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Floquet eigenspectra of a nonlinear two-mode system under periodic driving:
The emergence of ring structures
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We study Floquet eigenspectra of a nonlinear two-mode system under a periodic driving of the off-diagonal
coupling. By solving the Gross-Pitaevskii equation numerically, we obtain triangular and loop structures near
the crossings of different Floquet branches. At lower driving frequencies, we find “ring” and “double-ring”
structures which are distinct from the well-known loop structure. The mechanism of the emergence of these
structures is discussed and the parameter windows of their existence are obtained analytically. In addition, we
study the evolution of the system under the driving with an adiabatic sweep and find there are some dynamically
unstable states in the Floquet eigenspectra which break the quantum adiabaticity.
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I. INTRODUCTION

The two-mode system is a paradigm to study many fun-
damental quantum phenomena, including many facets of
Landau-Zener physics [1–6] and Josephson effects [7–10].
With the experimental progress of cold atoms, a Bose-
Einstein condensate (BEC) loaded in a double-well po-
tential introduces an additional ingredient, namely, nonlin-
ear effects due to interactions, described by a two-mode
Gross-Pitaevskii equation (GPE). Analogous nonlinear wave
equations with mode coupling are also used to describe
a class of photonic lattices [12–14] although the origin
of nonlinearity is distinct, i.e., the nonlinear Kerr effect.
Combining the basic Landau-Zener process with nonlinear-
ity gives rise to effects deemed counterintuitive for quan-
tum linear systems, such as the occurrence of a loop en-
ergy spectrum and the resulting breakdown of quantum
adiabaticity [15–19].

Recently, in advancing the study of quantum dynam-
ics, time-periodically driven quantum systems have re-
ceived renewed attention shedding new insights on out-of-
equilibrium quantum matter [20,21]. A first step towards
the understanding of a driven interacting bosonic system
is the study of level transitions in the presence of a self-
consistent mean-field interaction. On the one hand, there
have been numerous theoretical studies of nonlinear Landau-
Zener [16,17] or interacting two-mode Bose systems with
periodic modulations in either the level spacing [22–33] or
an off-diagonal coupling [34–38] or both [39–41]. Phenom-
ena such as the coherent destruction of tunneling (origi-
nally studied in Refs. [42–44] for different setups) real-
izing a dynamical localization [30,32,41,45], macroscopic
self-trapping [2,22,23,27,28,33,39], assisted higher-order
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co-tunneling [37,41], as well as the emergence of Hamilto-
nian chaos [24,29,34,36,38] have been uncovered. The last
one makes an intriguing connection to studies of dynamical
systems with chaos [38]. On the other hand, given the fa-
vorable experimental timescale in both the manipulation and
observation, nonlinear quantum dynamics becomes relevant
in periodically driven BEC systems, which have fundamental
applications in quantum metrology [46].

In the present paper, we study a nonlinear two-mode sys-
tem under a time-periodic driving of the off-diagonal coupling
(so-called off-diagonal driving) with Floquet analysis. The
validity of Floquet analysis for such a nonlinear system has
been confirmed in Refs. [22,23] with the help of the Poincaré-
Birkhoff theorem. The appeal of the Floquet approach
[1,47–49] is the ability to disentangle the effect of band
couplings, which typically involves more than two Floquet
bands, from the nonlinear effect due to the self-consistent
interactions. We numerically solve the nonlinear Schrödinger
equation (as realized by GPE for a two-mode BEC) focusing
on a few regimes (from high- to low-frequency driving) where
complex eigenspectrum structures can emerge. While the
Floquet analysis has been applied to the nonlinear two-mode
system by many authors [22,23,28,31,33,34,38,50], only a
few works have studied the Floquet quasienergy spectrum
in depth. Even in the latter, they focus only on the high-
frequency regime [31] or employ an effective Hamiltonian
description, which is valid only for high-frequency driving,
without a Floquet analysis [35,36]. Here our work is no longer
restricted to a particular frequency range, provided that the
solution assumes a Floquet form. Focusing on the topology
of the eigenspectrum, we find “ring” and “multiple-ring”
structures caused by a combination of nonlinearity and the
coupling between Floquet branches. In addition, we briefly
study the time evolution of the system under the periodic
driving with an adiabatic sweep of the level spacing. We find
signatures of dynamical instability in the quasienergy bands
where “adiabaticity breakdown” is observed.
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This paper is organized as follows. In Sec. II we introduce
the nonlinear two-mode model under a periodic driving of the
off-diagonal coupling between the two modes. In Sec. III we
present the triangular and “ring” structures in Floquet eigen-
spectra for various parameters. We clarify the mechanism
of the emergence of the “ring” structure and give parameter
windows of their existence. In Sec. IV the adiabatic evolution
of the nonlinear two-mode system under the off-diagonal
driving are discussed. In Sec. V we summarize our work
and discuss the feasibility of our predictions in experiments.
Throughout the paper, we set h̄ = 1.

