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Vortices in Fermi gases with spin-dependent rotation potentials
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The rotation of two-component Fermi gases and the subsequent appearance of vortices have been the subject
of numerous experimental and theoretical studies. Recent experimental advances in hyperfine state-dependent
potentials and highly degenerate heteronuclear Fermi gases suggest that it would be feasible to create component-
dependent rotation potentials in future experiments. In this study, we use an effective field theory for Fermi gases
to consider the effects of rotating only one component of the Fermi gas. We find that the superfluid band gap in
bulk exists up to higher rotation frequencies because the superfluid at rest, far away from the vortex, has to resist
only half of the rotational effects. The vortex remains the energetically favorable state above a critical frequency,
but exhibits a larger core size.
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I. INTRODUCTION

Superfluid Fermi gases have recently become of great
interest in the field of ultracold atomic physics because of
the many modifiable experimental parameters related to the
fermionic substructure of the correlation pairs in the conden-
sate, allowing one to probe pairing in regimes inaccessible in
solids. The interaction strength between different components
of the Fermi gas can be tuned using Feshbach resonances [1],
granting experimental access to superfluid regimes across the
BCS-BEC crossover [2–5]. Subsequently, superfluidity in the
presence of population imbalance between the pairing part-
ners was realized experimentally [6,7], which led to renewed
theoretical investigations of spin-imbalance effects [8]. Also
spin-orbit coupling [9] as well as dimensionality [10] can be
tuned. Even greater control of the individual spin components
has been achieved by using magnetic field gradients to create
spin-dependent potentials [11,12] and, in another approach
(thus far limited to Bose gases), hyperfine state-dependent
microwave potentials have been created [13,14].

Furthermore, recent observations of degenerate Fermi mix-
tures of dysprosium and potassium [15] are a first step towards
the superfluid state in Fermi gases with components of differ-
ent atomic species, which would grant unprecedented control
over the individual components of the gas. This naturally
raises the question as to what novel phenomena could be
revealed by using state-dependent potentials in experiments
that previously relied on simultaneous control of both compo-
nents of the condensate. In this paper, we answer this question
in the context of vortex formation in a rotated fermionic
superfluid.

Vortices, one of the hallmarks of superconductivity and
superfluidity, have been created in Fermi gases [6,16,17] by
stirring the condensate with detuned lasers. Although the
effect of a spin-dependent population (spin imbalance) was
investigated experimentally in a rotated Fermi superfluid [6],
both spin components were subject to the same rotational
potential. Other techniques such as phase imprinting have also

been used to achieve vortices in Bose-Einstein condensates
(BECs) [18] and phase imprinting individual components of
Fermi gases has been proposed for soliton creation [19].
Rotation and vortices in Fermi gases have been the subject
of extensive theoretical study [20–28]; however, here we con-
sider the rotation of both components at different frequencies.

To study this, we introduce spin-dependent rotation poten-
tials in the microscopic action of the Fermi gas and consider
the effects of rotating only a single component of the gas
on the bulk value of the superfluid gap and on the first
quantized vortex state. Our approach is based on the effective
field theory (EFT) for superfluid Fermi gases presented in
Refs. [29–31], which has also been applied to the study
of vortices [27,28]. Introduction of spin-dependent vector
potentials for the two components in the microscopic action
leads to a modification of the local chemical potential and
spin-imbalance parameter and yields additional terms in the
EFT action. We solve the modified gap and number equations
to study the uniform background amplitude of the superfluid
gap of the system away from the disturbance. Finally, we
use a variational approach [32] to probe the critical rotation
frequencies for vortex creation and the behavior of the vortex
core size.

II. SPIN-DEPENDENT ROTATION IN THE EFFECTIVE
FIELD THEORY

This section presents an overview of our approach; see,
also, the Appendix and Refs. [27–31] for details. For a
Fermi gas of particles with mass m and density n0, the
quantities in the rest of this work will be given in units of
the Fermi vector kF = (3π2n0)1/3, the corresponding Fermi
energy EF = h̄2k2

F /2m, and the Boltzmann constant kB. The
two-spin-component [σ = (↑,↓)] Fermi gas is described by
Grassmann fields (ψ↑, ψ↓) that interact through contact inter-
actions with strength g, and that are confined by a trap with
potential V (r). The Lagrangian density of this system is given
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by

