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Collective modes of ultracold fermionic alkaline-earth-metal gases with SU(N) symmetry
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We calculate the collective modes of ultracold trapped alkaline-earth-metal fermionic atoms, which possess an
SU(N) symmetry of the nuclear spin degree of freedom and a controllable N , with N as large as 10. We calculate
the breathing and quadrupole modes of two-dimensional and three-dimensional harmonically trapped gases in
the normal phase. We particularly concentrate on two-dimensional gases, where the shift is more accessible
experimentally, and the physics has special features. We present results as a function of temperature, interaction
strength, density, and N . We include calculations across the collisionless to hydrodynamic crossover. We assume
the gas is interacting weakly, such that it can be described by a Boltzmann-Vlasov equation that includes both
mean-field terms and the collision integral. We solve this with an approximate scaling ansatz, taking care in two
dimensions to preserve the scaling symmetry of the system. We predict the collective-mode frequency shifts
and damping, showing that these are measurable in experimentally relevant regimes. We expect these results to
furnish powerful tools to characterize interactions and the state of alkaline-earth-metal gases, as well as to lay
the foundation for future work, for example, on strongly interacting gases and SU(N ) spin modes.
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I. INTRODUCTION

Ultracold alkaline-earth-metal-like atoms such as Yb and
Sr have unique properties that open new regimes of many-
body physics [1–4]. One example is that their closed-shell
electronic structure provides a long-lived clock state that has
enabled optical clocks with a precision approaching 10−19.
Another example is the fermionic isotopes’ large nuclear spin
I , leading to a large number N = 2I + 1 of degenerate internal
states on each atom, where any N can be produced up to
N = 6 (in Yb) and N = 10 (in Sr). Equally important to the
large degeneracy is the SU(N ) symmetry that interactions
between the atoms enjoy [5–9]. Although one might naively
expect that such large spins become classical, it is known
that in some circumstances the large symmetry group can
enhance quantum fluctuations such that they remain relevant
even as N → ∞ and that such fluctuations give rise to ex-
otic phenomena such as chiral spin liquids [10,11], molecu-
lar Luttinger liquids, symmetry-protected topological phases,
quantum liquids, valence-bond solid states, and magnetically
ordered states [12–29], which are beginning to be explored
experimentally [30–32]. In light of this, it is especially inter-
esting to explore how the physics depends on N .

The properties of interacting Fermi gases are broadly stud-
ied, and two-dimensional (2D) gases with short-range interac-
tions are particularly interesting for two reasons [33]. The first
is that their reduced dimensionality enhances quantum and
thermal fluctuations, limiting the applicability of mean-field
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theory. The second is that they possess intriguing special
features: an SO(2,1) scaling symmetry at the classical level
that is broken by a quantum anomaly for a variety of bosonic
and fermionic systems [34–43] and recently predicted long-
lived memory effects in homogeneous systems [44].

Collective modes—macroscopic oscillations (possibly
damped) of a trapped system in response to an external
perturbation—are a powerful probe of matter. They reveal
information about the equation of state and quasiparticle
properties, especially the quasiparticle collisions. They have
therefore been central to experiments studying ultracold mat-
ter. The collective breathing (i.e., monopole) and quadrupole
density modes have been measured in 2D spin-1/2 SU(2)
Fermi gases [45–49] and have spurred a variety of theoretical
explorations [50–54]. Working in two dimensions is also
beneficial for measuring collective modes of alkaline-earth-
metal-like gases in experiment. The reason is that confining
the system in the third dimension increases the effective
interactions strength and thus increases the collective-mode
frequency shifts and damping rates. This is especially im-
portant since alkaline-earth-metal atoms have no ground-state
magnetic Feshbach resonances.

Given their fundamental interest and accessibility, it is
interesting to study the collective modes of 2D SU(N ) Fermi
gases. Their behavior includes the interesting behavior of
spin-1/2 SU(2) Fermi gases as a limiting case but goes beyond
this with an additional control parameter N . Changing N
may, for example, tune the strength of quantum fluctuations.
Moreover, SU(N ) gases will also display collective oscil-
lations of the spin degrees of freedom. These are a richer
analog of the spin modes measured for N = 2 Fermi gases
in Refs. [55–59], which have shed light on correlated quan-
tum transport, for example, suggesting fundamental quantum
bounds on hydrodynamic transport coefficients. Although we
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focus in this paper on density rather than spin modes, the
paper also sets up a theoretical framework for treating the
latter. Initial measurements of density collective modes have
been performed for SU(N ) Fermi gases in one dimension [60],
finding strongly correlated states through a crossover from
noninteracting fermions at N = 1 to nearly bosonic behavior
at N = 10.