II. MODEL

We consider a BEC trapped in a double-well potential with
mode a and b in the Gross-Pitaevskii mean-field description
and a time-periodic modulation of the off-diagonal coupling
in the form of δv e±iωt , where δv is the driving strength and
ω is the driving frequency. This form of the driving can be
realized, e.g., by a tilted double-well potential in a rotating
frame [51,52]. The system can be described by the following
Hamiltonian [16]:

H (t ) = 1

2

[
γ + g(|b|2 − |a|2) v + δv eiωt

v + δv e−iωt −γ − g(|b|2 − |a|2)

]
, (1)

where a = a(t ) and b = b(t ) are the amplitudes of the con-
densate wave function of modes a and b, respectively, γ is the
level spacing between the two wells, and g is the two-body
interaction strength of atoms in each well. Note that the energy
difference of the two modes also depends on the population
difference |b(t )|2 − |a(t )|2 between modes a and b, coming
from the mean-field interactions. v is the coupling strength
of the two modes depending on the barrier height between the
two wells. Throughout this paper, we set the coupling strength
v = 1 and take v as the unit of energy and 1/v as the unit of
time. In Sec. III A we also consider an off-diagonal driving
with the form of δv cos(ωt ), which represents a periodic
modulation of the barrier height of the double-well potential.
The time evolution of the system is described by the time-
dependent Gross-Pitaevskii equation:

i∂tψ (t ) = H (t ) ψ (t ), (2)

where ψ (t ) ≡ (a(t ), b(t ))T is the condensate wave function,
which is to be determined self-consistently (see below). In
the absence of the interaction terms, the Hamiltonian is time
periodic with period T = 2π/ω of the driving:

H (t ) = H (t + T ). (3)

According to the Floquet theorem, we take the solutions of the
GPE in the following form:

ψ (t ) = e−iεt ψ̃ (t ). (4)

Here ε is the quasienergy and ψ̃ (t ) ≡ (̃a(t ), b̃(t ))T is a time
periodic function whose period is the same as that of the
driving:

ψ̃ (t ) = ψ̃ (t + T ). (5)

Because of the time periodicity, we expand ψ̃ (t ) in a Fourier
series:

ã(t ) =
+∞∑

n=−∞
cn einωt , (6)

b̃(t ) =
+∞∑

n=−∞
dn einωt , (7)

where n is an integer, and recast the original GPE (2) into
an eigenvalue problem, albeit nonlinear, for the coefficients
{cn, dn}. They are to be solved iteratively numerically, in a
self-consistent manner. In actual numerical calculations, the
summation with respect to n is truncated at a cutoff value
±nmax when convergence is achieved. From Eqs. (4), (6), and
(7), we see that the quasienergy ε has a periodic structure with
period ω as a result of the Floquet theorem. Finally, since the
total number of particles is conserved, the coefficients cn and
dn should satisfy the additional constraint:∑

n

|cn|2 +
∑

n

|dn|2 = 1 . (8)

III. FLOQUET EIGENSPECTRA

A. Periodicity and triangular structures

In a two-level system without the off-diagonal coupling
and driving, v = δv = 0, the energy spectrum as a function of
the level spacing γ shows a crossing at γ = 0. Once the cou-
pling v between the two modes is set to nonzero, a gap opens
in the crossing region of γ , so that the crossing turns into an
avoided crossing. With regard to a double-well BEC system,
when the atom-atom interaction strength g is greater than the
coupling strength v between the two modes of the BEC, a
loop appears in the avoided crossing region due to nonlinear
effects, which has been discussed in Refs. [16,17]. In our
model, besides the intrinsic nonlinearity, the time-periodic
off-diagonal driving couples different Floquet branches. In
this subsection, we focus on a frequency range larger than
the characteristic energy gap of the two-level system, given
by v at γ = 0; in particular, we show results for ω = 2 as
an example. We numerically solve the time-dependent GPE
(2) and get the Floquet eigenspectra ε(γ ) shown in Fig. 1(a)
for various values of the driving strength δv with a fixed
interaction strength g = 0.5.