L =
∑

σ

ψ̄r,τ,σ

{
∂

∂τ
− [∇r − iAσ (r)]2 + Vσ (r) − μσ

}
ψr,τ,σ

+ gψ̄r,τ,↑ψ̄r,τ,↓ψr,τ,↓ψr,τ,↑. (1)

The rotation potentials are time dependent in the laboratory
frame, but can be represented as time-independent vector
potentials Aσ (r) through a transformation into the rotating
frame of reference. This standard procedure corresponds to
replacing the gradient for the spin σ component by ∇r →
∇r − iAσ (r) and the trapping potential by Vσ (r) = V (r) −
Aσ (r)2. We want to emphasize that when fully expanded, the
Lagrangian contains no quadratic term in the vector potential,
and (1) is merely a convenient notation. The vector potentials
are written as Aσ = 1

2ωσ × r, where ωσ is the spin-dependent
rotation vector (whose length equals the rotation frequency ωσ

for spin σ , and whose orientation indicates the axis and sense
of rotation).

In the following, we will consider a uniform box potential
and set V (r) = 0, where the hard walls of the potential are
implemented through a self-consistent normalization condi-
tion in the trapping region. While in many of the experiments
with Fermi gases harmonic traps are used, uniform potentials
are now a feasible setup to consider. This choice is motivated
by a number of recent experimental breakthroughs where

uniform potentials with hard walls have been realized in
BECs [33], in two-dimensional (2D) Fermi gases [34], in 3D
Fermi gases [35,36], and, more recently, even a 3D cylindrical
configuration has been achieved [37].

To obtain an effective field theory corresponding to
Lagrangian (1), first a bosonic pair field �(r, t ) is introduced
through the Hubbard-Stratonovic transformation to decou-
ple the quartic interaction term. Then, after performing the
fermionic path integrals, the effective action for the pair
field is expanded up to second order in the gradients. The
expansion is valid under the assumption that the bosonic field
varies sufficiently slowly, i.e., on length scales larger than
the pair-correlation length ξp and energy scales smaller than
2
, the spectroscopic pair-breaking gap. As shown in [30],
the applicability domain of the EFT comprises the BEC-BCS
crossover, except for the BCS regime at low temperatures.
The spatial dependence of the potentials is taken into account
in the local density approximation (LDA), which makes the
additional assumption that significant changes in Aσ (r) take
place at larger scales than ξp. Accordingly, we perform the
effective action expansion up to |∇�|2 in the kinetic-energy
terms and, in addition, neglect gradients in the rotational terms
beyond the linear contribution ∇�. This is to obtain the
same order of expansion on the two sides of the BCS-BEC
crossover as the Ginzburg-Landau BCS or Gross-Pitaevskii
BEC action functionals. The resulting effective action yields
the free-energy (time-independent) functional:

F =
∫

dr
{
�s(r) + C(r)|∇�|2 − E (r)(∇|�|2)2 + i

[
D(r)

(
A↑ + A↓

2

)
+ U (r)

(
A↓ − A↑

2

)]
(�∗∇� − �∇�∗)

}
. (2)

The free energy (2) acquires a term that contains the difference
of the vector potentials A↓ − A↑, and that is only present
in the case of spin-dependent rotation. Expressions for the
coefficients C(r), E (r), D(r), U (r), and �(r) can be found
in the Appendix. To calculate these coefficients, one needs
the values of the chemical potentials and the superfluid pair-
breaking gap 
∞ for the uniform case (i.e., without vortex).
These can be related to the densities and interaction strength
using the gap equation and equation of state deemed most
appropriate, for example the experimentally determined equa-
tion of state. Here, we use the mean-field equation of state
as we want to focus more on the qualitative results than on a
quantitative comparison.

It will prove to be illustrative to consider expression (2)
from two separate viewpoints. While the gradients of the field
� in expression (2) describe the center-of-mass motion of the
bosonic pairs, the contributions due to the internal structure
of the pairs are taken into account in the coefficients. At this
level, the rotational effects are shown to be present through
position- and momentum-dependent extensions of the bulk
chemical potential and spin imbalance,

ζk(r) = ζ + k · [A↑(r) + A↓(r)], (3)

μk(r) = μ + k · [A↑(r) − A↓(r)], (4)

where μ = (μ↑ + μ↓)/2 and ζ = (μ↑ − μ↓)/2. The local
spin imbalance ζk(r) and chemical potential μk(r) appear in

all the coefficients, but their effect is most pronounced in the
zeroth-order �s(r) term, which only depends on the local pair
density, |�(r)|2, and describes the thermodynamic potential of
the pair condensate at rest. To gain a physical understanding of
the modified expressions, it is therefore sufficient to consider a
stationary superfluid. Moreover, as a first approximation (see,
also, comments in the next section on the rigidly rotating
broken pairs), the superfluid part of the gas is, in general,
indeed stationary when the gas is rotated below the critical
vortex frequency, assuming no stirring anisotropy [21].

