in such
a geometry, collective effects can manifest themselves when

interactions become strong [46], but here we will be mainly
interested in the weak interactions regime.

In this quasi-1D geometry, we take interactions into ac-
count via the particle-number-conserving Bogoliubov formal-
ism [47] at zero temperature. The gas of interacting bosons
is separated into two parts: (i) The condensed fraction (the
“condensate”) and (ii) the noncondensed fraction (“excita-
tions” or “quasiparticles”). The condensate is governed by the
Gross-Pitaevskii equation

ik-
∂φ(x, t )

∂t
= H (t )φ(x, t ) + g|φ(x, t )|2φ(x, t ), (3)

where the condensate wave function φ is normalized to unity:∫ 2π

0 |φ(x, t )|2dx = 1 (L = 2π is the system length) and the
rescaled 1D interaction strength [48] g = 4k-kLaω⊥T1N is pro-
portional to the S-wave scattering length a, to the number of
atoms N in the trap, to the transverse confinement frequency
ω⊥ and to the kick period T1.

The noncondensed part is described in the Bogoliubov
formalism as a set of independent bosonic quasiparticles,
with a two-component state vector (uk, vk ), where k is an
integer labeling the mode of momentum kk- satisfying the
normalization condition∫ 2π

0

(|uk (x, t )|2 − |vk (x, t )|2)dx = 1, (4)

and evolving according to the equation

ik-∂t

[
uk (x, t )
vk (x, t )

]
= L

[
uk (x, t )
vk (x, t )

]
, (5)

where the operator L is a 2 × 2 matrix:

L=
[

Q(t ) 0
0 Q(t )†

]
LGP

[
Q(t ) 0

0 Q(t )†

]
,

LGP =
[
H + 2g|φ|2−μ(t ) gφ2

−gφ∗2 −H −2g|φ|2 + μ(t )

]
,

with μ(t ) = ∫ L
0 (φ∗Hφ + g|φ|4)dx the time-dependent chem-

ical potential. The presence of the projection operator Q(t ) =
1 − |φ〉〈φ| ensures the conservation of the total number of
particles [47].

The goal of this work is to study the (i) stability and
(ii) dynamical localization properties of a quasiperiodically
kicked condensate. The stability of the condensate can be
assessed by monitoring the number of noncondensed atoms
(the quantum depletion) at zero temperature, which is given
by δN = ∑

k Nk , where

Nk =
∫ 2π

0
|vk (x, t )|2dx

is the number of excitations in the mode k. To describe
the localization properties of the system, we will expand
the condensate wave function and the Bogoliubov mode in
Fourier series:

f (x, t ) = 1√
2π

∑
l∈Z

eilx f̃ (l, t ), (6)

f̃ (l, t ) = 1√
2π

∫ 2π

0
e−ilx f (x, t )dx, (7)
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FIG. 1. Evolution of the excitation number N1 of the k = 1 Bogoliubov mode, in different regimes: quasi–insulator [(a) log-log and
(b) semilog scale], K = 4, ε = 0.1 and metal [(c) log-log and (d) semilog scale], K = 9, ε = 0.8 for four values of the interaction strength
g increasing from bottom to top: 0.01 (red, bottom curve), 0.1 (blue), 1 (green), and 4 (cyan, top curve). Plot (a) shows a drastic growth of
the excitation number for g � 1, indicating the onset of an instability; the dashed line in plot (a) indicates the behavior in the absence of
interactions (constant N1). Plot (b) (semilog scale) shows that for g = 4 this growth is exponential. For g = 1 it is also roughly exponential,
with fluctuations, but for lower values of g it is algebraic, approximately ∝ t on the considered time scale of 104 kicks. In plots (a) and (b),
large values of N1 (larger than the initial number of atoms in the condensate) are unphysical and signal the failure of the linearized Bogoliubov
approach. In the metallic regime, no instability is apparent up to 500 kicks. k- = 2.89 throughout this work.

where f = φ, uk, vk . The momentum distributions of the
condensate and of Bogoliubov excitations (in a mode k)
then read nc(p = k-l ) = |φ̃(l )|2

and nb(p = k-l ) = |ṽk (l )|2/Nk ,
respectively.