In this paper, we calculate the collective-mode frequencies
and damping rates in a weakly interacting 2D SU(N ) Fermi
gas as a function of interaction strength, temperature, and N .
We focus on the breathing and quadrupole density modes.
In addition to treating the weakly interacting situation, we
expect the theory developed here to lay the groundwork
to explore strongly interacting 2D alkaline-earth-metal-like
atom gases and associated questions of spin modes and spin
transport. We also briefly consider the three-dimensional (3D)
gas in Sec. III D. Excitingly, recently, Ref. [61] measured
the breathing-mode and quadrupole-mode frequencies and
damping in a 2D SU(N ) Fermi gas for N = 1, 2, . . . , 6 in the
collisionless limit. We will discuss these experiments in com-
parison with our calculations (along with other experimental
predictions) in Sec. III C.

While our focus is on SU(N ) Fermi gases, several of
our results are also useful for spin-1/2 SU(2) gases, which
occur in experiments with ultracold alkali atoms. It is worth
emphasizing two results in this regard. First, our approxi-
mations are carefully designed to ensure consistency with
the subtle SO(2,1) scaling symmetry enjoyed by the system
at the classical level (i.e., in the absence of the quantum
anomaly). This symmetry is implemented consistently even in
the presence of important mean-field shifts, where common
alternative techniques break the symmetry and would give
physically incorrect results. Second, our approximations are
flexible enough to capture the quadrupole collective-mode
frequency in the collisionless limit arising from mean-field
interaction effects. We will discuss how our results compare
to those obtained from alternative popular approximations that
fail to have these desirable properties in Sec. III A.

Section II describes the experimental system we consider,
the collective modes we focus on, and the theoretical frame-
work and approximations we use to describe the nonequilib-
rium dynamics (a Boltzmann equation with a scaling ansatz
solution). Section III presents our results for the collec-
tive modes. It describes the dependence of collective-mode
frequencies and damping on system parameters: interaction
strength g, N , temperature T , the number of particles Np,
and radial and transverse trap frequencies, ωtr and ωz, re-
spectively. In particular, Sec. III C evaluates these shifts and
dampings for typical experimental parameters and compares
them to very recently obtained measured SU(N ) collective-
mode properties in the collisionless limit [61]. Section III D
briefly presents results for 3D gases. Section IV concludes and
provides an outlook.

II. COLLECTIVE MODES AND THEORETICAL
METHODS

Two-dimensional gases can be experimentally realized in
ultracold alkaline-earth-metal-like atoms by directly confin-
ing them to a single layer (for example, with evanescent

FIG. 1. Collective modes of a 2D SU(N ) Fermi gas.
(a) Fermionic alkaline-earth-metal atoms can be confined to a
single 2D layer or to an array of 2D layers formed by an optical
lattice (depicted). Collective modes may be excited, for example,
by suddenly changing the trap frequency. (b) and (c) The real-space
deformations corresponding to the three lowest angular momentum
modes, the breathing mode [in (b)], dipole mode (not depicted), and
quadrupole mode [in (c)].

fields), or by creating an array of 2D systems via a one-
dimensional optical lattice, as illustrated in Fig. 1(a). We will
assume that the lattice is deep enough that the 2D layers are
uncoupled. Also, we will assume an isotropic harmonic trap
potential with trap frequency ωtr.

Collective modes may be excited by suddenly changing
system parameters. For collective modes of the density, like
those we consider in this paper, this is often done by sud-
denly changing a trap frequency by a small amount (∼10%).
Which modes are excited will depend on the symmetry of this
perturbation (and of the original trap). A generic perturbation
excites a superposition of modes of different symmetries, but
often, experiments choose perturbations to couple to modes
with a single symmetry. For example, an isotropic change in
trap frequencies in an isotropic trap excites only breathing
modes, illustrated in Fig. 1(b). The other mode we consider
in this paper is the quadrupole mode, illustrated in Fig. 1(c).
To measure these modes, experiments can track in situ os-
cillations of the density profile or oscillations in time of
flight, which measure the momentum distribution. Sometimes,
easier-to-access observables are measured as proxies, for ex-
ample, loss as a function of time, which allows one to measure
the frequencies and damping rates, although it provides fewer
details about the spatial and momentum-space mode structure.
Recently, He et al. measured the breathing and quadrupole
collective-mode frequencies and damping times in SU(N ) Yb
gases confined in a one-dimensional lattice for various N up
to N = 6 [61].