First, focusing on the case of weak driving strength δv =
0.005 (red line), we can clearly see the periodic struc-
ture (the shaded region shows a “Brillouin zone”) in the
quasienergy space which can be understood by translating the
two branches in the case without driving by ±nω (n ∈ N) in
the vertical direction. In the following discussion, we always
treat these two branches as reference branches since they do
not move under the change of the driving frequency ω unlike
the other branches. In fact, with the two reference branches,
the dominant Fourier components of modes a and b are c0 and
d0, and the ratio between |c0|2 and |d0|2 changes with the level
spacing γ . The populations of modes a and b are equal (i.e.,
|a|2 = |b|2 = 1/2) at the top (bottom) of the lower (upper)
reference branches at γ = 0 in the limit of δv = 0. Moreover,
for any δv, the relative phase between the two modes at the
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FIG. 1. Floquet eigenspectra as functions of the level spacing γ at a fixed frequency ω = 2 and interaction strength g = 0.5, for various
driving strength: δv = 0.005 (red solid line), 0.5 (green dashed line), and 1 (blue dashed dotted line). (a) Periodic eigenspectra for the driving
in the form of δv e±iωt . The shaded region is one “Brillouin zone”. (b) A magnified view of the right gray box area in (a), showing the triangular
structure near the crossing. (c) A magnification of the left gray box area in (a) with additional values of the driving strength δv = 0.3, 0.35,
and 0.4. (d) Periodic eigenspectra for the driving in the form of δv cos(ωt ).

lower (upper) reference branch is π (0) when t = mT (m ∈ Z)
[59]. (See also Ref. [17] for discussions on the case without
driving.)

The other Floquet branches, generated by shifting up
(down) the reference branches by nω, have dominant Fourier
components cn and dn (c−n and d−n) and share the same
population ratio and relative phase between the two modes
with the reference branches. Hence, for convenience, we label
the reference branches by 0 and the other branches by ±n [see,
e.g., the labeled number in Fig. 1(a)]. Note that the labeling
of the Floquet branch is based on the case in the limit of
δv = 0: each Floquet branch labeled by an integer ±n is a
continuous function of γ and extends over a (semi)-infinite
range of the quasienergy when δv = 0. In the case of δv �= 0,
the Floquet branches are separated into different quasienergy
bands extending within a finite range of the quasienergy, but
we still maintain this labeling for the Floquet branches [see,
e.g., Fig. 1(a)].

Next, we can see the “triangular” structures in the eigen-
spectrum at γ ≈ ±2 [see Figs. 1(b) and 1(c) for a magnified
view of the right and left gray boxes area in Fig. 1(a),
respectively]. Figure 1(c) demonstrates the evolution of the
triangular structure by changing δv. As δv increases and g
fixed, the triangular structure gradually turns into a loop and
a cusp for δv ≈ g. For δv � g, the quasienergy spectrum
evolves into an avoided crossing with an energy gap roughly

proportional to the driving strength δv as the nonlinear effect
becomes insignificant.

Actually, the triangular and the loop structures at γ ≈ ±2
are similar to the loop structure found in Ref. [16], except that
the former is due to the competition between g and δv, while
the latter is due to the competition between g and v. Indeed,
at γ ≈ ±2 (and ω = 2), the Floquet matrix of H (t ) − i∂t

with small g can be approximated to an effective two-level
nonlinear problem dressed by a coupling δv between two
neighboring Floquet branches, which takes a similar form of
the 2 × 2 Hamiltonian matrix studied in Ref. [16]. In addition,
there are other triangular structures at γ ≈ ±4, ±6, . . . in
Fig. 1(a), which come from the nonlinear crossings between
the two Floquet branches with absolute difference of their
indices being 2, 3, . . . . However, in these cases, there is no
direct coupling by δv between these non-neighboring Floquet
branches, and the coupling becomes higher order of δv in the
effective two-level nonlinear problem, so that the nonlinear
effects are more apparent. As a result, these triangular struc-
tures still remain even for δv � g [see the triangular structures
at γ ≈ ±4 in Fig. 1(a)].