Finally, for our numerical study we will take as initial
conditions for the (uk, vk ) amplitudes the eigenstates of the
operator L(t = 0)[49], which are plane waves of momentum
k-k [47], [

ũk (l, t = 0)
ṽk (l, t = 0)

]
=

√
π

2

[
ζ + 1/ζ

ζ − 1/ζ

]
δk,l (8)

with k ∈ Z∗, and ζ given by

ζ =
[

k2

k2 + 2g/πk-2

]1/4

. (9)

In the example below, we will focus on the evolution of the
k = 1 Bogoliubov mode, which is initially the most popu-
lated; see Eqs. (8) and (9) [50].

III. STABILITY OF THE CONDENSATE

For the periodic kicked rotor, several studies showed the
emergence of an instability at large positive values of g
(repulsive interactions) [30–32], which manifests itself by an

exponential increase of the number of excitations. We shall
now study this instability in the quasiperiodic kicked rotor
for g > 0. Equations (3) and (5) can be integrated simulta-
neously by a split-step method. Numerical data are averaged
over 500 random realizations of the phases ϕ2, ϕ3 ∈ [0, 2π ).
As the total number of particles is fixed, the number of
condensed particles is N − δN and the noncondensed frac-
tion δN/N . As long as δN is much smaller that the typical
number of atoms N ≈105 used in an experiment, the kicked
condensate will be considered to be stable. The study of
the regime where the number of excitations becomes com-
parable to the atom number is still an open problem, for
which interesting approaches can be found in the literature;
see, e.g., Ref. [31].

Figures 1(a) and 1(b) display the onset of the instability
at a relatively large time (compared to experimentally acces-
sible time scales) of 104 kicks in the quasi–insulator region
K = 4, ε = 0.1. For low-g values, the number of excitations
N1 increases moderately with time, approximately ∝ t . For
higher values of g, an explosive growth of N1 indicates that
the condensate has lost its stability (and that the Bogoliubov
approximation has lost its validity). However, for g � 1, even
at the limit of an experiment duration t = 103, the instability
has not set in, which is confirmed by the small number of
excitations N1(g = 1, t = 103) ≈ 9.5. As shown in Appendix,
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FIG. 2. Dynamics of the condensate and of the Bogoliubov excitations. The momentum variance σ 2 of the condensate (circles) and of
the excitations (diamonds) for g = 10−4 (magenta) and g = 10−1 (blue) are shown in plot (a) for the quasilocalized regime (K = 4, ε = 0.1,
t � 104) and in plot (c) for the diffusive regime (K = 9, ε = 0.8, t � 500). The momentum distributions n(p) of the condensate (circles) and
of the excitations (diamonds) in logarithmic scale are shown in (b) for the quasilocalized regime (at t = 104) and in (d) for the diffusive regime
(at t = 500).

the origin of the dynamical instability can be understood
by studying a simplified evolution operator illustrating the
competition between the kicks and the interactions that can
destroy the condensate. Plots (c) and (d) show the evolution
of the number of excitations in the metal (diffusive) regime
K = 9, ε = 0.8, up to t = 500. In this case, the condensate
is less affected by the presence of interactions, as the kinetic
energy grows linearly with time and eventually dominates the
constant interaction energy  g/(2π ) (see below).

IV. THE QUASI–INSULATOR-TO-METAL TRANSITION IN
THE STABLE REGION

The previous analysis has shown that, for small interaction
strengths, the system remains essentially condensed, with
populations in the Bogoliubov modes Nk � N up to relatively
long times. In other words, in this regime, the Bogoliubov
formalism is valid and the condensate metastable. We will
thus focus on the case g � 0.1 and study the localization
properties of the system to find whether the system follows the
noninteracting regimes (localized, diffusive) or if the localized
phase is replaced by a subdiffusive phase [18,21]. We will
also discuss how the critical properties of the transition are
changed by interactions.

We prepare the system in its ground state [φ(x, t =0) =
1/

√
L], at zero temperature. The Bogoliubov modes are then

initially populated only from quantum fluctuations. For g �

0.1 and for short enough times, one expects the condensate to
display (quasi)localization if K < K0 and diffusion if K > K0,
K0 being the critical point. Our numerical simulations show
that this is also the case for the excitations. Figure 2(a) shows
the second moment of the distribution σ 2

i = 〈p2〉i − 〈p〉2
i ,

with 〈p2〉i = k-2 ∑
l l2ni(p) and 〈p〉i = k-

∑
l lni(p), for both

the condensate (i = c, circles) and the excitations (i = b, dia-
monds) in the quasilocalized regime. For the two values of the
interaction strength, g = 10−4 (magenta curve) and g = 10−1