The local spin imbalance, given by expression (3), can
be understood by considering the effect of the LDA within
the EFT. Within this approximation, the gas is subdivided
into separate elements (larger than the pair-correlation length)
between which the effects of rotation are uncorrelated. Each
of these elements can now be assigned its own Fermi sphere
corresponding to the local density. Spin-dependent rotation
will induce a displacement in the Fermi spheres of the two
components along the local velocity of rotation ωσ × r. When
the Fermi spheres of both spin components are displaced,
pair formation is suppressed as the momentum distribution
of fermions is no longer symmetric around zero momentum.
This is akin to the suppression of pair formation due to spin
imbalance. Indeed, pair formation is strongest at the Fermi
surface, but in our case the Fermi surfaces are displaced
such that in the momentum direction corresponding to that
of the rotation velocity, fermions at one Fermi surface cannot
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find opposite-spin, opposite-momentum pairing partners. The
modified spin-imbalance parameter ζk therefore describes pair
breaking due to rotation. Note that when the vector potentials
are set equal, the expression reduces to ζk(r) = ζ + 2k · A(r),
in accordance with [28].

To understand the significance of the modified chemical
potential (4) in our approach, it will prove to be useful to
first consider the case of a noninteracting Fermi gas of which
the two components are being rotated simultaneously. From
a local density approximation viewpoint, at the microscopic
level, this rotation is reflected as the aforementioned shift of
the local Fermi spheres of each component along the rigid-
body rotation velocity. Each of the two Fermi spheres can now
be partitioned in a volume of states that are still symmetric
about k = 0 and a shifted part that will carry the rotational
effects. If the interactions between the components were now
to be switched on, it is precisely these former symmetric parts
of the available states that will form the superfluid at rest.
Here, we assume that all fermions below the Fermi surface
participate equally in superfluid formation, which is sufficient
for the purpose of this discussion and valid in the BEC regime.
The superfluid in this case exhibits a certain symmetry with
respect to exchanging the spins, i.e., for every state (k, ↑)
that is paired with (−k, ↓), there will also be a pair with the
spins interchanged, and hence the average momentum of each
component participating in pair formation vanishes. The states
in the remaining shifted part of the Fermi spheres have no
partner of opposite momentum and will remain unpaired and
form the normal component that carries the rotational effects.
This description is closely related to the phase separation
between the two components studied in [38–40], where it
has been suggested that in the absence of vortices, the Fermi
gas will form a stationary superfluid in the center with a
rapidly rotating normal component that is pushed outwards.
This phenomenon, which requires a complete description of
the normal component, is, however, not captured within our
approach and we will only focus on describing the superfluid
component in this work.

The picture discussed above changes drastically when only
the spin-up component is subject to rotation. In this case, the
superfluid part can still be formed at rest, but now the spin-
interchange symmetry is broken. Momentum states where k
is aligned with the Fermi sphere shift contain more pairings
of (k, ↑) with (−k, ↓) than the case with interchanged
spins. This means that the average momentum of each of the
components participating in pair formation is no longer zero
in the case of single-component rotation. The superfluid part,
even though it is at rest, now consists of two components that
each have an average total momentum in opposite directions.
This means that rotational effects should be directly present
in the description of the superfluid component, contrary to the
aforementioned situation where two components are rotated
simultaneously. Accordingly, in our description within the
LDA, rotational effects appear at the level of the superfluid
as a Thomas-Fermi potential in expression (4). Therefore,
we expect the reappearance of the centrifugal-like force at
the level of the superfluid component in our approach when
A↑ �= A↓. We want to emphasize that this is unrelated to the
rotational term ∼∇� in the free energy, which is related to

the force due to the center-of-mass motion of the pairs and
will lead to vortex creation.