A 2D alkaline-earth-metal fermionic gas with Np particles
can be described by the grand-canonical Hamiltonian

H =
∑

α

∫
d2r ψ†

α (r)

(
− h̄2

2m
∇2 − μ + V (r)

)
ψα (r)

+ g2D

2

∑
α �=β

∫
d2r ψ†

α (r)ψ†
β (r)ψβ (r)ψα (r), (1)
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where ψ†
α (r) is the fermionic creation operator creating an

atom at position r with spin index α = 1, . . . , N , μ is the
chemical potential, m is the mass of the atom, V (r) =
mω2

tr(x
2 + y2)/2 is the harmonic trap potential with frequency

ωtr, and g2D is the interaction strength. In principle, this
contact interaction must be regularized, but at the level of
approximations we use throughout, this will be unnecessary.
For a lattice sufficiently deep that the potential confining the
atoms to the 2D plane can be described by an additive poten-
tial mω2

z z2/2 (with z being the displacement perpendicular to
the plane), the coupling constant is [62]

g2D = 2π h̄2

m ln(qa2D)
, (2)

where a2D = lz
√

π/B exp(−√
π/2lz/a3D), B = 0.915 a3D

is the three-dimensional s-wave scattering length, lz =√
h̄/(mωz ), and q ∼ √

n is a characteristic momentum that
determines the density-dependent coupling (with n being the
total density). The momentum factor q is the Fermi momen-
tum kF [63] and the de Broglie wavelength

√
mT /h̄ in the

low- and high-temperature limits, respectively [62].
We calculate the collective modes by employing two ap-

proximations, which are reasonable in the limits considered
in this paper. First, we assume that the system is weakly
interacting, 1/ln (1/na2

2D) � 1 (where n is the total density),
its temperature is sufficiently high that there is no pairing, and
the length scale over which there is any spatial coherence is
small compared to the trap size (although the gas may still
be deeply degenerate). In practice this means that the system
must be well above the superconducting transition tempera-
ture and the length scale on which the collective modes vary
must be long compared to the thermal de Broglie wavelength.
This allows us to describe the system’s dynamics by a Boltz-
mann equation, including mean-field interactions in addition
to the collision integral, which governs the phase-space dis-
tribution function (defined later). The resulting Boltzmann-
Vlasov (BV) equation [64] is a (4 + 1)-dimensional partial
differential-integral equation and, as such, would be extremely
demanding to solve numerically.

Second, we approximate the collision integral with a
relaxation-time approximation. This is an uncontrolled, but
standard, approach to calculating transport and collective
modes within a Boltzmann equation framework. This approx-
imation will be explained in detail in Sec. III.

To solve the BV equation in the relaxation-time approxi-
mation, we assume an ansatz for the phase-space distribution
function. The ansatz is carefully constructed to respect the
SO(2,1) symmetry of the system while simultaneously being
flexible enough to capture the collective modes’ shifts and
damping. As shown in Ref. [34], this ansatz provides an exact
solution to the collective modes of the BV equation in two
dimensions, when the confinement is isotropic.

Under these assumptions, it is valid to apply mean-field
theory to the Hamiltonian in Eq. (1) in the density channel.
We assume that the density of each species is the same (nα =
nβ = n0, for all {α, β} ∈ {1, . . . N}), where n0 is the density of
each species. [This holds in any state that preserves the Hamil-
tonian’s SU(N ) symmetry.] The mean-field Hamiltonian is

then

HMF =
∑

α

∫
d2r ψ†

α (r)

(
− h̄2

2m
∇2 − μ + V (r) + UMF

)

×ψα (r), (3)

up to irrelevant constants, and

UMF = g2D
(N − 1)

N
ntot(r), (4)

where ntot(r) = ∑N
α=1 nα (r) = Nn0(r) is the density of the

gas at position r. The chemical potential μ is chosen to give
the total number of particles Np by

Np =
∫

d2r ntot(r) = N
∫

d2r n0(r). (5)

To calculate the collective-mode dynamics, we will use the
BV kinetic equation, which is a semiclassical method, solved
by a scaling ansatz, and linearize for small displacements from
equilibrium. The BV kinetic equation is accurate when the
conditions outlined above for weak interactions and kBT 

h̄ωtr are satisfied. In this limit, we assume that the effects
of quantum interference can be neglected, and quasiparticles
are well defined. Furthermore, since our initial state and
Hamiltonian are invariant under SU(N ) symmetry (i.e., we are
studying the density modes), we have assumed that each spin
component is described by the same semiclassical distribution
function f (r, p, t ) which satisfies the BV kinetic equation,

∂ f

∂t
+ p

m
· ∂ f

∂r
− ∂

∂r
[V (r) + UMF(r)] · ∂ f

∂p
= −Icoll[ f ], (6)

where Icoll[ f ] is the collision integral and UMF is the mean-
field interaction energy. The mean-field interaction energy is
given by Eq. (4), where the density ntot(r) is determined from
the distribution function by

ntot(r) = N
∫

d2k
(2π )2

f (r, k), (7)

and the collision integral Icoll[ f ] is

Icoll[ f1] =
∫

d2 p2

(2π h̄)2

mh̄

4π

∫ 2π

0
dθ |T (|pr |)|2(N − 1)