Last, one notices that the Floquet eigenspectra shown in
Fig. 1(a) are not symmetric with respect to γ = 0. In fact, the
asymmetry comes from the fact that the phase factors e±iωt

in the off-diagonal terms of the Hamiltonian (1) are not the
same. If we consider the off-diagonal driving in the form of
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δv cos(ωt ), the eigenspectra will be symmetric with respect
to γ = 0 as shown in Fig. 1(d). In this case, the GPE (2)
is invariant under the combined operation of replacing γ by
−γ and interchanging the modes a and b. In other words,
reversing the sign of the level spacing γ as well as interchang-
ing the two modes of the BEC, the system does not change
physically. On the other hand, in the case of δv e±iωt , the GPE
is not invariant under the above operation due to the difference
in the phase factors between the off-diagonal driving terms.
Except for this asymmetry, there is no qualitative difference
in the result between two forms of the driving. Hence, for
simplicity, we avoid using large driving strength δv in the
following subsections in order to suppress the influence of the
asymmetry effect.

B. “Ring” structures

In this subsection, we turn to the on-resonance case where
the driving frequency is equal to the off-diagonal coupling
strength: ω = v (= 1). In the cases around the on-resonance
condition, we find a “ring”-like structure shown, e.g., in the
dashed box area in Fig. 2(b), which is distinct from the well-
known loop structure (e.g., Refs. [16,17,60–64]); hereafter we
call this structure a “ring”.

To understand how the ring structure emerges, we follow
the evolution of the spectrum as the driving frequency ap-
proaches the on-resonance condition from above as shown in
Fig. 2(a). In this figure, the red line is the lower 0 branch,
which does not move by changing ω. We can see that as ω

decreases to 1.25, the triangular structure slowly shrinks, and
at a critical frequency value (ω ≈ 1.2, in blue) the upper −1
branch splits into two parts, giving rise to the ring part [65].
A further decrease in the frequency separates the ring part
from the shifting −1 branch. Near the on-resonance condition,
while the upper −1 branch touches the lower 0 branch [66],
the ring structure still remains.

Taking a larger interaction strength around g = 1 with ω

fixed at ω = 1 as in Fig. 2(b), the ring part becomes more
distinct, and the inverted parabola [i.e., the lower 0 branch
in Fig. 2(a)] becomes a cusp [67]. In fact, the interaction
strength g = v (= 1) is a critical value for the emergence of
the loop structure around γ = 0 in the case without driving
(i.e., δv = 0), and the spectrum shows a cusp at γ = 0 in this
case. Therefore, we treat g = 1 as a reference point which
separates the regions of weak (g < 1) and strong (g > 1)
nonlinearity. (The triangular structures observed in the regions
away from γ = 0 are the ones discussed previously.)

As for the dependence on the nonlinear effect of the ring
structure, there are two consequences: (1) by increasing or (2)
by decreasing the interaction strength from g = 1. In the first
case, it basically mixes the ring and the cusp structures further;
see Fig. 3. Specifically, as the cusp turns into a loop structure,
the ring gets bigger and merges with the loop. As shown
in Fig. 3(d), for sufficiently large interaction strength, the
intertwined spectrum takes a shape like the “G clef” symbol.
In combination with the asymmetry effect of the off-diagonal
driving form e±iωt , a distorted “ring-loop-mixing” structure
emerges [see, e.g., the green solid curves in Fig. 3(d)].

For comparison, we also plot, in the same figures, the spec-
tra obtained by setting δv = 0 but maintaining the periodic

FIG. 2. Emergence of the “ring” structure near resonance.
(a) Floquet spectra for various values of 1.5 � ω � 1 at a fixed g =
0.5. The ring part appears when ω � 1.2. The red line is the lower 0
branch, which does not move by changing ω. (b) Floquet spectrum
for ω = 1 and a larger value of g at g = 1. The shaded region is
one “Brillouin zone”, and the dashed box shows the “ring” structure.
Here we keep the driving strength suppressed at δv = 0.005.