While in this work we will restrict ourselves to studying
the single-component rotation case, we want to add a brief
discussion of the case where the frequencies are unequal, but
neither is zero. In this case, the pair-breaking strength, which
acts similar to spin imbalance, is determined by the average of
the two vector potentials, as can be seen in (3). Similarly, the
previously discussed centrifugal-like force on the nonrotating
superfluid component is determined by the difference of the
two in (4). The discussion presented for the single-component
rotation case can now straightforwardly be generalized. At
the LDA level, both Fermi spheres will now shift according
to their respective local vector potential. This results in a
fraction of fermions without a partner of opposite spin, being
a measure of the pair-breaking effect. The superfluid part of
fermions that could be paired this way consists of two com-
ponents with a nonzero local average momentum, resulting
in a centrifugal-like force on the nonrotating superfluid part.
We can immediately see that one particularly interesting case
is the one with opposite frequencies A↑ = A↓, where the
pair-breaking effect would be minimal and the centrifugal-like
force maximal. This seems to signal the necessity to consider
arguments beyond the LDA and mean field for these more
exotic cases.

III. RESULTS

A. Superfluid gap background amplitude

In this section, first the case of a rotated superfluid without
vortex is considered, and a comparison is made between
the background amplitude of the superfluid order parame-
ter for spin-dependent single-component rotation (ω = ω↑,

ω↓ = 0), on the one hand, and that for two-component ro-
tation (ω = ω↑ = ω↓), on the other hand. The background
amplitude is obtained by neglecting all the gradients of the
bosonic field and minimizing the lowest-order term of the
free energy (2) as a function of a uniform superfluid pair-
breaking gap, |�| = 
∞, while demanding particle-number
conservation. For a vortex state, the resulting gap yields the
bulk solution far away from the center.

The minimization of the free energy results in the mean-
field gap and number equations for (
∞, μ) which now con-
tain the spin-dependent rotational effects through the presence
of the modified expressions (3) and (4) in �s. To solve the
equations, we consider a Fermi gas in an infinitely long
cylindrical container confined by a hard-wall potential. The
container radius is taken to be kF R = 15 in the rest of this
work. Considering the aforementioned EFT region of valid-
ity in combination with the LDA, we restrict our study to
(kF as)−1 � 0.1 on the BEC side close to unitarity. In addition,
as has also been shown in other works [27], the stability
domain of the single-vortex state (which is the model system
we will use further on) quickly vanishes on the BCS side
further from unitarity. To speed up the numerical calculations,
a momentum cutoff of  = 140kF is used, the length scale
of which corresponds to −1 ≈ 2.1 nm for the parameters
of the 6Li vortex experiment [16]. This value is chosen to

053609-3



T. ICHMOUKHAMEDOV AND J. TEMPERE PHYSICAL REVIEW A 101, 053609 (2020)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
TCR (ω = ω↑ = ω↓)

(kF as)−1 = 0.1

(kF as)−1 = 0.5

(kF as)−1 = 1

SCR (ω = ω↑, ω↓ = 0)

(kF as)−1 = 0.1

(kF as)−1 = 0.5

(kF as)−1 = 1

ω/ωF

Δ
/E

F

FIG. 1. The uniform background superfluid gap amplitude 


as a function of the applied rotation frequency for two-component
rotation (TCR) (solid lines) and single-component rotation (SCR)
(dashed lines) for different values of (kF as )−1 = [0.1, 0.5, 1], re-
spectively, using orange, magenta, and blue lines (light gray to dark
gray).

coincide with the estimated range of the interatomic potential
for Li - Li interactions [41] and we checked that our results do
not significantly change by increasing  even further. Finally,
for numerical convenience, we work at a finite temperature
corresponding to T = 0.01 TF , which is almost an order of
magnitude lower than in [16] and, for the purposes of Fig. 1,
represents zero temperature.

The results presented in Fig. 1 are in qualitative agreement
with the discussion in the previous section. The displacement
of the local Fermi spheres, reflected in the k-dependent part
of ζk, decreases the number of available boson pairs at rest,
which adversely affects superfluidity and completely destroys
it at a critical value ωmax. Qualitatively, this behavior is in
agreement with the presented values for the asymptotic 
∞
in [26], where its value changes only a little at low rotational
frequencies, but then shows signs of a rapid decrease as the
critical rotation frequency is approached. In the present work,
a homogeneous trapping potential is considered, while the
authors of [26] utilize a harmonic trap with a much larger
Thomas-Fermi radius. A quantitative comparison is therefore
not possible since the observed critical values are all much
larger in the present case of a small trap.