(blue curve), the second moment of the condensate saturates
to a constant value σ 2

c ≈ 50, showing that the wave packet is
quasilocalized. More interestingly, the curves with diamond
markers in Fig. 2(a) show that variance of the momentum of
Bogoliubov excitations also tend to saturate, with a larger
value σ 2

b ≈ 180: quasiparticles also (quasi)localize.
The momentum distributions nc and nb in the quasilocal-

ized regime at t = 104 for g = 10−4 are shown in Fig. 2(b)
[same graphical conventions as in Fig. 2(a)]. Both distribu-
tions remain essentially centered around the origin so that
their first moment 〈p〉i (i = c, b) remains small, while they
show an exponential behavior in the wings. For the conden-
sate, assuming an exponential profile nc(p) ∝ exp(−|p|/ξ )
[see Fig. 2(b)], the width ξ of the momentum distribution
at t = 104 is given by ξ = σc/

√
2 ≈ 5, which evolves very

slowly up to t = 104. Thus, for very weak interactions and
in the time range accessible to experiments, the condensate
behaves as a single particle and displays similar behaviors in
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the vicinity of the Anderson transition. The Bogoliubov dis-
tribution presents a double peak near the center. This peculiar
shape is probably due to the fact that the initial momentum
distribution of the mode k = 1 [Eq. (8)] is centered at p = k-,
thus breaking the symmetry between positive and negative
momenta. The wings of the Bogoliubov momentum distribu-
tion and of the condensate have approximately the same slope,
confirming that excitations have the same localization length
in this case. The fact that the former has a flatter top than the
latter explains why σb is significantly larger than σc.

Figure 2(c) is the equivalent of Fig. 2(a) in the diffusive
regime K = 9, ε = 0.8, showing that σ 2

c and σ 2
b increase

linearly with time, with a diffusion coefficient that is similar
for g = 10−4 and 10−1, Dc = σ 2

c /2t ≈ 20, and Db = σ 2
b /2t ≈

25. Figure 2(d) [equivalent to Fig. 2(b)] represents the corre-
sponding momentum distributions at t = 500. Both have the
typical Gaussian shape associated with a diffusion process.

These results show that when the condensate is stable and
for experimentally relevant times, the system is not affected
by the presence of (weak) interactions and that Bogoliubov
excitations display the same dynamics as particles. For larger
interaction strengths, one expects the presence of a subdif-
fusive phase instead of the localized regime [18–21]. How-
ever, for the range of parameters investigated in this work
(10−4 < g < 4, K = 4, ε = 0.1) we found that the condensate
is never stable and subdiffusive at the same time. For g � 0.1,
interactions appear to be more likely to destroy the condensate
than to induce subdiffusion.

The fact that Bogoliubov excitations behave like (noninter-
acting) particles in the quasi–insulator and metal regimes in
the stable region suggests that they display a quantum phase
transition of the same nature as the Anderson transition, which
can be verified by determining its (universal) critical expo-
nent ν, governing the algebraic divergence of the localization
length ξ (K ) near the transition point:

ξ (K ) ∝ 1

(Kc − K )ν
. (10)

The universality of this second-order phase transition has
been demonstrated experimentally in the absence of interac-
tions [39], giving an experimental value for the critical expo-
nent ν = 1.63 ± 0.05, independent of microscopic parameters
and consistent with the numerically predicted value 1.58 ±
0.02 [52,53]. We used a finite-time scaling method [42,53]
to extract a critical exponent ν from the dynamics of both
the condensate and the excitations. We chose the path in the
parameter plane (K, ε) used in [37], ε(K ) = 0.1 + 0.14(K −
4). Figure 3 shows that, for small nonlinearities, the critical
exponent is the same for both components and compares very
well with the (noninteracting) experimental measurement, but
their values tend to become different for higher values of g.
For g � 0.1, the value of the critical exponent starts to deviate
from the universal value, as the system enters a new regime
where the subdiffusive character of the quasilocalized regime
becomes important even for short times [21]. The critical point
is also the same for both the condensate and the excitations; at
g = 0 its value is K0 ≈ 6.38 ± 0.05 and changes only slightly
up to g = 0.1, in accordance with the self-consistent theory
prediction of Ref. [21]. Hence, we can conclude that for low
values of g, Bogoliubov excitations undergo a second-order

FIG. 3. Critical exponent ν vs interaction strength g for both the
condensed fraction (red circles) and the Bogoliubov excitations (blue
diamonds). Error bars are calculated via a standard bootstrap method
[51]. The points were slightly shifted horizontally so that error bars
do not superpose. The blue dashed line indicates the critical exponent
value ν ≈ 1.58 in the absence of interactions.

phase transition of the same nature as for noninteracting
particles, with the same critical exponent.