Floquet form of ã(t ) and b̃(t ) given by Eqs. (6) and (7) [red
dotted curves in Fig. 3]. It is a good approximation when δv

is negligible compared with the other parameters [68]. We see
that the fine features such as two “rings” (green solid curve)
seen in the presence of a nonzero δv are lost and the Floquet
spectral curves become degenerate.

053623-4



FLOQUET EIGENSPECTRA OF A NONLINEAR TWO-MODE … PHYSICAL REVIEW A 101, 053623 (2020)

-1 0 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-1 0 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-1 0 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-1 0 1

-1

-0.9

-0.8

-0.7

-0.6

-0.5
(d)(c)(b)(a)

FIG. 3. The ring merges with the loop with increasing g = 1, 1.25, 1.5, and 2, as shown in (a)–(d), respectively. Here we keep ω =
1 and take δv = 0.05 (in green solid curves), which is 10 times larger than the value used in Fig. 2 to clearly show the splitting due to
nonzero δv. For demonstrating the split of the degeneracy of the ring part by nonzero δv, we also show the ring structures obtained by setting
δv = 0 (in red dash-dotted curves) but maintaining the periodicity of ã(t ) and b̃(t ).

In the case of decreasing interaction strength from g = 1,
we expect the ring part may disappear at a critical value of
g. Indeed, as shown in Fig. 4(a), the cusp gets rounded to a
smooth inverted parabola, and the ring part gradually shrinks
to the top of the lower 0 branch. To follow the evolution of the
ring position in the quasienergy space, we plot the quasienergy
ε on the ring at γ = 0 as a function of the interaction strength
g in Fig. 4(b). We see that, as g decreases to 0, the ring
approaches the top (ε = −0.5) of the lower 0 branch [see also
Fig. 4(a)]. In other words, as the nonlinear effects disappear,
so does the ring part; the presence of the nonlinearity is thus a
necessary condition for the emergence of the ring structures.

To gain a better understanding on the emergence of the ring
structure, we perform a simple analysis on the structure of the
wave function ψ (t ). Focusing on the Floquet eigenstates of
the ring parts close to the emergence point [i.e., the top point
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FIG. 4. Disappearance of the ring structure and the parameter
window of its existence. Here we employ the simplified analysis
with δv = 0. (a) With decreasing g, the ring shrinks to the top of the
lower 0 branch and disappears when g = 0. (b) The quasienergy of
the ring part at γ = 0 as a function of g. (c) Frequency window of the
existence of the ring as a function of the interaction strength g. The
upper (lower) dashed line shows the upper (lower) critical frequency
given by Eq. (13), and the red crosses show the numerical results.

of the lower 0 branch in Fig. 4(a)], we find that the solution of
the ring part has four dominant Fourier components, c−1, c0,
d−1, and d0, and they satisfy the following relations at γ = 0:

c−1 = d−1 and c0 = −d0. (9)

As we mentioned in Sec. III A, each Floquet branch should
have only one dominant Fourier component for each mode.
However, there are two dominant Fourier components for each
mode in the ring parts, which is caused by the hybridizations
of Floquet branches. It is noted that, in the limit of δv = 0, the
populations of modes a and b are equal at the bottom (top) of
upper −1 (lower 0) branch at γ = 0. In addition, the relative
phase between modes a and b of the upper −1 branch is 0
and that of the lower 0 branch is π . As a result, c−1 = d−1

and c0 = −d0, respectively. Hence the ring part at γ = 0
satisfies Eq. (9).