For the rotation of a single component, only one of the
Fermi spheres undergoes a displacement. This increases the
number of available pairing states and, as a result, superflu-
idity persists up to higher rotation frequencies. However, the
critical frequencies of single-component rotation do not pre-
cisely equal twice the critical frequencies of two-component
rotation as would be expected from this reasoning. The rea-
son for this is the additional adverse effect of μk on the
superfluid gap. As mentioned previously, the modification of
the chemical potential can be interpreted as an additional
centrifugal force on the condensate. This favors pair formation
towards the edge, where the pair-breaking effect of ζk is larger,
and hence results in a detrimental effect on the background
amplitude of the gap.

B. Singly quantized vortex state

In this section, a comparison of the lower and upper critical
frequencies of the vortex state is presented and the behavior of
the vortex core size for two-component rotation and single-
component rotation is described. It is well known that at
rotation frequencies above a critical value, the singly quan-
tized vortex is the energetically favored state [24]. At even
higher frequencies, a vortex lattice will appear [42,43] or a
multiply quantized vortex may be formed [44]. The main goal
of the present work is to consider the behavior of the singly
quantized vortex, which is relevant for the case of frequencies
not much larger than the critical rotation frequency, i.e., in
the regime where the density of vortices in the lattice is still
small. To provide a lower bound estimate of this regime for
this system, a two-vortex solution will be considered as well,
yet for completeness, we present and discuss our results for
the single-vortex state across the entire frequency regime at
which the superfluid exists. We consider the full free energy
in expression (2) and subtract its value for the previously
obtained uniform solution at rest F [
∞] from the free energy
of the rotating vortex state F [�v],

δF = (F [�v] − F [
∞])/(2πH ), (5)

where H is the container height. The change in sign from pos-
itive to negative δF as a function of ω determines the critical
transition frequency to the vortex state ω(1)

c . As ω is increased
more, δF changes sign again at the upper critical transition
frequency ω(2)

c and the system reenters the superfluid state
without vortex. Note that ω(2)

c can, in general, lie below the
critical pair-breaking frequency ωmax above which the sys-
tem becomes normal, as has been shown for two-component
rotation of harmonically confined Fermi gases [24,27]. The
vortex state in a cylindrical container with coordinates (r, θ )
and volume V is described by a variational ansatz,

�v(r) = 
∞
√

V√∫
tanh2(r/ξv)dV

tanh

(
r

ξv

)
eilθ , (6)

where ξv is a variational parameter and l is the vortex winding
number (l = 1 for the singly quantized vortex in this work).
For a vortex in a superfluid Fermi gas, the hyperbolic tangent
has been shown to be an excellent description of the vortex
core size (� 1% error) and to provide a good estimate (< 1%
error) of the vortex state energy within the EFT, away from
the highly spin-imbalanced limit [32]. Note that this does not
necessarily imply that (6) is an accurate description of the
vortex profile itself (as the relative deviations of the profile
can be larger), but provides accurate estimates for the core
size and energy, which will be our quantities of interest in
what follows. The superfluid pair-breaking gap background

∞ and corresponding chemical potential μ are obtained
by solving the mean-field gap and number equations in the
previous section. The confinement in the hard-wall box is
self-consistently imposed through the normalization condition
in (6), keeping the total number of pairs fixed in the cylinder
of radius R. This neglects the healing of the pair condensate
over a distance ξv inside of the hard wall at r = R, which does
not affect the current results as long as R � ξv. Keeping in
mind the normalization, here we define a vortex core size Rv
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FIG. 2. The vortex core size Rv is shown as a function of the applied rotation frequency for two-component rotation (TCR) (solid line)
and single-component rotation (SCR) (dashed line) for (kF as )−1 = [0.1, 0.5, 1] in (a)–(c), respectively, with the corresponding free-energy
difference from the nonvortex state shown in (d)–(f). In the shaded region, the free energy is higher than that of the superfluid state without
vortex. The transition frequency into the doubly quantized vortex state is indicated on the figure (arrows pointing to the respective SCR and
TCR plots). Note that no transition takes place for SCR in (a).

through �v(Rv)/
∞ = tanh(1) for the optimized variational
solution, rather than setting Rv = ξv.

To estimate the frequency at which a second vortex will
enter the trap, in addition to the previous variational ansatz a
two-vortex state is considered,

�(r) = 
∞
√

V√∫
f 2
1 (r) f 2

2 (r)dV
f1(r) f2(r)eil[θ1(r)+θ2(r)]. (7)

Here, f1 and f2 form the hyperbolic tangent single-vortex
profiles separated at some distance L, which serves as an
additional variational parameter, and θi are the respective
angles relative to the vortex centers. Note that this formulation
does not incorporate mirror charge vortices, which would be
necessary to accurately describe the vortex behavior at the
edges, but does implicitly incorporate the presence of the
container walls through the normalization condition.