× [ f1 f2(1 − f3)(1 − f4) − f3 f4(1 − f1)(1 − f2)],

(8)

where we define f j = f (r, p j ) and p3 and p4 are given in
terms of p1, p2, and θ as follows: θ is the angle between the
outgoing relative angular momentum pr = (p3 − p4)/2 and
the center-of-mass momentum (p1 + p2), p4 is given by con-
servation of the center-of-mass momentum p3 + p4 = p1 +
p2, and by the conservation of energy we obtain |pr | = |p′

r |,
where p′

r = (p1 − p2)/2. The low-energy T matrix describing
the collision between two atoms with different spins in two
dimensions (in the vacuum) is given by [65]

T (q) = 4π

m

1

ln
(
1/q2a2

2D

) + iπ
. (9)

It is hard to solve the BV equation exactly, even nu-
merically, since this is a five-dimensional partial integro-
differential equation. In this paper, we employ a scaling ansatz
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for f (r, p, t ) [66–69]. Our ansatz fsc is defined as

fsc(r, v, t ) = 	(t ) f 0(R(t ), V(t )), (10)

where Ri(t ) = ri
bi (t ) ,Vi = 1√

θi (t )
(vi − ḃi (t )

bi (t ) ri ), and 	(t ) =
1∏2

i=1 bi (t )
√

θi (t )
, where bi and θi are functions of time that

will be determined to give the best solution to the BV
equation. The equilibrium distribution function f 0 is defined
by Icoll[ f 0] = 0, which gives

mv · ∂ f 0

∂r
= ∂

∂r
[V (r) + UMF] · ∂ f 0

∂v
. (11)

As mentioned, the scaling ansatz respects the classical
SO(2, 1) scaling symmetry. Quantum effects can lead to a
breaking of this symmetry and an anomalous correction to
the breathing-mode frequency. A calculation of this quantum
anomaly is beyond the scope of the BV equation, and we
restrict our calculations to the regime where the BV equation
is valid.

Additionally, we treat the collision integral in the
relaxation-time approximation,

Icoll[ f ] = f − f 0

τ
, (12)

where τ is the relaxation time of the collision, which is
calculated in Sec. III B.

III. RESULTS

In this section, we will compute the collective-mode fre-
quencies (Sec. III A) and damping rates (Sec. III B) of the
SU(N ) Fermi gas. We find that the breathing-mode frequency
has no dependence on the interaction strength, reflecting the
SO(2,1) symmetry of the system at the classical level. How-
ever, the quadrupole-mode frequencies exhibit an interaction-
dependent shift and damping. We discuss how this shift and
damping rates depend on N and estimate the values of these
quantities for reasonable experimental parameters.

A. Collective-mode frequencies

Following Ref. [67], we compute the average moments of
RiVi and V 2

i and obtain the following equations for bi and θi:

b̈i + ω2
trbi − ω2

tr
θi

bi
+ ω2

trξ

(
θi

bi
− 1

bi
∏

j b j

)
= 0, (13)

θ̇i + 2
ḃi

bi
θi = −θi − θ̄

τ
, (14)

where i ∈ {x, y}, θ̄ = 1
2

∑
i θi, and

ξ = 〈UMF〉〈
mω2

tr(x2 + y2)
〉 , (15)

where 〈· · · 〉 = ∫
d2r

∫
d2k

(2π )2 f 0(· · · ). For the remainder of this
section, we give our results in terms of ξ and τ . We will then
calculate ξ and τ in terms of system parameters in Sec. III B.

We linearize Eqs. (13) and (14) around the equilibrium
values (bi = 1 + δbi, θi = 1 + δθi ) to get the collective-mode

frequencies of the density oscillations. We obtain

δ̈bj + ω2
tr(2 + ξ )δbj + ξω2

trδbj̄ + ω2
tr(ξ − 1)δθ j = 0, (16)

δ̇θ j + 2 ˙δb j + 1

2τ
(δθ j − δθj̄ ) = 0, (17)

with j̄ = x if j = y and j̄ = y if j = x. The collective modes
have solutions of the form δbi(t ) = b0

i eiωt and δθi(t ) = θ0
i eiωt .

Substituting into the above equations, we obtain a set of four
linear equations for b0

i and θ0
i which have nonzero solutions

when the determinant of the associated matrix is zero. This
gives a polynomial equation in ω that can be written as

ω2(ω2 − ω2
Br

)[(
ω2 − ω2

cl

) − i

ωτ

(
ω2 − ω2

hd

)] = 0, (18)

with ωBr = 2ωtr, ωhd = √
2ωtr, and ωcl = √

2(2 − ξ )ωtr.
The solution ω = ωBr to Eq. (18) corresponds to the breath-

ing mode. It is purely real, and it is independent of ξ and τ and
hence independent of all system parameters other than ωtr. As
mentioned, this is a consequence of the scaling symmetry of
the system. In the future it will be interesting to investigate
the effects of the breakdown of this symmetry due to quantum
effects.