Now we make the following approximation on the ring
part at γ = 0: Take Eq. (9) and neglect the other components
of modes a and b. Furthermore, we set δv = 0 and keep the
periodicity of the quasienergy. Under these simplifications, we
insert Eqs. (6) and (7) into Eq. (2) to get four equations for
c−1, c0, d−1, and d0; taking the symmetry into account, the
number of equations is halved. Finally, we get the following
two relations:

g|c−1|2 + ε + v

2
= 0, (10)

g|c0|2 + ω + ε − v

2
= 0, (11)

which give the parameter window of the emergence of ring
structure. From Eqs. (8) and (9), one gets

|c−1|2 + |c0|2 = 1
2 . (12)

The ratio between |c−1|2 and |c0|2 reflects the extent of the
hybridization between the upper −1 branch and the lower 0
branch. The critical condition of disappearance of the ring
structure is that either |c−1|2 or |c0|2 vanishes. |c−1|2 decreases
to 0 and |c0|2 increases to 1/2 implies the ring part shrinks
to the top of the lower 0 branch and disappears. Conversely,
|c0|2 decreases to 0 and |c−1|2 increases to 1/2 which means
the ring part merges into the upper −1 branch [e.g., the case
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for ω = 1.25 in Fig. 2(a)]. Applying these critical conditions
to Eqs. (10) and (11), we obtain the frequency window of the
existence of the ring structure as

− g

2
+ v � ω � g

2
+ v . (13)

In Fig. 4(c) we show the frequency window for the ex-
istence of the ring as a function of the interaction strength.
We find the analytical result of the frequency window given
by Eq. (13) (with a blue dashed line) agrees well with the
numerical results (red crosses) for small interaction strength
(g � 0.5). For larger interaction strength, on the one hand,
the numerical result gradually deviates from the analytical
prediction (13) for the upper bound of the frequency window,
since the increasing g magnifies the effect of the other Fourier
components which have been neglected in this approximation.
On the other hand, the numerical result rapidly deviates from
the analytical prediction for the lower bound of the frequency
window. In this case, as ω decreases (i.e., the quasienergy
space is narrower), more hybridizations occur between vari-
ous branches. The mixing of more Fourier components can
no longer be ignored, and hence the approximation made in
Eqs. (10) and (11) becomes invalid.

C. “Multiple-ring” structures

Next we consider the case of the low-frequency regime
ω < 1. Surprisingly, we find the appearance of a multiple-
ring structure below the top of the lower 0 branch; see, e.g.,
Figs. 5(b) and 5(c) for a double- and triple-ring structure at
frequencies ω = 0.6 and 0.35, respectively.

We show the evolution of the double-ring structure by
decreasing ω in Fig. 5(a), which results in the emergence of
the second ring. Similar to what has been seen in Fig. 2(a), the
appearance of the additional ring structure is closely related
to the shrinking triangular structures on the two sides about
γ = 0. For comparison, we take the same parameter values
as in Fig. 2(b) except for employing the simplified analysis
with δv = 0. We see that while the first ring still remains
for smaller ω [see the rings around −0.7 < ε < −0.5 in
Fig. 5(a)], the −2 branch moves upward as the frequency ω

decreases (since the Floquet “Brillouin” zone is continuously
shrinking), and as a consequence the triangular structures
from the two sides get shifted towards γ = 0. In this process,
the triangular structures continue to shrink until they give rise
to a new independent branch enveloping the original branch
at the critical frequency value (ω ≈ 0.7, in magenta); the new
branch appears as the second ring structure. Similar behavior
replicates itself at the next lower critical frequency, which
gives rise to triple- and multiple-ring structures.

Following the same analysis in Sec. III B, we find that the
solutions of modes a and b in the second ring also have four
dominant components, c−2, c0, d−2, and d0, which satisfy the
following relation at γ = 0:

c−2 = d−2 and c0 = −d0. (14)

Then we can get similar relations to Eqs. (10) and (11):

g|c−2|2 + ε + v

2
= 0, (15)

g|c0|2 + 2ω + ε − v

2
= 0, (16)

FIG. 5. “Multiple-ring” structures. Here we take g = 1 and em-
ploy the simplified analysis with δv = 0. (a) Emergence of the
“double-ring” structure with decreasing ω: the second ring appears
when ω � 0.7. The gray line shows the lower 0 branch, which does
not move by changing ω. (b) The double-ring structure for ω = 0.6
[same plot as the one for ω = 0.6 in (a)]. (c) An example of the
“triple-ring” structure obtained for a smaller frequency ω = 0.35.

which give the parameter window of the existence of the
double-ring structure.

