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Analytical solution for the spectrum of two ultracold atoms in a completely anisotropic confinement
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We study the system of two ultracold atoms in a three-dimensional (3D) or two-dimensional (2D) completely
anisotropic harmonic trap. We derive the transcendental equation J3D(E ) = 1/a3D (J2D(E ) = ln a2D) for the
eigenenergy E of this system in the 3D (2D) case, with a3D and a2D being the corresponding s-wave scattering
lengths, and provide the analytical expressions of the functions J3D(E ) and J2D(E ). In previous research, this
type of equation was obtained for spherically or axially symmetric harmonic traps [T. Busch et al., Found. Phys.
28, 549 (1998); Z. Idziaszek and T. Calarco, Phys. Rev. A 74, 022712 (2006)]. However, for our cases with
a completely anisotropic trap, only the equation for the ground-state energy of some cases has been derived
[J.-J. Liang and C. Zhang, Phys. Scr. 77, 025302 (2008)]. Our results in this work are applicable for arbitrary
eigenenergy of this system and can be used for the study of dynamics and thermal dynamics of interacting
ultracold atoms in this trap, e.g., the calculation of the second virial coefficient or the evolution of two-body
wave functions. In addition, our approach for the derivation of the above equations can also be used for other
two-body problems of ultracold atoms.

DOI: 10.1103/PhysRevA.101.053624

I. INTRODUCTION

The two-body problems of trapped interacting ultracold
atoms are basic problems in cold atom physics [1–13]. They
are of broad interest for the following reasons. First, the two-
body systems are “minimum” interacting systems of trapped
ultracold atoms, and one can obtain a primary understand-
ing for the interaction physics of an ultracold gas from the
analysis of such systems [14]. Second, the solutions to these
problems can be directly used to calculate some important
few- or many-body quantities [15–25], e.g., the second virial
coefficient which determines the high-temperature properties
of the ultracold gases. Third, these systems have been already
realized in many experiments [14,26–38] where the trap of the
two atoms can be created via an optical lattice site [26,27,30],
optical tweezer [31–35], or nanostructure [36–38].

In these experiments, by measuring or controlling the en-
ergy spectrum or dynamics of these two atoms, one can, e.g.,
create a cold molecule in an optical tweezer [32,33], derive the
parameters of interatomic interaction potential [26,27,30,34],
or study various dynamical effects such as the interaction-
induced density oscillation [31]. Theoretical results for the
corresponding two-body problems are very important for
these experimental studies.

The most fundamental systems of two trapped ultracold
atoms are the ones with a harmonic trap which has the same
frequencies for each atom, and an s-wave short-range inter-
atomic interaction. For these systems, the center of mass
(c.m.) and relative motion of the two atoms can be decou-
pled with each other, and the c.m. motion is just the same

*pengzhang@ruc.edu.cn

as a harmonic oscillator. Nevertheless, the dynamics of the
relative motion of these two atoms is nontrivial. For the three-
dimensional (3D) systems, Busch et al. [1] and Idziaszek and
Calarco [2,3] studied the cases with a spherically and axially
symmetric harmonic trap, respectively. They showed that the
eigenenergy E of the relative motion satisfies a transcendental
equation with the form

J3D(E ) = 1

a3D
, (1)

with a3D being the 3D s-wave scattering length, and provided
the analytical expressions of the function J3D(E ) for these two
cases [1–3], as shown in Table I, respectively. Moreover, for
the two-dimensional (2D) systems with an isotropic harmonic
trap, Busch et al. obtained the equation

J2D(E ) = ln a2D, (2)

for the relative-motion eigenenergy E , where a2D is the 2D
s-wave scattering length, and derived the expression of the
function J2D(E ) [1]. With these results, one can easily obtain
the complete energy spectrum of these two-atom systems,
as well as the corresponding eigenstates. Thus, these results
have been widely used in the research of cold atom physics
[5,14,26,27,30,34,39–43].

However, for two atoms trapped in a 3D completely
anisotropic harmonic confinement, the transcendental equa-
tion for the arbitrary eigenenergy of the relative motion has
not been obtained so far. Only the equation of the ground-state
energy of a system with positive scattering length has been
obtained (i.e., the eigenenergy E which satisfies E < E0, with
E0 being the relative ground-state energy for the noninteract-
ing case) in Ref. [4] by Liang and Zhang. This equation has
the form of Eq. (1) and the corresponding function J3D(E ) is
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TABLE I. Expressions of the function J3D(E ) of Eq. (1) for various 3D traps. Here, ωα (α = x, y, z) is the trapping frequency in the α

direction, and we use the natural unit h̄ = 2μ = ωz = 1 with μ being the reduced mass of the two atoms. The parameters ηx and ηy are defined
as ηx = ωx/ωz and ηy = ωy/ωz, respectively, E0 = (ηx + ηy + 1)/2 is the ground-state energy of the relative motion in the noninteracting case,
and �(z) and ζ (z) are the Gamma and Riemann zeta function, respectively. The two expressions (39) and (40) of J3D(E ) given by this work
are mathematically equivalent with each other. (∗): There are typographical errors in Eqs. (21) and (23) of Ref. [3].

Type E J3D(E ) Ref.

ωx = ωy = ωz arbitrary E
√

2
�

(
− E

2 + 3
4

)
�

(
− E

2 + 1
4

) Ref. [1]

ωx = ωy �= ωz arbitrary E − ηx√
2

∞∑
n=0

[
�

(
− E−E0

2 +nηx

)
�

(
1
2 − E−E0

2 +nηx

) − 1√
ηx

√
n+1

]
−
√

ηx
2 ζ
(

1
2

)
Ref. [3] (∗)

ωx �= ωy �= ωz E < E0 − 1
2
√

π

∫∞
0 dt

{ √
ηxηy exp[(E−E0 )t/2]

√
1−e−ηxt

√
1−e−ηyt √1−e−t

− 1
t3/2

}
Ref. [4]

ωx �= ωy �= ωz arbitrary E Eq. (39) or Eq. (40) this work

also shown in Table I. On the other hand, since these kinds of
confinements are easy to experimentally prepare and are thus
used in many experiments of ultracold gases [26–30,34,43],
it would be helpful if we could derive a general equation
satisfied by all of the eigenenergies.

In this work, we derive the equation for the arbitrary
eigenenergy of two atoms in a completely anisotropic har-
monic trap. We show that this equation also has the form of
Eq. (1) and Eq. (2) for the 3D and 2D cases, respectively,
and provide the corresponding analytical expressions of the
functions J3D(E ) (Table I) and J2D(E ) [Eq. (60) or Eq. (62)].
As with the aforementioned results [1–3] for the spherically
and axially symmetric traps, our equations are useful for the
studies of various thermal-dynamical or dynamical properties
of ultracold gases in completely anisotropic harmonic con-
finements. Furthermore, our calculation approach used in this
work can also be generalized to other two-body problems of
ultracold atoms in complicated confinements.

The remainder of this paper is organized as follows. In
Secs. II and III, we derive the equations for eigenenergies of
atoms in 3D and 2D completely anisotropic harmonic traps,
respectively. In Sec. IV, we discuss how to generalize our
approach to other problems. A brief summary and some dis-
cussions are given in Sec. V. Some details of our calculations
are shown in the appendices.