The solutions to the term in brackets in Eq. (18),
(ω2 − 2(2 − ξ )ω2

tr ) − i
ωτ

(ω2 − 2ω2
tr ) = 0, give the

quadrupole modes’ (complex) resonance frequencies.
In the hydrodynamic limit, ωtrτ → 0, the solution is
ω = ωhd = √

2ωtr, and in the collisionless limit, ωtrτ → ∞,
the solution is ω = ωcl = √

2(2 − ξ )ωtr. The real part of the
frequency smoothly crosses over between these two limits
[see Fig. 2(a)], while the imaginary part is zero in these two
limits, peaking in between [see Fig. 2(b)].

This behavior of the imaginary part of ω is very general
and can be understood using the following argument. In the
hydrodynamic limit ωτ � 1, there is no dissipation since
frequent collisions force the deviations from local thermody-
namic equilibrium, which are necessary for dissipation, to be
negligible [70]. In this limit, the collective-mode frequency is

ω = ωhd − i
τ
(
ω2

cl − ω2
hd

)
2

. (19)

On the other hand, in the collisionless limit ωτ 
 1, there are
few collisions per oscillation period, so dissipation is again
negligible. In this limit, the collective-mode frequency is

ω = ωcl − i
ω2

cl − ω2
hd

2τω2
cl

. (20)

It is clear that the damping rate must peak somewhere between
the collisionless and hydrodynamic limits. Numerically, we
find that the peak occurs when ωτ ∼ 1.

As detailed in the Appendix, ξ is given by

ξ = g2D(N − 1)

2 π h̄2

m

F

(
T

h̄ωtr
,

Np

N

)
, (21)

where F ( T
h̄ωtr

,
Np

N ) is defined as the ratio of one-dimensional
integrals in Eq. (A20) and in general can be evaluated nu-
merically. In this calculation, we have ignored the mean-field
contribution to the equilibrium distribution function f 0. This
approximation gives the value of ξ to the leading order in g2D.
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FIG. 2. Scaled quadrupole-mode frequency ωq

ωtr
vs scaled scatter-

ing time ωtrτ . (a) Real part of the mode frequency vs scattering time
and (b) imaginary part of the mode frequency vs scattering time.

It is possible to evaluate ξ analytically in the low-temperature
and high-temperature limits. In the low-temperature limit,
when T � TF , ξ is

ξ = g2Dm

2π h̄2 (N − 1). (22)

In the high-temperature limit, when T 
 TF , ξ is

ξ = 1

8π

g2D(N − 1)
h̄2

m

Np

N

(
h̄ωtr

T

)2

. (23)

It is interesting to note that commonly employed alterna-
tive approaches to computing the collective-mode frequen-
cies for a 2D SU(2) Fermi gas have neglected the mean-
field contribution [51,52]. Due to this approximation, neither
the breathing mode nor the quadrupole modes show any
mean-field shift in these calculations. Moreover, including the
mean-field contribution in the Boltzmann equation in these
approaches leads to an unphysical shift in the breathing-
mode frequency due to the improper treatment of the SO(2,1)
symmetry. As shown in the recent experiment by He et al.
[61], accounting for the mean-field shifts in the quadrupole
mode can be important, especially as N increases. Our ap-
proach captures the mean-field effects while not inducing an
unphysical shift in the breathing-mode frequency.

B. Damping-rate calculation

In this section, we outline our calculations for the
relaxation time τ , which employs a few common

approximations. Following Ref. [51], we write f (r, p) =
f0(r, p) + { f0(r, p)[1 − f0(r, p)]} φ(r, p). Rearranging and
taking moments of Eq. (12), the relaxation time is given by

1

τ
= 〈φ∗Icoll[φ]〉

〈|φ|2 f 0(1 − f 0)〉 . (24)

To evaluate the relaxation rate, we use the following ansatz
for φ(r, p):

φ = p2
x − p2

y. (25)

The linearized collision integral then reads

Icoll[ f1] =
∫

d2 p2

(2π h̄)2

mh̄

4π

∫ 2π

0
dθ |T |2(φ1 + φ2 − φ3 − φ4)

× f1 f2(1 − f3)(1 − f4)(N − 1). (26)

The calculations are easiest in the high-temperature limit,
when the Pauli blocking factors can be ignored. For weakly in-
teracting Fermi gases, this approach overestimates the damp-
ing rate (by about 50%) for typical experimental temperatures
(T ∼ 0.5TF ) [51]. We note that even in an anisotropic trap,
this approximation gives a lower bound on the relaxation time
in the weakly interacting limit.