As an example, we discuss the case shown in Fig. 5(a)
(g = 1). As |c0|2 decreases to 0 and |c−2|2 increases to 1/2,
the upper −2 branch begins to touch the second ring at γ = 0.
For g = 1, Eqs. (15) and (16) give the critical values of ω =
0.75 and ε = 1 for the vanishing of the double-ring structure.
This is in reasonable agreement with the numerical results in
Fig. 5(a) at the critical case ω ≈ 0.7. Above the critical value
of ω, Eq. (15) fails while Eq. (16) still correctly describes the
movement of the upper −2 branch at γ = 0. For example, the
quasienergy ε at γ = 0 for the upper −2 branch at ω = 0.8
in Fig. 5(a) and the upper −2 branch in Fig. 2(b) are well
described by Eq. (16) with |c0|2 = 0: ε = −2ω + (v/2).
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IV. ADIABATIC EVOLUTION

In this section, we study the time evolution of the system
under the periodic driving. It is well known that the system
without time-periodic modulation follows the quantum adia-
batic theorem: if the change of time-dependent parameter(s)
in the Hamiltonian is sufficiently slow, the system initially
prepared in an eigenstate of the Hamiltonian remains in its
instantaneous eigenstate (e.g., Ref. [69]). The question arises
whether the system under a time-periodic driving can trace the
instantaneous Floquet eigenstate when other system parame-
ter(s) are varied sufficiently slowly [70].

First, for comparison, we plot the instantaneous popula-
tions |a(t = 0)|2 and |b(t = 0)|2 of the two modes of the
Floquet eigenstates as a function of γ in Fig. 6(b), which
correspond to the quasienergy band marked by circles in
Fig. 6(a). We can see that the populations of modes a and b
are sometimes inverted according to the band structure due to
the hybridization of downward and upward Floquet branches.

For demonstration, we sweep the level spacing γ in the
following protocol:

γ = γ0 + α t, (17)

where γ0 is the starting point of γ and α is the sweeping rate.
We start from the Floquet eigenstate with a small perturbation
at γ0 = −5 in the quasienergy band marked by circles in
Fig. 6(a), and sweep γ at the rate α = 10−5. The perturbation
added to the initial state is 0.01% in the populations of modes
a and b, i.e., |a|2 → |a|2 + 10−4 and |b|2 → |b|2 − 10−4. The
time evolution of the populations of modes a and b is shown
in Fig. 6(c), where a rapid oscillation of the populations can
be observed. Figure 6(d) shows the populations of modes
a and b at the moments of each integer period, i.e., at t =
mT (m ∈ N ), and its horizontal axis shows the corresponding
value of γ .

Comparing Figs. 6(b) and 6(d), we can see that the state of
the system goes back to the instantaneous Floquet eigenstate
after each period at t = mT . In other words, the system
stroboscopically follows the instantaneous Floquet eigenstate,
which demonstrates the adiabatic evolution in a stroboscopic
manner. When γ arrives at γ ≈ 1.93, which corresponds to a
terminal point of the loop in the band marked by circles [see
Fig. 6(a)], the diabatic transition occurs since there is no state
which can be adiabatically connected and the system shows a
“chaotic” behavior.

Similarly, Figs. 6(e)–6(g) correspond to the case for the
quasienergy band marked by squares in Fig. 6(a). However,
Figs. 6(f) and 6(g) show a “chaotic” oscillation of the popula-
tions even before the terminal point of the loop in this band.
When reaching γ ≈ −2.18, which is far from the terminal
point of the loop, the Floquet eigenstate becomes dynami-
cally unstable. Here being dynamically unstable means that
perturbations from the initial Floquet eigenstate expotentially
grow in time so that the system cannot stay in the initial
Floquet eigenstate even if the perturbations are infinitesimal
but nonzero. The chaotic oscillation of the populations start-
ing around γ ≈ −2.18 would manifest itself as chaos in a
Poincaré map analysis at this value of γ , which is also an in-
dication of the dynamical instability (e.g., Refs. [22,38]). Dy-
namically unstable states appear in the middle of a band unlike