The very same equations of evolution (5)—with different
initial conditions—describe the dynamics if the Bogoliubov
modes are populated by some other process. Experimentally,
a specific Bogoliubov mode can be selectively excited using
two laser waves whose directions are chosen so that their
wave-vector difference is equal to the wave vector k of the
desired mode [54]. Then the linear or exponential growth
of the mode can be easily monitored experimentally. The
above study was restricted to the Bogoliubov mode k = 1.
Considering another mode k �= 1 is equivalent to a change of
the initial condition in the Bogoliubov equations. We checked
numerically that other modes display the same behavior,
but they are much more affected by finite-time effects, as
their initial momentum distribution is more asymmetric [see
Eq. (8)].

V. CONCLUSION

In conclusion, in a quasiperiodic kicked rotor the con-
densate is stable in the weakly interacting regime. For times
longer than the experimental timescale (presently 1000 kicks),
both the excitations and the condensate display a behavior
very close to the Anderson transition of noninteracting par-
ticles, with the same critical exponent; the universality of
the phase transition is thus valid irrespective of the nature
of particles. However, our results also show that it might be
difficult to observe a subdiffusive phase at larger interacting
strengths due to the emergence of a dynamical instability.
Thus, the fate of the transition in the presence of strong
interactions remains an open problem. For low positive values
of g, the transition can be experimentally observed, and, by
increasing interactions via a Feshbach resonance, one can
observe the onset of nonlinear effects. This shows that the
nonlinear regime might be observed with relatively low values
of g and that the transition can be observed within the stability
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FIG. 4. (a) Largest growth rate λ per kick as a function of the kick amplitude K and of the interaction strength g for k- = 2.89. For K = 0,
the system is unstable for g < −13 as expected from Bogoliubov theory. For K > 0, a dynamical instability can also occur for g > 0. For large
negative g the condensate is intrinsically instable, which explains the nonzero value of λ even for K = 0. Panel (b) shows the emergence of the
instability for K = 4 and g > 0.

regime of the condensate. The present work paves the way
for such an experiment, which would represent an important
step in our understanding of interacting disordered systems
presenting phase transitions.
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APPENDIX: DYNAMICAL INSTABILITY OF THE KR
BOGOLIUBOV MODES

The goal of this Appendix is to explain, in a simpler case,
the features of Fig. 1 by analyzing the properties of the op-
erator L in Eq. (5). We use two important simplifications: (i)
we set the modulation ε = 0 and consider the standard kicked
rotor single-particle Hamiltonian (1) with K (t ) = K = const
and (ii) we make the assumption that the condensate wave
function is homogeneous, φ(x) = 1/

√
2π so that Eqs. (5)

form a closed set of equations. The projector Q then becomes
time-independent and the dynamical properties of the system

are governed by LGP only. To study the influence of g on
the stability of the system, we consider the evolution operator
over one period:

U = exp

(
− i

h̄

[
p2

2 + g
2π

g
2π

− g
2π

− p2

2 − g
2π

])

×
[
UK 0
0 U−K

]
. (A1)

In momentum space, the kick operator is

〈p = k-l|UK |p = k-m〉 = (−i)(m−n)Jm−n(K/k-). (A2)

The eigenstates of U contain all the dynamical properties of
the system: if one of the eigenvalues ε is greater than one, the
system will develop a dynamical instability with a growth rate
log |ε|. In Fig. 4, we represent the growth rate λ = log10|ε|
associated to the eigenstate with the largest eigenvalue ε as a
function of K and g, for k- = 2.89.

The limiting case K = 0 provides a good test for our
method as we know from the standard Bogoliubov theory
[55] that the system is unstable for g < −k-2π/2 ∼ −13. In
the presence of the kicks K > 0, the system can now develop
a dynamical instability for repulsive interactions g > 0. For
K = 4, we find that the system is indeed unstable at large g
which is in qualitative agreement with Fig. 1(b). The critical
value gc ≈ 3.5 for the instability, however, is overestimated,
due to the strong assumptions (i) and (ii). We also find that the
system tends to be more stable at large kick amplitudes, which
is compatible with Fig. 1(b). Finally in the noninteracting
limit obtained for g = 0, the system is stable as the eigenval-
ues of the evolution operator, Eq. (A1) coincides with those
of the standard noninteracting kicked rotor. In particular, the
results obtained above are compatible with those of Ref. [56].
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