A more accurate estimate of the damping rate can be
obtained by accounting for the Pauli blocking. This approach
involves solving a six-dimensional integral numerically and
overestimates the damping rate by about 10% for N = 2. It
is possible to further systematically improve the damping-rate
estimate by using an ansatz for the function φ that is more
flexible than Eq. (25). Using a sufficiently complete basis,
the result will converge to the true damping rate (within the
relaxation-time approximation). The damping rate obtained
using this technique is always bounded from below by the ac-
tual damping rate [47,70], so convergence may be monitored
as the damping tends to its minimum, in a manner analogous
to other variational calculations, e.g., the convergence of
the energy to its minimum when calculating the quantum-
mechanical ground-state energy.

The relaxation time in this high-temperature limit is found
to be

1

τ
= N − 1

τ0
, (27)

where

1

τ0
= πNp(h̄ωtr )2

2Nh̄kBT
G

(
h̄2

ma2
2DkBT

)
(28)

and

G(x) =
∫ ∞

0
dz

z2 exp(−z)

ln (x/z)2 + π2
. (29)

C. Experimental implications

In this section, we compute the values of the mean-field
shifts of the quadrupole modes and the damping rates for
realistic experimental parameters. Following He et al. [61],
we use the parameters T = 60 nK, T/TF = 0.42, ωz = 2π ×
59 kHz, ωtr = 2π × 185 Hz, Np/N = 100, T/h̄ωtr = 5.94,
ln(kF a2D) = −4.3 to estimate the quadrupole-mode shifts
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FIG. 3. (a) The ratio of the quadrupole-mode frequency to the
trap frequency in the collisionless limit. The blue solid line and the
black dashed line show the value of this ratio to exactly leading order
in g2D (neglecting the mean-field changes of the equilibrium distribu-
tion function f 0) and including the effects of mean-field interactions
in f 0, respectively. (b) The damping rate of the quadrupole modes
for parameters corresponding to the experiment in Ref. [61].

and the damping rates. For these parameters, the interaction
strength is

g2D

h̄2

m

= − 2π

ln(kF a2D)
= 1.461. (30)

Using Eq. (A20), ξ , the parameter controlling the mean-field
shift, is then

ξ = g2D

2π h̄2

m

(N − 1)F (5.94, 100) ≈ 0.093(N − 1). (31)

We compute the damping rate using Eq. (27), finding

1

τ
≈ 0.095(N − 1)

kBT

h̄
. (32)

Figure 3 shows the collective-mode frequency shifts and
damping for the experimental parameters of Ref. [61] as
a function of N = 1, . . . , 6. Our results for both the shifts
and damping agree qualitatively with the experimental data
presented in Ref. [61]. Our prediction of the frequency shift
is close to the experimentally observed frequency shift when
N = 2. We overestimate the frequency shift when N � 3,
and our prediction for ωcl is about 10% less than the ex-
perimentally observed value when N = 6. This discrepancy
is likely due to our approximation of retaining fully only
the leading-order contribution of g2D to the frequency shift
by neglecting the mean-field effects in the equilibrium dis-
tribution function. For larger N , a better estimate of ξ can

be obtained by including these mean-field effects [61]. Our
damping-rate estimate shows an increase in damping rate with
N , as observed experimentally. It is about 50% larger than the
observed damping rate when N = 2. This is in agreement with
previous calculations [51] and is in reasonable agreement with
experiment after accounting for uncertainties in experimental
parameters. However, for N = 6, our estimate of the damping
rate is roughly a factor of 4 larger than the measurements. It
will be interesting to explore in future work to what extent
this discrepancy results from uncertainties in experimental
parameters and to what extent it is from approximations
employed in the theory.

The presence of an anisotropic trap generally leads to
a coupling of the breathing and quadrupole modes [51].
This leads to a decay of the breathing mode. However,
the anisotropy in recent experiments is negligible (less than
1%) [61], and therefore, we do not consider the effects of
anisotropy in this paper.