Figure 2 presents the behavior of the vortex core size of
the single vortex state together with the corresponding free-
energy difference δF and the critical frequencies ω(1)

c , ω(2)
c for

TCR and ω
(1)
↑,c, ω

(2)
↑,c for SCR. While the results and discussion

presented below consider the single-vortex state, the transition

into the two-vortex state is indicated on Fig. 2 as well. Due to
the relatively small size of the container, the doubly quantized
vortex, where both vortex profiles coincide, is found to be the
favorable state into which the system transitions. Note that
for SCR at (kF as)−1 = 0.1, we find that in the system under
investigation, the two-vortex state does not appear and the
single-vortex state remains favorable.

For TCR, after the vortex is created at ω(1)
c , for a broad

initial frequency range, the size of the vortex core remains
relatively constant in Figs. 2(a)–2(c). This behavior is in
excellent qualitative agreement with the core profile of the
central vortex in a vortex lattice presented in [26], where the
vortex profile hardly changes as a function of the rotation
frequency. The apparent absence of the centrifugal force on
the vortex state should not come as a surprise for the ideal
singly quantized vortex because the angular momentum of
the bosonic field is homogeneously spread throughout the
pair condensate in this model. Furthermore, as mentioned
previously, we do not include the rigidly rotating outer normal
gas shell that is expected to have a significant bulging effect
on the condensate. Around the frequency where 
∞ starts
to decrease (see Fig. 1), the vortex core shrinks. Close to
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unitarity, ωc < ωmax and the vortex state briefly transitions
into the stationary superfluid phase again at high frequencies
before the Fermi gas transitions to the nonsuperfluid state.
This is particularly pronounced in Fig. 2(a) for the SCR
vortex state. Within our description of the vortex (6), con-
sidering the rather small container size, this transition can
be understood by noting that the vortex state pushes more
superfluid outwards, which has an energetically unfavorable
effect. When the pairs are weakly bound and the superfluid is
easily destroyed by rotation, this effect is expected to be even
more significant. In addition, the energy gain by creating a
vortex −ωLz is only half as large for SCR. This can be seen in
Fig. 2(d), where the energy of the vortex SCR state quickly
exceeds the energy of the homogeneous superfluid. From
(kF as)−1 = 0.5 onwards, as the pairs become more strongly
bound, this reentrant phase disappears and the vortex state di-
rectly transitions into the nonsuperfluid phase. Although these
results are in qualitative agreement with [27], we note that our
approach does not incorporate the shrinking superfluid radius
which contributes to the reentrant phase observed in [27].

Significant differences can be observed for the behavior
of the vortex for SCR. First of all, the critical frequencies
of respectively vortex creation and disappearance ω

(1),(2)
↑,c are

higher. The increase of the initial critical frequency ω
(1)
↑,c

can be intuitively understood by noting that the contribution
from the rotating term −ωLz in the free energy, which favors
vortex formation, decreases by half for SCR. Hence, higher
frequencies are required to provide sufficient rotational energy
to the condensate. The increase of the upper critical frequency
ω

(2)
↑,c in Figs. 2(b) and 2(c) is related to the superfluid pair-

breaking gap background 
∞ which, for single-component
rotation, decreased at higher frequencies as compared to two-
component rotation, as seen in Fig. 1. The most striking differ-
ence between single- and two-component rotation revealed in
Fig. 2 is the large size of the vortex core for single-component
rotation, which grows as the system is brought deeper into
the BEC regime. This observation is in accordance with our
previous discussion regarding the repulsive character of the
modified chemical potential μk in expression (4).

To gain an understanding of why the effect of μk is more
prominent in the BEC limit in our approach, it is instructive
to consider the mean-field energy density �s at zero temper-
ature. In the high-momentum limit, its integrand reduces to
∼(ξk − Ek + 
2/k2), which for a nonrotating gas describes
the modification of the fermionic excitation dispersion as a
result of pair formation. The k range in which this expression
is nonzero can hence be related to the momentum states
that participate in forming the superfluid component. On
the deep BCS side, this range is localized roughly around
k ≈ kF, as expected. However, moving to the BEC side, this
expression obtains extremely long momentum tails, indicative
of the broadening pair-formation window around the Fermi
surface. Indeed, it is well known that the relative momentum

distribution of the fermions in the BEC limit is significantly
broadened [45,46]. To make the connection with SCR, it is
sufficient to notice that in our LDA approach, the repulsive
modified chemical potential μk enters both Ek and ξk. As
more states at higher momentum are present in the superfluid
component in the BEC limit, the repulsion of μk is conse-
quently expected to already be greater at the mean-field level.