II. 3D SYSTEMS

We consider two ultracold atoms 1 and 2 in a 3D com-
pletely anisotropic harmonic trap which has the same frequen-
cies for each atom. Here we denote ωα (α = x, y, z) as the
trapping frequency in the α direction, which satisfies

ωx �= ωy �= ωz. (3)

For convenience, in this work we use the natural unit

h̄ = 2μ = ωz = 1, (4)

with μ being the reduced mass of the two atoms. We further
introduce the aspect ratios

ηx = ωx

ωz
, ηy = ωy

ωz
, ηz = ωz

ωz
= 1, (5)

where ηx and ηy describe the anisotropy of the trapping
potential.

As mentioned in Sec. I, for this system we can separate out
the c.m. degree of freedom of these two atoms and focus on
the interatomic relative motion. The Hamiltonian operator of
our problem is given by

Ĥ = Ĥ0 + V̂I . (6)

Here, Ĥ0 is the free Hamiltonian for the relative motion and
can be expressed as

Ĥ0+ = p̂2 + 1
4

[
η2

x x̂2 + η2
y ŷ2 + ẑ2

]
, (7)

with p̂ and r̂ ≡ (x̂, ŷ, ẑ) being the relative momentum and
coordinate operators, respectively. In Eq. (6), V̂I is the inter-
atomic interaction operator, which is modeled as the s-wave
Huang-Yang pseudopotential. Explicitly, for any state |ψ〉 of
the relative motion, we have

〈r|V̂I |ψ〉 = 4πa3Dδ(r)
∂

∂r
[r · 〈r|ψ〉], (8)

with |r〉 being the eigenstate of the relative-coordinate opera-
tor r̂ with eigenvalue r, r = |r|, and a3D being the 3D s-wave
scattering length.

For our system, the parity with respect to the spatial inver-
sion r → −r is conserved and the contact pseudopotential V̂I

only operates on the states with even parity. Therefore, in this
work, we only consider the eigenenergies and eigenstates of
Ĥ in the even-parity subspace.

Now we deduce the transcendental equation for the
eigenenergy E of the total Hamiltonian Ĥ . We begin from the
Schrödinger equation,

[Ĥ0 + V̂I ]|�〉 = E |�〉, (9)

satisfied by E and the corresponding eigenstate |�〉 of Ĥ . This
equation can be reexpressed as

|�〉 = 1

E − Ĥ0
V̂I |�〉. (10)

Using Eq. (8), we find that Eq. (10) yields

〈r|�〉 = 4πa3DG0(E , r)

[
∂

∂r
[r · 〈r|�〉]

∣∣∣∣
r=0

]
, (11)
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where G0(E , r) is the Green’s function of the free Hamilto-
nian Ĥ0, which is defined as

G0(E , r) = 〈r| 1

E − Ĥ0
|0〉. (12)

We can derive the equation for the eigenenergy E by doing
the the operation ∂

∂r (r·)|r=0
on both sides of Eq. (11). In this

operation, without loss of generality, we choose r = zez, with
ez being the unit vector along the z direction. Then, we find
that E satisfies

J3D(E ) = 1

a3D
, (13)

which is just Eq. (1) of Sec. I, with the function J3D(E ) being
defined as

J3D(E ) = 4π

{
∂

∂|z|
[|z| · G0(E , zez )

]∣∣∣∣
z→0

}
. (14)

A. Expression of J3D(E )

Next we derive the expression of the function J3D(E ). For
our system, the ground-state energy of the relative motion of
two noninteracting atoms is

E0 = 1
2 (ηx + ηy + 1). (15)

In the following, we first consider the case with E < E0,
which was also studied in Ref. [4], and then investigate the
general case with arbitrary E .

1. Special case: E < E0

When E < E0, the Green’s function G0(E , zez ) (z > 0) can
be expressed as the Laplace transform of the imaginary-time
propagator [44–48], i.e.,

G0(E , zez ) = −
∫ +∞

0
K (z, E , β )dβ, (16)

with the function K (z, E , β ) defined as

K (z, E , β ) = eβE 〈zez|e−βĤ0 |0〉

= exp

[
βE − z2

4
coth β

] ∏
α=x,y,z

√
ηα

4π sinh(ηαβ )
.

(17)

Here we emphasize that when E < E0, the function
K (z, E , β ) exponentially decays to zero in the limit β →
∞, and thus the integration in Eq. (16) converges for any
fixed nonzero z. Nevertheless, this integration diverges in the
limit z → 0. That is due to the behavior of the leading term
e−z2/(4β )/(4πβ )

3
2 of the function K (z, E , β ) in the limit β →

0+ [44–48]. We can separate this divergence by reexpressing
the integration as

G0(E , zez ) = −
∫ +∞

0
dβ

e− z2

4β

(4πβ )
3
2

−
∫ +∞

0
dβK̃ (r, E , β )

= − 1

4π |z| −
∫ +∞

0
dβK̃ (z, E , β ), (18)

where

K̃ (z, E , β ) = K (z, E , β ) − e− z2

4β

(4πβ )
3
2

. (19)

In Eq. (18), the integration
∫ +∞

0 dβK̃ (z, E , β ) uniformly con-
verges in the limit z → 0. Using this result, we obtain the
expansion of G0(E , zez ) in this limit,

lim
z→0

G0(E , zez ) = − 1

4π |z| −
∫ +∞

0
dβK̃ (0; E , β ) + O(z).

(20)

Substituting this result into Eq. (14) and using Eqs. (17) and
(19), we finally obtain the expression

J3D(E )

= −
∫ +∞

0
dβ

{
eβE

2
√

π

∏
α=x,y,z

√
ηα

sinh(ηαβ )
− 1

2
√

π

1

β
2
3

}

(for E < E0), (21)

where the the integration converges for E < E0, as the one in
Eq. (16). This result was also derived by Liang and Zhang in
Ref. [4].

2. General case: Arbitrary E

In the general case with arbitrary energy E , we cannot di-
rectly use the above result in Eq. (21) because the integration
in this equation diverges for E > E0. For the systems with
spherically or axially symmetric confinements, the authors of
Refs. [1,2] successfully found the analytical continuation of
this integration for all real E . However, for the current system
with completely anisotropic traps, to our knowledge, so far
such analytical continuation has not been found.

Now we introduce our approach to solve this problem.
For convenience, we first define the eigenenergy of the free
Hamiltonian Ĥ0, which is just a Hamiltonian of a 3D harmonic
oscillator, as En. Here,

n = (nx, ny, nz ), (22)

with nα = 0, 1, 2, . . . (α = x, y, z) being the quantum number
of the α direction. It is clear that we have

En ≡ εnx + εny + εnz , (23)

with

εnα
= (

1
2 + nα

)
ηα (α = x, y, z). (24)

In addition, we further denote the eigenstate of Ĥ0 correspond-
ing to En as |n〉.