D. Three-dimensional results

The previous sections computed the frequencies and damp-
ing rates of the collective modes of the 2D SU(N ) Fermi gas.
We now briefly discuss the situation when there is no potential
to confine the system to be two-dimensional (e.g., no lattice)
and only a weak trapping potential in that direction. For our
calculations, we assume that the gas is confined in a cylin-
drically symmetric harmonic potential, where ωx = ωy = ω⊥
and ωz = λω⊥. As outlined in Ref. [67], the quadrupole-mode
frequencies are determined by the equation

(
ω2 − ω2

cl

) + i

ωτ

(
ω2 − ω2

hd

) = 0, (33)

where ω2
cl = 2ω2

⊥(2 − ξ ) and ω2
hd = 2ω2

⊥, where the fre-
quency shift ξ is given by

ξ = g(N − 1)
〈n(r)〉〈

2mω2
i r2

i

〉 = g(N − 1)

N

3〈ntot (r)〉
〈2mω2

⊥ρ2〉 , (34)

where ρ =
√

x2 + y2 + λ2z2. We compute the collective-
mode frequencies in the low-temperature limit, where ana-
lytical results can be obtained. At zero temperature, the total
density ntot (r) can be approximated to be

ntot (r) = 8Npλ

π2R3
F

(
1 − ρ2

R2
F

)3/2

�(RF − r), (35)

where RF = (48Npλ)1/6√h̄/(mω⊥) [71]. Thus, the shift ξ is
given by

ξ = g(N − 1)

N

12Npλ

mω2
⊥π2R3

F

∫
d3r

(
1 − ρ2

R2
F

)3
�(RF − r)∫

d3rρ2
(
1 − ρ2

R2
F

)3/2
�(RF − r)

= g(N − 1)

mω2
⊥R2

F N

√
3Npλ(mω⊥)3

π2h̄3/2

4096

945π
. (36)

IV. CONCLUSIONS

We have calculated the collective modes for density os-
cillations of a harmonically trapped 2D SU(N ) Fermi gas,
carefully incorporating the SO(2,1) scaling symmetry. We
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employed a Boltzmann-Vlasov equation, which is valid for
weak interactions and when the system is large compared
to spatial coherences. We treated the collisions within the
relaxation-time approximation, which, while an uncontrolled
approximation, is standard and captures the essential features
of the hydrodynamic (and collisionless) limits. We solved
this using a scaling ansatz, Eq. (10), for the semiclassical
distribution function f (r, p). In contrast to other methods, for
example, those based on the method of moments [72–75], the
scaling ansatz preserves the SO(2,1) scaling symmetry while
also being flexible enough to allow for mean-field shifts.

We have shown that the magnitude of the shifts is suffi-
ciently large to measure if the system is confined in one di-
mension by an optical lattice. This suggestion was borne out in
recent experiments [61]. We note that in the collisionless limit,
our calculations of shifts are equivalent to theirs, but ours
apply across the full collisionless-hydrodynamic crossover
and also capture the mode damping.

The predicted quadrupole-mode shifts agree with the ex-
perimental measurements in Ref. [61] after accounting for un-
certainty in the experimental parameters. The predicted damp-
ing rate agrees with the order of magnitude observed in the
experiments. For N = 2, the damping rates agree with about
30% relative error. However, for N = 6 the predicted damping
rate is roughly four times the experimentally measured rate. It
is possible that this arises from uncertainties in experimental
parameters, which lead to a significant uncertainty already
in the collective-mode shift frequencies. It is also possible
that it arises from the approximations inherent in deriving
and solving the BV equation. An interesting future direction
will be precision experiments and calculations to pinpoint the
reason for the discrepancy.

Besides calculating the weakly interacting gases’ collective
modes, the results in this paper lay the groundwork for sev-
eral future directions with ultracold SU(N ) gases’ collective
modes and transport. One direction is to explore strongly
interacting gases, for instance, to understand the shear vis-
cosity [47] or search for novel Fermi-liquid behaviors and
instabilities [76–78]. A strongly interacting regime may be
achieved by tighter transverse confinement, higher densities,
or optical Feshbach resonance [79–81]. In strongly interacting
gases, the scaling anomaly should cause measurable effects,
especially collective-mode frequency shifts, and the ability to
tune N will shed new light onto its effects. In this regard,
it will be interesting to employ other sensitive probes of the
scale anomaly, for example, the momentum-space dynamics
[82]. It will also be interesting to study physics at lower
temperatures, especially when the system becomes superfluid.
Although the present calculations are performed for weakly
interacting normal gases, such calculations form an important
point of comparison for strongly interacting and superfluid
gases.

Another direction would be to explore the spin modes
[83,84], which could allow a new window into strongly cor-
related spin transport. These modes have been explored in
N = 2 alkali gases [55–59], but the potential spin structures
are richer for larger N . A scaling ansatz similar in spirit
to our approach with a spin-dependent distribution func-
tion fσ (r, p, t ) has already been used to study spin-dipole
modes for SU(2) Fermi gases [85,86]. Furthermore, it may be

possible to generalize this scaling ansatz to include coher-
ences. Thus, we expect that this technique can shed light on
the spin collective modes of SU(N ) gases as well.
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APPENDIX: CALCULATION OF ξ

Using Eqs. (4) and (15), we have

ξ = g2D(N − 1)

mω2
trN

∫
d2rntot(r)2∫
d2rntot(r)r2

. (A1)