FIG. 6. Approximate adiabatic evolution and the breakdown of
the adiabaticity. (a) The quasienergy bands (marked by circles and
squares, respectively) which we choose to perform the adiabatic
evolution. (b) Populations of modes a (in red [light gray]) and b
(in blue [dark gray]) of the Floquet eigenstates on the band marked
by circles in (a). (c) Populations of modes a and b in the time
evolution of the system. Here we start from a Floquet eigenstate (with
a small perturbation) at γ = −5 on the same band as (b), and take
the sweeping rate at α = 10−5. (d) Same as (c) but for stroboscopic
instances of time at t = mT (m ∈ N ). (e)–(g) are the same as
(b)–(d), respectively, but for another quasienergy band marked by
squares in (a).

the time-independent nonlinear two-mode system [16,17] due
to the hybridization of Floquet branches. The unexpected
emergence of dynamically unstable states in the middle of
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a band leads to the breakdown of the stroboscopic adiabatic
theorem.

V. CONCLUSION

We have studied the Floquet eigenspectrum of a nonlin-
ear two-mode system under a time-periodic driving in the
off-diagonal terms of the Hamiltonian. We have found the
triangular structures [see in Figs. 1(b) and 1(c)] in the Flo-
quet eigenspectra, which result from the combined effects of
nonlinearity, the coupling of two Floquet branches, and the
gap opening by the driving. Moreover, we have discovered
completely different types of the exotic structures in the
Floquet eigenspectra: ring, double-ring, and even multiple-
ring structures [see Figs. 2(b), 5(b), and 5(c)], which result
from the combination of nonlinearity and the hybridization
of Floquet branches. In fact, such a combined effect may
bring unexpected phenomena in the nonlinear driven system
to which people have yet to pay much attention. Further-
more, we have clarified the mechanism of the emergence of
these exotic structures of the Floquet eigenspectra and have
provided an analytical prediction of the parameter window
of their existence. In addition, we have demonstrated that
the system under a time-periodic driving in principle follows
the quantum adiabatic theorem stroboscopically. However, the
stroboscopic adiabatic theorem can break down in the time-
periodically driven nonlinear system due to the emergence of
dynamically unstable states in the middle of the quasienergy
bands.

In closing the paper, we shall discuss the experimental
feasibility of our predictions. Taking the experiments on a
BEC in a double-well potential done by the group at the
University of Heidelberg [46,71], we estimate the possible
values of the parameters v, g, δv, and ω using their setup.
First, in their paper by Giovanazzi et al. [71], the parameters
EJ/N and ECN/8 correspond to our parameters v/2 and
g/2, respectively. In their system, the total number of parti-
cles is N = 200, EC/h̄ ≈ 4.4 Hz, and EJ/h̄ ≈ (0 – 3.7) kHz.

Therefore, the corresponding values of g and v are g/h̄ ≈
220 Hz and v/h̄ ≈ (0 – 37) Hz, respectively, and the range of
the ratio g/v is g/v ≈ (5.9 – ∞). Since g/v ∝ N2, we can
easily go to the region of our interest, g/v ∼ 1, by decreasing
N . Next, we estimate the modulation frequency ω and the
amplitude δv based on the sweep rate and the sweep amplitude
of the barrier height of their double-well potential. In the
experiment by Estève et al. [46], they can control the barrier
height accurately at least by of order 10 Hz. According to
Fig. 1 of Ref. [71], one can see that the 10 Hz difference in
the barrier height results in a difference in EJ of order 1%,
which corresponds to a minimum value of δv/v = O(10−2)
in our model. Furthermore, they can ramp the barrier height
such that the coupling between the wells is almost zero. This
indicates that the maximum amplitude of δv in our model
could be comparable to v. Therefore, the range of δv/v is of
order 10−2–1, which covers the region of our interest. Finally,
we estimate the frequency range of ω to modulate the barrier
height by ±100 Hz [In this case, δv/v = O(10−1), which is
still in the range of our interest.] Since the barrier height can
be controlled at the rate of order 1 Hz m s−1 (to 1 kHz m s−1)
in their experiment [46], the frequency range of ω to modulate
the barrier height by ±100 Hz is of order 10 × 2π Hz (to
10 × 2π kHz). Accordingly, h̄ω/v = O(1) [to O(103)], which
is in the region of our interest.
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