Similar to above, the key step of our approach is to calcu-
late the free Green’s function G0(E , zez ) defined in Eq. (12).
Since the result in Eq. (16) cannot be used for our general
case because the integration in this equation diverges for
E > E0, we need to find another expression for G0(E , zez ),
which converges for any E . To this end, we separate all the
eigenstates {|n〉} of Ĥ0 into two groups, i.e., the ones with
n ∈ LE and n ∈ UE , respectively, with the sets LE and UE
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being defined as

LE :
{
(nx, ny, nz )|nx,y,z = 0, 1, 2, . . . , εnx + εny + 1

2 � E
}
(25)

and

UE :
{
(nx, ny, nz )|nx,y,z = 0, 1, 2, . . . , εnx + εny + 1

2 > E
}
,

(26)

respectively. It is clear that we have

En > E for all states with n ∈ UE . (27)

Furthermore, we can reexpress the free Green’s operator
1/[E − Ĥ0] as

1

E − Ĥ0
=
∑
n∈UE

|n〉〈n|
E − En

+
∑
n∈LE

|n〉〈n|
E − En

(28)

= −
∫ +∞

0
dβ

[∑
n∈UE

|n〉〈n|e−β(En−E )

]

+
∑
n∈LE

|n〉〈n|
E − En

. (29)

Due to the fact (27), the integration of Eq. (29) converges.
Moreover, the integrand in Eq. (29) can be rewritten as∑

n∈UE

|n〉〈n|e−β(En−E ) =
∑

n

|n〉〈n|e−β(En−E )

−
∑
n∈LE

|n〉〈n|e−β(En−E )

= eβE e−βĤ0 −
∑
n∈LE

|n〉〈n|e−β(En−E ),

(30)

where we have used e−βĤ0 =∑n |n〉〈n|e−βEn . Substituting
Eq. (30) into Eq. (29) and then into Eq. (12), we obtain

G0(E , zez ) = −
∫ +∞

0
dβ[K (z; E , β ) − F (z; E , β )]

+ Q(z; E ), (31)

where K (z; E , β ) is defined in Eq. (17), and the functions
F (z; E , β ) and Q(z; E , β ) are defined as

F (z; E , β ) =
∑
n∈LE

〈zez|n〉〈n|0〉e−β(En−E ), (32)

Q(z; E , β ) =
∑
n∈LE

〈zez|n〉〈n|0〉
E − En

. (33)

Due to the convergence of the integration in Eq. (29), the
integration in Eq. (31) also converges for nonzero z, whether
E > E0 or E < E0. Therefore, Eq. (31) is the convergent
expression of G0(E , zez ) for arbitrary E .

Furthermore, similar to Sec. II A, the integration in
Eq. (31) diverges in the limit |z| → 0 due to the leading term

e− z2

4β /(4πβ )
3
2 of the integrand in the limit β → 0+. We can

separate this divergence via the technique used in Eqs. (18)–
(20), i.e., reexpress this integration as

−
∫ +∞

0
dβ[K (z; E , β ) − F (z; E , β )]

= −
∫ +∞

0
dβ

e− z2

4β

(4πβ )
3
2

−
∫ +∞

0
dβ[K̃ (z; E , β )−F (z; E , β )]

= − 1

4π |z| −
∫ +∞

0
dβ[K̃ (z; E , β ) − F (z; E , β )], (34)

with the function K̃ (z; E , β ) defined in Eq. (19). Using this
technique, we obtain

lim
|z|→0

G(0)(E , zez ) = − 1

4π |z| +
[
W3D(E ) +

∫ +∞

0
I3D(E , β )dβ

]
+ O(z), (35)

where the z-independent functions W3D(E ) and I3D(E , β ) are defined as W3D(E ) ≡ Q(0, E , β ) and I3D(E , β ) ≡ −K̃ (0; E , β ) +
F (0; E , β ), respectively. The straightforward calculations (see Appendix A) show that they can be expressed as

W3D(E ) = −π

2

√
ηxηy

2

∑
(nx,ny )∈C(3D)

E

{
2nx+ny−1�

[
1
4 − (E−εnx −εny )

2

]
�
( 1−nx

2

)2
�
( 1−ny

2

)2
�(nx + 1)�(ny + 1)�

[
3
4 − (E−εnx −εny )

2

]
}

(36)

and

I3D(E , β ) = −eβE
∏

α=x,y,z

√
ηα

4π sinh(ηαβ )
+
(

1

4πβ

) 3
2

+
√

πηxηy

8 sinh β

∑
(nx,ny )∈C(3D)

E

{
2nx+ny− 1

2

�
( 1−nx

2

)2
�
( 1−ny

2

)2
�(nx + 1)�(ny + 1)

eβ(E−εnx −εny )

}
, (37)

where �(z) is the Gamma function and C(3D)
E is a set of two-dimensional number array (nx, ny), which is defined as

C(3D)
E :

{
(nx, ny)|nx,y = 0, 2, 4, 6, . . . ; εnx + εny + 1

2 � E
}
. (38)
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Finally, substituting Eq. (35) into Eq. (14), we obtain the
expression of J3D(E ),

J3D(E ) = 4π

[
W3D(E ) +

∫ +∞

0
I3D(E , β )dβ

]
, (39)

with W3D(E ) and I3D(E , β ) given by Eqs. (36) and (37),
respectively. Notice that the summations in Eqs. (36) and
(37) are done for finite terms, and the integration in Eq. (39)
converges. Therefore, using Eqs. (39), (36), and (37), one can
efficiently calculate J3D(E ).

It is clear that Eq. (13) for the eigenenergy and the expres-
sion (39) of the function J3D(E ) are correct for not only the
systems in completely anisotropic traps, but also the ones in
spherically or axially symmetric traps. For the latter two cases,
Eq. (39) is equivalent to the results derived by Refs. [1,2],
which are shown in Table I.

B. Techniques for fast calculation of J3D(E )

There are some techniques which may speed up the calcu-
lation for the function J3D(E ). First, as shown in Appendix B,
J3D(E ) can be reexpressed as

J3D(E ) = 4π

[∫ �

0
A3D(E , β )dβ + B(1)

3D(E ,�) + B(2)
3D(E ,�) +

(
1

2π

)3/2 1√
2�

]
, (40)

where � is an arbitrary finite positive number, and the functions A3D(E , β ) and B(1,2)
3D (E ,�) are defined as

A3D(E , β ) = −eβE
∏

α=x,y,z

√
ηα

4π sinh (ηαβ )
+
(

1

4πβ

) 3
2

, (41)

B(1)
3D(E ,�) = (−1) ×

∑
(nx,ny )∈C(3D)

E

{
2nx+ny− 5

2
√

πηxηy �
(

1
4 − E−εnx −εny

2

)
e(E−εnx −εny − 3

2 )�

�
( 1−nx

2

)2
�
( 1−ny

2

)2
�(nx + 1)�(ny + 1)�

(
5
4 − E−εnx −εny

2

)

×
√

e2� − 1 ×2 F 1

[
1,

3

4
− E − εnx − εny

2
,

5

4
− E − εnx − εny

2
, e−2�

]}
, (42)

and

B(2)
3D(E ,�) = √

πηxηy csch �

×
∑

(nx,ny )/∈C(3D)
E

2nx+ny−1e(E−εnx −εny −2)�(e2� − 1) ×2 F 1
[
1, 3

4 − E−εnx −εny

2 , 5
4 − E−εnx −εny

2 , e−2�
]

�
( 1−nx

2

)2
�
( 1−ny

2

)2
�(nx + 1)�(ny + 1)[2(E − εnx − εny ) − 1]

, (43)

respectively, with 2F 1 the hypergeometric function. In Ap-
pendix B, we prove that (40) is exactly equivalent to Eqs. (39)
for any finite positive �. Thus, in the numerical calculation,
for a specific problem one can choose the value of � by
convenience.