To calculate ξ , we need to know the form of equilibrium
spatial density ntot(r) at a chemical potential set to match the
total number of particles given by Eq. (5):

Np =
∫

d2rntot(r) = N
∫

d2r
∫

d2p
(2π )2

f 0(r, p, μ, T ),

(A2)

where

f 0 = 1

e( p2

2m +V (r+UMF )−μ)/T + 1
. (A3)

The chemical potential μ is determined by fixing Np =∫
d2rntot(r). We can then numerically evaluate ξ in Eq. (A1)

for the total particle number Np at a temperature T and trap
frequency ω. The mean-field contribution to f 0 can be ignored
in the weakly interacting regime since it changes the density
only perturbatively. In the following analysis, we set UMF =
0. One can show that Eq. (A2) can be written as

Np

N
(h̄ωtr )

2 =
∫

dvdu

eβ(v+u−μ) + 1
= −Li2(−eβμ)

β2
, (A4)

where Liα (z) is the polylog function.
In general this equation can be solved numerically, as

discussed in Sec. A 3. In the next sections we analytically
solve it in the high- and low-temperature limits.

1. Low-temperature limit T � h̄ωtr

√
2 Np

N

For T → 0, we have

Np

N
(h̄ωtr )

2 =
∫ ∞

0
dv

∫ ∞

0
du �[μ − (v + u)] (A5)

= μ(T = 0)2

2
(A6)

= E2
F

2
, (A7)
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where � is the Heaviside theta function and EF is the Fermi
energy,

EF = h̄ωtr

√
2

Np

N
. (A8)

The density is

ntot(r) = N
∫

d2k

(2π )2 f 0 = N

2π

m

h̄2

∫
ds

1

eβ(s+V (r)−μ + 1
,

(A9)

which at low temperature is

ntot(r) = N

2π

m

h̄2 [EF − V (r)]�[EF − V (r)]. (A10)

Using the expression for EF and V (r), we get

ntot(r) = N

4π

r2
0 − r2

l4
�(r0 − r), (A11)

where r0 = l (8 Np

N )
1
4 and l =

√
h̄

mωtr
. Using Eqs. (A11) and

(A1), at low temperature (T � EF ) we find

ξ = g2D(N − 1)
2π h̄2

m

. (A12)

FIG. 4. (a) ξ

ξ0
vs T

h̄ωtr
for different values of Np

N and (b) numer-

ical calculation for ξ

ξ0
vs the theoretical calculation at the high-

temperature limit for Np

N = 100.

2. High-temperature limit T � h̄ωtr
Np
N

At high temperature,

Np

N
(h̄ωtr )

2 =
∫

dvdu

eβ(v+u−μ) + 1
(A13)

≈
∫

dvdu eβ(μ−v−u) (A14)

= 1

β2
eβμ, (A15)

so

μ = T ln

[
Np

N

(
h̄ωtr

T

)2
]
. (A16)

This approximation is true only when e−βμ 
 1 → T 

h̄ωtr

Np

N . With this approximation, at high temperature density
becomes

ntot(r) = Np

2π

h̄ωtr

T

e−βV (r)

l2
, (A17)

and

ξ = 1

8π

g2D(N − 1)
h̄2

m

Np

N

(
h̄ωtr

T

)2

. (A18)

3. Scaling analysis

Equation (A4) implies that μ̃ = S( Np

N , T̃ ), where μ̃ ≡ μ

h̄ωtr
,

T̃ ≡ T
h̄ωtr

, and S = −T̃ ln(Li−1
2 [−Np

N
1

T̃ 2 ]). The density is

ntot(r) = N

2π

m

h̄2

∫
ds

1

eβ(s+V (r)−μ + 1

= N

2π

1

l2

∫
ds̃

1

e
s̃
T̃ e( r

l )2 1
2T̃ e− μ̃

T̃ + 1

= N

2π l2
h

(
r

l
, T̃ ,

Np

N

)
, (A19)

implicitly defining h on the last line. Scaling Eq. (A1), ξ is
given by (Fig. 4)

ξ = g2D(N − 1)

2πmω2
trl4

∫
d2rh

(
r, T̃ ,

Np

N

)2∫
d2rr2h

(
r, T̃ ,

Np

N

) (A20)

= g2D(N − 1)
2π h̄2

m

F

(
T̃ ,

Np

N

)
(A21)

= ξ0F

(
T̃ ,

Np

N

)
. (A22)

Here F is implicitly defined in the second line, and ξ0 =
g2D(N−1)

π h̄2
m

. One can numerically calculate F (T̃ ,
Np

N ) in general,

while the prior two sections showed that F (0,
Np

N ) = 1 and

F (T̃ 
 Np

N ,
Np

N ) = 1
4

Np

N
1

T̃ 2 .
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