IV. CONCLUSION

We have studied the behavior of a two-component su-
perfluid Fermi gas, where only one of the two components
is subject to a rotating potential, and compared it to the
respective two-component rotation case. We find that not only
does the superfluid state persist for single-component rotation,
but also that it exists up to higher rotation frequencies. Above
a critical frequency, at a value larger than for two-component
rotation, a vortex state appears which exhibits a much larger
vortex core than for two-component rotation. With increasing
frequency, initially the size of the vortex core grows for single-
component rotation, whereas it remains initially independent
of frequency for two-component rotation.

The model used in the present work does not include the
effects of phase separation and likewise does not consider
the formation of a vortex lattice. Nevertheless, the observed
differences between the two types of rotation considered
in this work are already appreciable at frequencies below
the transition frequency into the doubly quantized vortex.
Therefore, we expect the conclusions regarding the behavior
of the single-vortex core to be observable. We believe that
one particularly interesting direction would be to consider this
topic in mass-imbalanced superfluids, where spin-dependent
rotation could be feasibly implemented experimentally.
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APPENDIX: EFFECTIVE FIELD THEORY

In this Appendix, a summarized discussion of the EFT
is presented. More details on the EFT can be found in
[27–31,47]. The partition sum of a Fermi gas at temperature
β = EF /kBT = TF /T , with EF the Fermi energy of a free
Fermi gas and kB the Boltzmann constant, can be written as a
path integral of the Euclidian action S of the fermionic fields
(ψ̄x,τ,σ , ψx,τ,σ ):

Z =
∫

Dψ exp

[
−

∫ β

0
dτ

∫
dx

∑
σ

ψ̄x,τ,σ

{
∂

∂τ
− [∇x − iAσ (x)]2 + Vσ (x) − μσ

}
ψx,τ,σ

− g
∫ β

0
dτ

∫
dxψ̄x,τ,↑ψ̄x,τ,↓ψx,τ,↓ψx,τ,↑

]
=

∫
Dψ exp (−S[ψ]). (A1)
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Expression (A1) is given in units of kF = (3π2n0)1/3, EF =
h̄2k2

F /2m, and kB, where m is the fermion mass and n0 the
fermion density. The s-wave contact interactions between
different components of the gas are described by a con-
tact potential with strength g, which can be related to the
experimentally accessible scattering length as through the
Lippmann-Schwinger equation. Componentwise rotation is
included in the spin-dependent vector potentials Aσ = 1

2ωσ ×
r and the confinement potential V (r) becomes shifted in this
representation, Vσ (r) = V (r) − Aσ (r)2. The global chemical
potentials μσ allow one to conserve particle number and
impose spin imbalance. As mentioned in the main text, the
vector potentials are assumed to be slowly varying compared
to the pair-correlation length of the bosonic pairs and taken
into account in the local density approximation (LDA). After
performing the Hubbard-Stratonovic transformation and the
fermionic path integrals, the partition sum is rewritten as a
path integral over the bosonic pair field �,

Z =
∫

D� exp (−Seff[�]), (A2)

where the effective action Seff is given by

Seff = SB − Tr
(
ln

[−G−1]). (A3)

In expression (A3), the bosonic part is equal to SB =
−(1/g)

∫
dτ

∫
dx|�|2. The second part contains the full prop-

agator G, which can be expressed as −G−1 = −G−1
0 + F ,

using the pair field matrix F (r, τ ),

F (r, τ ) =
(

0 −�r,τ

−�∗
r,τ 0

)
, (A4)

and Nambu-Gorkov propagators G0(k, n) in reciprocal space,

G0(k, n) =
(

1
iωn−ξk+ζk

0

0 1
iωn+ξk+ζk

)
. (A5)

Here, ωn = (2n + 1)π/β is the fermionic Matsubara fre-
quency and ξk(r) = k2 − μk(r) is the shifted kinetic energy.
The chemical potential μ = (μ↑ + μ↓)/2 and spin imbalance
ζ = (μ↑ − μ↓)/2 gain a position and wave-vector depen-
dence as discussed in the main text:

μk(r) = μ + k · [A↑(r) − A↓(r)], (A6)

ζk(r) = ζ + k · [A↑(r) + A↓(r)]. (A7)

The pair field matrix is subsequently expanded up to sec-
ond order in space and time. For this work, only stationary
solutions are of importance and time dependence will be
neglected,

F (r + 
r, τ + 
τ ) = F (r, τ ) + ∇F (r, τ ) · 
r

+ 1

2

∑
α,β

∂2F (r, τ )

∂xα∂xβ


xα
xβ. (A8)

The effective action functional is expanded up to second
order in the gradients. In the terms where the gradients of
the field ∇F (r) couple to the rotational potentials Aσ , only
the first-order gradient contribution is kept and terms such

as Aσ∇2F (r) are not included. The resulting effective action
functional is written as

S =
∫ β

0
dτ

∫
dr

{
�s(r) + C(r)|∇�|2 − E (r)(∇w)2

+ i

[
D(r)

(
A↑ + A↓

2

)
+ U (r)

(
A↓ − A↑

2

)]

× (�∗∇� − �∇�∗)

}
. (A9)

The coefficients in expression (A9) are given by

�s(r) = −
∫

dk
(2π )3

{
1

β
ln [2 cosh(βEk )

+ 2 cosh(βζk )] − ξk − |�|2
2k2

}
− |�|2

8πkF as
(A10)

and

C(r) = 2

3

∫
dk

(2π )3
k2 f2(β, Ek, ζk ), (A11)

E (r) = 4

3

∫
dk

(2π )3
k2ξ 2

k f4(β, Ek, ζk ), (A12)

D(r) =
∫

dk
(2π )3

ξk

|�|2
[

f1(β, ξk, ζk ) − f1(β, Ek, ζk )
]
,

(A13)

U (r) =
∫

dk
(2π )3

ζk

|�|2
[

f1(β, ζk, ξk ) − f1(β, ζk, Ek )
]
.

(A14)

The pair-breaking excitation energy is equal to Ek =√
ξk + |�|2 and the functions fp(β, ε, ζ ) are defined by

fp+1(β, ε, ζ ) = − 1

2pε

∂ fp(β, ε, ζ )

∂ε
, (A15)

where

f1(β, ε, ζ ) = 1

2x

sinh(βε)

cosh(βε) + cosh(βζ )
. (A16)

In the notation of Appendix A in [27], we made the same
additional approximation G = D as done here to arrive at (A9)
and neglect one additional term arising in the derivation that
is expected to be negligible within the applicability range of
the EFT. The question could be posed whether the term of
the spin-dependent rotation coefficient U (r) could also be
neglected for the same reason, since an explicit calculation
shows it to be extremely small compared to the D(r) term.
While this is a valid concern, this would remove the lowest-
order contribution of spin-dependent rotation at the level of
the bosonic field. For the purpose of illustration, we will hence
keep this term, but note that its contribution will be very
small and the main spin-dependent effects will arise due to
the modified μk and ζk.
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Finally, by treating the pair field � as a classical field, we
can identify the free energy from expression (A9) as

F =
∫

dr
{
�s(r) + C(r)|∇�|2 − E (r)(∇|�|2)2

+ i

[
D(r)

(
A↑ + A↓

2

)
+ U (r)

(
A↓ − A↑

2

)]

× (�∗∇� − �∇�∗)

}
. (A17)

The derivation of the contributions beyond the saddle point
in the free-energy functional (A17) relies on a second-order
gradient expansion |∇�|2 in the kinetic energy and a first-
order gradient expansion ωσ · ∇� in the rotational terms.

For a consistent treatment, some care should be taken as
the coefficients C(r), E (r), D(r), and U (r) in front of these
terms themselves depend on ωσ and �(r). In the coefficients
C(r) and E (r), the bosonic field �(r) is replaced by the
uniform background amplitude solution 
∞, as using �(r)
would provide a gradient contribution to the kinetic energy
beyond second order [47]. Furthermore, the ωσ dependence
effectively corresponds to contributions that are at least of
the order of ωσ |∇�|2, which were explicitly neglected during
the derivation. For an equal treatment of the higher-order
rotational effects in the kinetic energy and rotational terms,
ωσ is set to zero in C(r) and E (r). For the very same reason,
�(r) is replaced by 
∞ in the coefficients D(r) and U (r), but
the ωσ dependence is kept since the contribution will remain
maximally first order in the gradient of the field.
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