Due to the following two facts, the calculation of J3D(E )
based on Eq. (40) may be faster than the one based on
Eq. (39):

(a) An important difference between the expressions (39)
and (40) is that the integrand I3D(E , β ) of Eq. (39) includes
a summation

∑
(nx,ny )∈C(3D)

E
, while the integrand A3D(E , β )

of Eq. (40) does not include any summation. On the other
hand, in the numerical calculations for these integrations for a
fixed E , one needs to calculate the values of the integrands
for many points in the β axis. Thus, to calculate the term∫ +∞

0 I3D(E , β )dβ of Eq. (39), one need to do the the sum-
mation

∑
(nx,ny )∈C(3D)

E
many times, while to calculate the term∫ �

0 A3D(E , β )dβ of Eq. (40), one is not required to do that.
This advantage is more significant for the large-E cases where
this summation includes many terms.

(b) Furthermore, the terms in the summation
∑

(nx,ny )/∈C(3D)
E

of Eq. (43) decay to zero in the limits nx,y → ∞ and the
decaying is faster than exponential (see Appendix B). There-

fore, although this summation includes infinite terms, it can
converges fast.

Another technique which may be helpful for the fast calcu-
lation of J3D(E ) is based on the direct conclusions of Eq. (39)
or Eq. (40), i.e., for two energies E1 and E2, we have

J3D(E2) − J3D(E1)

= 4π

[
δW3D +

∫ +∞

0
δI3D(β )dβ

]
(44)

= 4π

[∫ �

0
δA3D(β )dβ + δB(1)

3D(�) + δB(2)
3D(�)

]
, (45)

where δW3D = W3D(E2) − W3D(E1), δI3D(β ) = I3D(E2, β ) −
I3D(E1, β ), δA3D(β ) = A3D(E2, β ) − A3D(E1, β ), and
δB(1,2)

3D (�) = B(1,2)
3D (E2,�) − B(1,2)

3D (E1,�). Therefore, if
the value of J3D(E1) is already derived, one can calculate
J3D(E2) by either Eq. (39) [Eq. (40)] or Eq. (44) [Eq. (45)],
and it is possible that the summations and integration in
Eq. (44) [Eq. (45)] can converge faster.

C. Energy spectrum

By solving Eq. (13) with expression (39) of J3D(E ), we
can derive the complete eigenenergy spectrum of the complete

053624-5



CHEN, XIAO, ZHANG, AND ZHANG PHYSICAL REVIEW A 101, 053624 (2020)

-10 -5 0 5 10

-5

0

5

10

E/
(

z)

a3D/d

This work
Ref. [1]

(a)

x = y = 1

-15 -10 -5 0 5 10 15

-2

0

2

4

6

8(b)

a3D/d

This work
Ref. [2]

E/
(

z)

x = y = 1.1

-15 -10 -5 0 5 10 15

-2

0

2

4

6

a3D/d

(c)

E/
(

z)

x = 1.2 , y = 1.1

-20 -10 0 10 20

-5

0

5

10

15

20(d)

E/
(

z)

a3D/d

x = 5 , y = 3

FIG. 1. The energy spectrum of the relative motion of two atoms in a 3D harmonic trap with aspect ratios (a) (ηx = ηy = 1), (b) (ηx =
ηy = 1.1), (c) (ηx = 1.2, ηy = 1.1), and (d) (ηx = 5, ηy = 3). We show the results given by Eq. (1) and the expression (39) of function J3D(E )
with solid lines. In (a) and (b), we also show the results given by Refs. [1] and [2] with blue dots, respectively. Here, d = √

h̄/(2μωz ) is the
characteristic length of our natural unit.

Hamiltonian Ĥ of the two-atom relative motion. In Figs. 1(a)–
1(d), we show the energy spectrum of the relative motion of
two atoms in 3D harmonic traps with various aspect ratios
ηx,y, which is derived via Eqs. (13) and (39). In Figs. 1(a) and
1(b), we consider the traps with spherical symmetry (ηx =
ηy = 1) and axial symmetry (ηx = ηy = 1.1), respectively,
and show that the results given by our approach are the same
as those from the methods in Refs. [1] and [2]. In Figs. 1(c)
and 1(d), we show the results for 3D completely anisotropic
traps whose frequencies in every direction are similar to (ηx =
1.2, ηy = 1.1) and quite different from (ηx = 5, ηy = 3) each
other, respectively.

As an example of the application of our method, we make
a simple investigation of the energy-level distribution for the
systems with integer aspect ratios ηx and ηy. This property
is crucial for many important problems such as thermalization
and quantum chaotic behaviors. It is clear that for noninteract-
ing cases (i.e., for a3D = 0), the energy levels of these systems
are distributed with equal spacing. However, when a3D �= 0,
the energy-level distributions become uneven, i.e., the energy
spacings become unequal to each other. Nevertheless, for sys-
tems with different aspect ratios, the “degree of unevenness”
of the energy-level distributions, or the fluctuation of the
energy spacings, is quite different. In Ref. [2], it was found
that for the pancake-shaped traps with ηx � 1 and ηy = 1, the
energies are almost distributed with equal spacing (i.e., the
level spacings are almost equal), while for the cigar-shaped
traps with ηx = ηy � 1, the eigenenergies are distributed very

unevenly (i.e., the energy spacings fluctuate significantly).
Here we study the intermediate cases between the “pancake
limit” and the “cigar limit,” i.e., the systems with a3D =
∞, ηx = 5, and various values of ηy (ηy = 1, 2, 3, 4, 5). We
define �l (l = 1, 2, 3, . . . ; �l > 0) as the spacing between
the lth and (l + 1)-th excited-state energy of our systems, and
calculate the “normalized” energy spacing,

δl ≡ �l

1
20

∑20
l=1 �l

(l = 1, . . . , 20) (46)

for the lowest 20 excited states for each system. As shown
in Fig. 2, when the system is crossed from the pancake-
shaped limit to the cigar shape, i.e., ηy is increased from 1
to 5, the fluctuation of δl monotonically increases, i.e., the
energy-level distribution becomes more and more uneven. In
future works, we will perform more systematic investigations
for the energy-level distribution of two ultracold atoms in a
completely anisotropic harmonic trap.

D. Eigenstate of Ĥ

Furthermore, Eqs. (11) and (12) yield that for a given
eigenenergy E of the total Hamiltonian Ĥ for the two-atom
relative motion, the corresponding eigenstate |�〉 satisfies

〈r|�〉 ∝ 〈r| 1

E − Ĥ0
|0〉 =

∑
n

〈r|n〉〈n|0〉
E − En

. (47)
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FIG. 2. The normalized energy spacing δl defined in Eq. (46) for
the lowest 20 excited states of the systems with a3D = ∞, ηx = 5,
and ηy (ηy = 1, 2, 3, 4, 5). Here we also use the natural unit h̄ =
2μ = ωz = 1.

Thus, considering the normalization condition 〈�|�〉 = 1, we
obtain the expression for the wave function of the eigenstate,

〈r|�〉 = 1√∑
n |cn|2

∑
n

cnφnx (ηx, x)φny (ηy, y)φnz (ηz, z),

(48)

with

cn = 1

(E − En)
φnx (ηx, 0)φny (ηy, 0)φnz (ηz, 0). (49)

Here, (x, y, z) are the components of r, and the function
φn(η, X ) is defined in Eq. (A3). It is just the eigenwave
function of a one-dimensional harmonic oscillator and sat-
isfies 〈r|n〉 = φnx (ηx, x)φny (ηy, y)φnz (ηz, z). Using Eqs. (48)
and (49), one can easily derive the normalized eigenstate |�〉
of Ĥ from the eigenenergy E [1,3,31].

III. 2D SYSTEMS

Now we consider two atoms confined in a 2D anisotropic
harmonic trap in the x-z plane. As above, here we assume
the trapping frequencies ωx (ωz) in the x (z) direction are the
same for each atom. Thus, by separating out the c.m. degree
of freedom, we can obtain the free Hamiltonian operator for

the relative motion. In our natural unit with h̄ = 2μ = ωz = 1,
this free Hamiltonian can be expressed as

Ĥ (2D)
0 = p̂2

2D + 1
4 (ηxx̂2 + ẑ2), (50)

where ηx = ωx/ωz is the aspect ratio, as in Sec. II. In Eq. (50),
p̂2D and ρ̂ ≡ (x̂, ẑ) are the relative momentum and coordi-
nate operators, respectively. We further assume that the two
atoms experience a 2D s-wave zero-range interaction with 2D
scattering length a2D, and model this potential with the 2D
Bethe-Peierls boundary condition (BPC). Explicitly, in our
calculation, the eigenenergy E and corresponding eigenstate
|�〉 for these two interacting atoms should satisfy the equation

〈ρ|Ĥ (2D)
0 |�〉 = E〈ρ|�〉 for ρ > 0, (51)

and the BPC [49]

lim
ρ→0

〈ρ|�〉 ∝ (ln ρ − ln a2D), (52)

where |ρ〉 is the eigenstate of the relative-coordinate operator
ρ̂, with the corresponding eigenvalue ρ, and ρ = |ρ|. Namely,
the wave function 〈ρ|�〉 satisfies the eigenequation of the free
Hamiltonian Ĥ (2D)

0 in the region other than the origin (i.e., the
region with ρ > 0) and has the singular behavior (52) in the
limit ρ → 0, which describes the interaction effect. As in the
3D cases, this zero-range interaction only acts on the states
in the subspace with even parity with respect to the spatial
inversion ρ → −ρ, and thus in this work we only consider the
eigenenergies in this subspace. In addition, in the long-range
limit ρ → ∞, the wave function 〈ρ|�〉 should satisfy

lim
ρ→∞〈ρ|�〉 = 0. (53)

A. Expression of J2D(E )

The solution to Eq. (51) and the long-range condition (53)
is proportional to the 2D Green’s function, i.e.,

〈ρ|�〉 ∝ G(2D)
0 (E ; ρ) ≡ 〈ρ| 1

E − Ĥ (2D)
0

|0〉. (54)

Therefore, we can derive the algebraic equation for the
eigenenergy E by matching G(2D)

0 (E ; ρ) with the BPC (52). To
this end, we need to expand G(2D)

0 (E ; ρ) in the limit ρ → 0.
This expansion can be done with the similar approach as in
Sec. II, and we show the detail in Appendix C. Finally, we
obtain

lim
ρ→0

G(2D)
0 (E ; ρ) = 1

2π
ln ρ − 2

[
W2D(E ) +

∫ +∞

0
I2D(E , β )dβ

]
, (55)

where the functions W2D(E ) and I2D(E , β ) are defined as

W2D(E ) =
√

ηx

2

∑
nx∈C(2D)

E

{
�
[

1
4 − (E−εnx )

2

]
2nx−2

�
( 1−nx

2

)2
�(nx + 1)�

[
3
4 − (E−εnx )

2

]
}

− γ

4π
− 1

8π
ln
(κ

4

)
(56)

and

I2D(E , β ) = eβE

2

∏
α=x,z

√
ηα

4π sinh(ηαβ )
− 1

8πβ
e−κβ −

√
ηx

4 sinh β

∑
nx∈C(2D)

E

{
2nx− 3

2

�
( 1−nx

2

)2
�(nx + 1)

eβ(E−εnx )

}
, (57)
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respectively, in our natural unit. Here, γ = 0.5772 . . . is the
Euler’s constant, ηz = 1, εnx = (nx + 1/2)ηx, the parameter κ

could be any positive number, and the result is independent of
the value of κ . In Eq. (57), C(2D)

E is a number set defined as

C(2D)
E :

{
nx|nx = 0, 2, 4, 6, . . . ; εnx + 1

2 � E
}
. (58)

Clearly, for E < E0, the set C(2D)
E is empty and the summation∑

nx∈C(2D)
E

in the expressions (56), (57) of W2D and I2D becomes
zero.

Combining Eqs. (55), (54), and (52), we obtain the equa-
tion for the eigenenergy E of our 2D system, which has the
form of Eq. (2),

J2D(E ) = ln a2D. (59)

Here the function J2D(E ) is given by

J2D(E ) = 4π

[
W2D(E ) +

∫ +∞

0
I2D(E , β )dβ

]
, (60)

with W2D(E ) and I2D(E , β ) defined in Eqs. (56) and (57),
respectively. One can derive the eigenenergies of the relative
motion of these two atoms by solving Eq. (59) and further
obtain the corresponding eigenstates.

As in the 3D cases, the summations in Eqs. (56) and (57)
are done for finite terms, and the integration in Eq. (60)
converges. Therefore, using Eqs. (60), (56), and (57), one

can efficiently calculate J2D(E ). In addition, for the systems
with a 2D isotropic trap (ωx = ωz or ηx = 1), Eq. (59) for the
eigenenergy and the expression (60) for the function J2D(E )
are equivalent to the results derived by Ref. [1]. Explicitly, we
have [50]

J2D(E ) = d

dz
ln [�(z)]

∣∣∣∣
z= 1−E

2

− γ + 1

2
ln 2 (for ωx = ωz ).

(61)

B. Techniques for fast calculation of J2D(E )

The techniques shown in Sec. II B for the fast calculation
of J3D(E ) can also be directly generalized to the 2D case (see
Appendix D). In particular, as proved in Appendix D, J2D(E )
given by Eq. (60) can be reexpressed as

J2D(E ) = 4π

[∫ �

0
A2D(E , β )dβ + B(1)

2D(E ,�) + B(2)
2D(E ,�)

− �(0, κ�)

8π

]
, (62)

where � and κ are arbitrary finite positive numbers, as in
Eqs. (56), (57), and (40), �[a, z] is the incomplete Gamma
function, and the functions A2D(E , β ) and B(1,2)

2D (E ,�) are
defined as

A2D(E , β ) = eβE

2

∏
α=x,z

√
ηα

4π sinh (ηαβ )
− 1

8πβ
e−κβ, (63)

B(1)
2D(E ,�) = − γ

4π
− 1

8π
ln
(κ

4

)
+

∑
nx∈C(2D)

E

{√
ηx2nx−3e(E−εnx − 3

2 )�
√

e2� − 1 · �
(

1
4 − E−εnx

2

)
�
( 1−nx

2

)2
�(nx + 1)�

(
5
4 − E−εnx

2

)

× 2F 1

[
1,

3

4
− E − εnx

2
,

5

4
− E − εnx

2
, e−2�

]⎫⎬
⎭, (64)

and

B(2)
2D(E ,�) = −

∑
nx /∈C(2D)

E

2nx− 3
2
√

ηx csch �

�
( 1−nx

2

)2
�(nx + 1)

e(E−εnx −2)�(e2� − 1) ×2 F 1
[
1, 3

4 − E−εnx
2 , 5

4 − E−εnx
2 , e−2�

]
2(E − εnx ) − 1

, (65)

respectively, with 2F 1 being the hypergeometric function. As
in the 3D cases, expression (62) of J2D(E ) has the advantages
(a) and (b) shown in Sec. II B. Therefore, the numerical
calculations based on Eq. (62) are quite possibly faster than
the one based on Eq. (60), especially for the high-energy cases
with large E .

C. Energy spectrum and eigenstates

In Fig. 3(a), we illustrate the energy spectrum for the cases
with an isotropic 2D trap (ηx = 1) and show that our results
are the same as those from Ref. [1]. In Figs. 3(b) and 3(c), we
show the results for anisotropic 2D traps which have similar
(ηx = 1.1) and quite different (ηx = 5) frequencies in the x
and z directions.

In addition, similar to Sec. II D, one can also derive
the corresponding eigenstate |�〉 with eigenenergy E , which
satisfies Eq. (51) and the boundary conditions (52) and (53), as
well as the normalization condition 〈�|�〉 = 1. With Eq. (54)
and the similar approach as in Sec. II D, we obtain

〈ρ|�〉 = 1√∑
m |dm|2

∑
m

dmφmx (ηx, x)φmz (1, z), (66)

with

dm = 1(
E − E (2D)

m
)φmx (ηx, 0)φmz (1, 0). (67)

Here, (x, z) are the components of ρ, m = (mx, my), with
mx,y = 0, 1, 2, . . . , E (2D)

m = (mx + 1/2)ηx + (mz + 1/2), and
the function φn(η, X ) is defined in Eq. (A3).
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FIG. 3. The energy spectrum of the relative motion of two atoms in a 2D harmonic trap with (a) ηx = 1, (b) ηx = 1.1, and (c) ηx = 5. We
show the results given by Eq. (2) and the expression (60) of the function J2D(E ) with solid lines. In (a), we also show the results given by
Ref. [1] with blue dots. Here, d = √

h̄/(2μωz ) is the characteristic length of our natural unit.

IV. GENERALIZATION OF OUR APPROACH TO
OTHER PROBLEMS

At the end of this work, we briefly summarize the main
ideas of our approach used in the above calculations and
discuss how to generalize these ideas. Here we take the 3D
systems as an example.

The key step for solving the two-body problem with zero-
range interaction is the calculation of the free Green’s operator
Ĝ0(E ) ≡ 1/[E − Ĥ0]. When E is less than the ground-state
energy E0 of Ĥ0, Ĝ0(E ) can be directly expressed as the
Laplace transform of the imaginary-time evolution operator
e−βĤ0 , i.e., we have Ĝ0(E ) = − ∫ +∞

0 eβ(E−Ĥ0 )dβ. However,
when E > E0, this integration diverges. To solve this problem,
we separate Ĝ0(E ) into two parts, i.e., the contributions from
the high-energy states with n ∈ UE and the ones from the low-
energy states with n ∈ LE , as shown in Eq. (28). Furthermore,
as shown in Eqs. (29) and (30), the first part can still be
expressed as the Laplace transform of the operator e−βĤ (3D)

0 −∑
n∈LE

|n〉〈n|e−β(En ), which converges for any nonzero z, and
the second part only includes finite terms.

It is pointed out that the definitions of the sets LE and UE

are not unique. The only requirements are the following:
(i) LE is the complement of UE .
(ii) En > E for ∀n ∈ UE . Namely, the set LE includes (but

is not limited to) all n which satisfies En < E .
For instance, an alternative definition of these two sets is

UE : {n|En > E} and LE : {n|En � E}.
Using this method, we can derive the helpful expres-

sion (31) of Green’s function G(0)(E , zez ), which is just
the matrix element 〈zez|Ĝ0(E )|0〉 of the free Green’s op-
erator Ĝ0(E ). In this expression, there is just a sum-
mation for finite terms and a one-dimensional integration∫ +∞

0 dβ[K (z; E , β ) − F (z; E , β )] which converges for any
finite z.

To complete the calculation, we still must remove the
divergent term of the above integration in the limit z →
0. This divergent term is contributed by the leading term

e− z2

4β /(4πβ )
3
2 of the integrand K (z; E , β ) − F (z; E , β ) in the

limit β → 0+. Therefore, we can remove it via the technique
used in Eqs. (18)–(20).

Our above approach for the calculation of the two-body
free Green’s function can be directly generalized to other few-
body problems of ultracold atoms, especially the ones where

the analytical expressions of the eigenstates and imaginary-
time propagator of the free Hamiltonian are known, e.g., the
few-body problems in mixed-dimensional systems [51]. Here
we emphasize that with the help of the Laplace transformation
for the imaginary-time propagator, the free Green’s operator
can always be expressed as a one-dimensional integration,
no matter how many degrees of freedoms are involved in the
system. Thus, the free Green’s function given by our method
always includes a converged one-dimensional integration and
summations for finite terms.

V. SUMMARY

In this work, we derive the transcendental equations for
the eigenenergies of two atoms in a 2D or 3D harmonic trap.
Our results are applicable for general cases, whether the trap
is completely anisotropic or has spherical or axial symmetry.
Using our results, one can easily derive the complete energy
spectrum, which can be used for further theoretical or exper-
imental studies of dynamical or thermodynamical problems.
Our approach can be used in other few-body problems of
confined ultracold atoms.

Note added. Recently, we became aware of the related
work [52]. The authors derived the expression of J2D(E ) for
E < E0, and a recurrence relation of J2D(E ) for arbitrary E .
With this recurrence relation, they also obtained the complete
energy spectrum of two atoms in a 2D anisotropic confine-
ment, as well as the eigenstates.
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APPENDIX A: PROOF OF EQS. (36) AND (37)

In this Appendix, we prove Eqs. (36) and (37) of Sec. II A.
To this end, we first show some results on a 1D harmonic
oscillator, which will be used in our calculation.
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1. Some properties of 1D harmonic oscillator

Let us consider a 1D harmonic oscillator with frequency η

and mass μ. The Hamiltonian of this oscillator is (h̄ = 2μ =
1)

Ĥho = P̂2 + η2X̂ 2

4
, (A1)

with X̂ and P̂ being the coordinate and momentum operator,
respectively. The eigenenergy of Ĥho is

En = (n + 1
2

)
η (n = 0, 1, 2, . . . ), (A2)

and the wave function of the eigenstate |n〉 corresponding to
En can be expressed as

〈X |n〉 ≡ φn(η, X ) =
( η

2π

) 1
4 e− ηX2

4√
2n�(n + 1)

Hn

(√
η

2
X

)
,

(A3)

with |X 〉 being the eigenstate of the position operator X̂
with eigenvalue X , and Hn(X ) and �(α) being the Hermitian
polynomial and the Gamma function, respectively. The wave
function φn(η, X ) also satisfies

〈X |e−βĤho |0〉 =
+∞∑
n=0

φn(η, X )φ∗
n (η, 0)e−β(n+1/2)η

=
√

η

4π sinh(ηβ )
exp

[
−ηX 2 coth (ηβ )

4

]
,

(A4)

for β > 0.
Now we consider the Green’s function g(ξ ; η; X ) of the 1D

harmonic oscillator, which is defined as

g(ξ ; η; X ) ≡ 〈X | 1

ξ − Ĥho
|0〉 =

+∞∑
n=0

φn(η, X )φ∗
n (η, 0)

ξ − En
.

(A5)

This function satisfies the differential equation

ξ · g(ξ ; η; X ) + d2

dX 2
g(ξ ; η; X ) − η2X 2

4
g(ξ ; η; X ) = δ(X )

(A6)

and the boundary condition

lim
|X |→∞

g(ξ ; η; X ) = 0. (A7)

To derive g(ξ ; η; X ), we can first solve Eq. (A6) in the regions
X > 0 and X < 0 with the boundary condition (A7), and then
match the solution with the connection condition at X = 0,
which is given by the term δ(X ) in Eq. (A6). With this
approach, we obtain

g(ξ ; η; X ) =
+∞∑
n=0

φn(η, X )φ∗
n (η, 0)

ξ − En

= −
�
(

1
4 − ξ

2η

)
2

5
4 + ξ

2η
√

πη
D ξ−η/2

η

(
√

ηX ), (A8)

where Dλ(α) is the parabolic cylinder function. Equation (A8)
and the property of the parabolic cylinder function further
yields

g(ξ ; η; 0) =
+∞∑
n=0

|φn(η, 0)|2
ξ − (n + 1/2)η

= −
�
(

1
4 − ξ

2η

)
2
√

2η�
(

3
4 − ξ

2η

) .
(A9)

2. Proof of the two equations

Now we prove Eq. (36) and Eq. (37) of our main text,
which are about the expressions of the functions W3D(E ) and
I3D(E , β ), respectively. As shown in Sec. II A, these two
functions are defined as

W3D(E ) ≡ Q(0, E , β ) (A10)

and

I3D(E , β ) ≡ −K̃ (0; E , β ) + F (0; E , β ), (A11)

with the functions F (z; E , β ), Q (z; E , β ), and K̃ (z; E , β )
defined in Eq. (32), Eq. (33), and Eq. (19), respectively. Thus,
we have

Q(0; E , β ) =
∑
n∈LE

〈0|n〉〈n|0〉
E − En

, (A12)

F (0; E , β ) =
∑
n∈LE

〈0|n〉〈n|0〉e−β(En−E ). (A13)

It is clear that the eigenstate |n〉 of the 3D free Hamiltonian
Ĥ0, which is defined in Sec. II A, satisfies 〈0|n〉 = 0 when nx

or ny is odd. Using this fact and the definitions of the sets LE

and C(3D)
E , which are given in Eqs. (25) and (38) of our main

text, we obtain

Q(0; E , β ) =
∑

(nx,ny )∈C(3D)
E

+∞∑
nz=0

〈0|n〉〈n|0〉
E − En

=
∑

(nx,ny )∈C(3D)
E

⎧⎨
⎩|φnx (ηx, 0)|2|φny (ηy, 0)|2

⎡
⎣+∞∑

nz=0

|φnz (ηz, 0)|2
(E − εnx − εny ) − εnz

⎤
⎦
⎫⎬
⎭ (A14)

and

F (0; E , β ) =
∑

(nx,ny )∈C(3D)
E

+∞∑
nz=0

〈0|n〉〈n|0〉e−β(En−E ) =
∑

(nx,ny )∈C(3D)
E

⎧⎨
⎩|φnx (ηx, 0)|2|φny (ηy, 0)|2eβ(E−εnx −εny )

⎡
⎣+∞∑

nz=0

|φnz (ηz, 0)|2e−βεnz

⎤
⎦
⎫⎬
⎭,

(A15)
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where ηx,y,z and εnx,y,z are defined in Sec. II, and the function
φn(η, X ) is defined by Eq. (A3).

Substituting Eq. (A9) into Eq. (A14) and then into
Eq. (A10), and using the property

Hn(0) = 2n√π

�( 1−n
2 )

(A16)

of the Hermitian polynomial, we can derive Eq. (36). More-
over, substituting Eq. (A4) into Eq. (A15) and then into
Eq. (A11), and using Eqs. (A16), (19), and (17), we can derive
Eq. (37).

APPENDIX B: PROOF OF EQ. (40)

In this Appendix, we prove Eq. (40) in Sec. II B. To this end, we separate the integration in Eq. (39) into two parts, i.e.,∫ ∞

0
I3D(E , β )dβ =

∫ �

0
I3D(E , β )dβ +

∫ ∞

�

I3D(E , β )dβ, (B1)

with � being an arbitrary finite positive number. In addition, using the definition (37) of I3D(E , β ), we immediately obtain∫ �

0
I3D(E , β )dβ =

∫ �

0
A3D(E , β )dβ +

∑
(nx,ny )∈C(3D)

E

∫ �

0

2nx+ny−2√πηxηy eβ(E−εnx −εny )

�
( 1−nx

2

)2
�
( 1−ny

2

)2
�(nx + 1)�(ny + 1)

√
sinh β

dβ

=
∫ �

0
A3D(E , β )dβ +

∑
(nx,ny )∈C(3D)

E

2nx+ny− 5
2
√

πηxηy

�
( 1−nx

2

)2
�
( 1−ny

2

)2
�(nx + 1)�(ny + 1)

{√
π�
(

1
4 − E−εnx −εny

2

)
�
(

3
4 − E−εnx −εny

2

)

− �
(

1
4 − E−εnx −εny

2

)
�
(

5
4 − E−εnx −εny

2

)e(E−εnx −εny − 3
2 )�
√

e2� − 1 ×2 F 1

[
1,

3

4
− E − εnx − εny

2
,

5

4
− E − εnx − εny

2
, e−2�

]}
,

(B2)

with A3D(E , β ) defined in Eq. (41).
Now we calculate the term

∫∞
�

I3D(E , β )dβ in Eq. (B1). We first notice that according to Eqs. (A11), (A15), (19), and (17),
I3D(E , β ) can be reexpressed as

I3D(E , β ) =
(

1

4πβ

) 3
2

−
∑

nx,ny,nz

〈0|n〉〈n|0〉e−β(En−E ) +
∑

(nx,ny )∈C(3D)
E

+∞∑
nz=0

〈0|n〉〈n|0〉e−β(En−E )

=
(

1

4πβ

) 3
2

−
∑

(nx,ny )/∈C(3D)
E

+∞∑
nz=0

〈0|n〉〈n|0〉e−β(En−E )

=
(

1

4πβ

) 3
2

−
∑

(nx,ny )/∈C(3D)
E

⎧⎨
⎩|φnx (ηx, 0)|2|φny (ηy, 0)|2eβ(E−εnx −εny )

⎡
⎣+∞∑

nz=0

|φnz (ηz, 0)|2e−βεnz

⎤
⎦
⎫⎬
⎭, (B3)

where εnx,y,z is defined in Sec. II, and the function φn(η, X ) is defined in Eq. (A3). Moreover, substituting Eq. (A4) and Eq. (A16)
into Eq. (B3), we further obtain

I3D(E , β ) =
(

1

4πβ

) 3
2

−
√

πηxηy

8 sinh β

∑
(nx,ny )/∈C(3D)

E

{
2nx+ny− 1

2

�
( 1−nx

2

)2
�
( 1−ny

2

)2
�(nx + 1)�(ny + 1)

eβ(E−εnx −εny )

}
, (B4)

where ηx,y,z is defined in Sec. II. Doing the integration
∫∞
�

I3D(E , β )dβ in both sides of Eq. (B4), we further obtain∫ ∞

�

I3D(E , β )dβ = B(2)
3D(E ,�) +

(
1

2π

)3/2 1√
2�

, (B5)

where B(2)
3D(E ,�) is defined in Eq. (43).

Substituting Eqs. (B2) and (B5) into Eq. (B1) and then into Eq. (39), and further using Eqs. (36), we can derive Eq. (40).

APPENDIX C: PROOF OF EQS. (56) and (57)

In this Appendix, we prove Eqs. (56) and (57) in Sec. III, which is related to the behavior of the 2D Green’s function
G(2D)

0 (E ; ρ) in the limit |ρ| → 0. Our approach is similar to the method used in Sec. II A.
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As in Sec. II and Appendix A, by choosing ρ = ρez (ρ > 0) and making direct calculations, we can find that

G(2D)
0 (E ; ρez ) = −

∫ ∞

0
[K2D(ρ; E , β ) − Y (ρ; E , β )]dβ + Z (ρ; E ), (C1)

which is similar to the expression (31) of the 3D free Green’s function. Here the functions K2D(ρ; E , β ), Y (ρ; E , β ), and Z (ρ; E )
are defined as

K2D(ρ; E , β ) = eβE 〈ρez|e−βĤ (2D)
0 |0〉 =

(∏
α=x,z

√
ηα

4π sinh (ηαβ )

)
exp

[
βE − coth (β )

4
ρ2

]
, (C2)

Y (ρ; E , β ) =
∑

nx∈C(2D)
E

+∞∑
nz=0

eβ(E−En )〈ρez|n〉〈n|0〉, (C3)

Z (ρ; E ) =
∑

nx∈C(2D)
E

+∞∑
nz=0

〈ρez|n〉〈n|0〉
E − En

, (C4)

where ηx,z and εnx,z have the same definition as in Sec. II and C(2D)
E is defined in Eq. (58). Furthermore, the integration in Eq. (C1)

diverges in the limit z → 0, and we can remove this divergence using a similar approach as in Sec. III. To this end, we reexpress
Eq. (C1) as

G(2D)
0 (E ; ρez ) = −

∫ ∞

0

1

4πβ
exp

(
−βκ − 1

4β
ρ2

)
dβ −

∫ ∞

0
[K̃2D(ρ; E , β ) − Y (ρ; E , β )]dβ + Z (ρ; E ), (C5)

with κ being any positive number and

K̃2D(ρ; E , β ) = K2D(ρ; E , β ) − 1

4πβ
exp

(
−βκ − 1

4β
ρ2

)
. (C6)

Furthermore, using the result∫ ∞

0

1

4πβ
exp

(
−βκ − 1

4β
ρ2

)
dβ = − 1

2π
ln ρ − 1

2π
γ − 1

4π
ln

κ

4
+ O(ρ) (for ρ > 0), (C7)

with γ = 0.5772 . . . being the Euler’s constant, we derive a result with the same form of Eq. (55):

lim
ρ→0

G(2D)
0 (E ; ρ) = 1

2π
ln ρ − 2

[
W2D(E ) +

∫ +∞

0
I2D(E , β )dβ

]
. (C8)

In this step, the functions W2D(E ) and I2D(E , β ) are given by

W2D(E ) = − 1

4π
γ − 1

8π
ln

κ

4
− 1

2
Z (0, E ), (C9)

I2D(E , β ) = 1
2 [K̃2D(0; E , β ) − Y (0; E , β )]. (C10)

Moreover, with the method in Appendix A, we can derive the alternative expressions of W2D(E ) and I2D(E , β ), i.e., Eqs. (56)
and (57).

APPENDIX D: TECHNIQUES FOR FAST CALCULATION OF J2D(E )

In this Appendix, we generalize the techniques shown in Sec. II B and Appendix B to the 2D case. We first generalize
Eqs. (40)–(43) to the 2D cases and prove Eq. (62). This can be done via direct calculations with the method shown in Appendix
B. We separate the integration in Eq. (60) into two parts, i.e.,∫ ∞

0
I2D(E , β )dβ =

∫ �

0
I2D(E , β )dβ +

∫ ∞

�

I2D(E , β )dβ, (D1)

with � being an arbitrary positive number. In addition, using the definition (57) of I2D(E , β ), we immediately obtain∫ �

0
I2D(E , β )dβ

=
∫ �

0
A2D(E , β )dβ −

∑
nx∈C(2D)

E

∫ �

0

2nx− 5
2
√

ηxeβ(E−εnx )

�
( 1−nx

2

)2
�(nx + 1)

√
sinh β

dβ
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=
∫ �

0
A2D(E , β )dβ +

∑
(nx )∈C(2D)

E

2nx−3√ηx

�
( 1−nx

2

)2
�(nx + 1)

{
−

√
π�
(

1
4 − E−εnx

2

)
�
(

3
4 − E−εnx

2

)

+ �
(

1
4 − E−εnx

2

)
�
(

5
4 − E−εnx

2

)e(E−εnx − 3
2 )�
√

e2� − 1 ×2 F 1

[
1,

3

4
− E − εnx

2
,

5

4
− E − εnx

2
, e−2�

]}
, (D2)

with A2D(E , β ) defined in Eq. (63).
Furthermore, using the method in Appendix B, we find that the function I2D(E , β ) defined in Eq. (57) has an alternative

expression,

I2D(E , β ) = − 1

8πβ
e−κβ +

√
ηx

4 sinh β

∑
nx /∈C(2D)

E

{
2nx− 3

2

�
( 1−nx

2

)2
�(nx + 1)

eβ(E−εnx )

}
, (D3)

which is similar to Eq. (B4). Thus, doing the integration
∫∞
�

I2D(E , β )dβ in both sides of Eq. (D3), we further obtain∫ ∞

�

I2D(E , β )dβ = B(2)
2D(E ,�) − �(0, κ�2)

8π
, (D4)

where �[a, z] is the incomplete Gamma function and B(2)
2D(E ,�) is defined in Eq. (65).

As in Appendix B, substituting Eqs. (D2) and (D4) into Eq. (D1) and then into Eq. (60), and further using Eqs. (56), we can
derive Eq. (62).

In addition, the second technique shown in Sec. II B is the one based on Eqs. (44) and (45). It is clear that this technique can
be directly generalized to the 2D case.
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